calloop/
io.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
//! Adapters for async IO objects
//!
//! This module mainly hosts the [`Async`] adapter for making IO objects async with readiness
//! monitoring backed by an [`EventLoop`](crate::EventLoop). See [`LoopHandle::adapt_io`] for
//! how to create them.
//!
//! [`LoopHandle::adapt_io`]: crate::LoopHandle#method.adapt_io

use std::cell::RefCell;
use std::pin::Pin;
use std::rc::Rc;
use std::task::{Context, Poll as TaskPoll, Waker};

#[cfg(unix)]
use std::os::unix::io::{AsFd, AsRawFd, BorrowedFd, RawFd};
#[cfg(windows)]
use std::os::windows::io::{
    AsRawSocket as AsRawFd, AsSocket as AsFd, BorrowedSocket as BorrowedFd, RawSocket as RawFd,
};

#[cfg(feature = "futures-io")]
use futures_io::{AsyncRead, AsyncWrite, IoSlice, IoSliceMut};

use crate::loop_logic::EventIterator;
use crate::{
    loop_logic::LoopInner, sources::EventDispatcher, Interest, Mode, Poll, PostAction, Readiness,
    Token, TokenFactory,
};
use crate::{AdditionalLifecycleEventsSet, RegistrationToken};

/// Adapter for async IO manipulations
///
/// This type wraps an IO object, providing methods to create futures waiting for its
/// readiness.
///
/// If the `futures-io` cargo feature is enabled, it also implements `AsyncRead` and/or
/// `AsyncWrite` if the underlying type implements `Read` and/or `Write`.
///
/// Note that this adapter and the futures procuded from it and *not* threadsafe.
///
/// ## Platform-Specific
///
/// - **Windows:** Usually, on drop, the file descriptor is set back to its previous status.
///   For example, if the file was previously nonblocking it will be set to nonblocking, and
///   if the file was blocking it will be set to blocking. However, on Windows, it is impossible
///   to tell what its status was before. Therefore it will always be set to blocking.
pub struct Async<'l, F: AsFd> {
    fd: Option<F>,
    dispatcher: Rc<RefCell<IoDispatcher>>,
    inner: Rc<dyn IoLoopInner + 'l>,
    was_nonblocking: bool,
}

impl<'l, F: AsFd + std::fmt::Debug> std::fmt::Debug for Async<'l, F> {
    #[cfg_attr(feature = "nightly_coverage", coverage(off))]
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("Async").field("fd", &self.fd).finish()
    }
}

impl<'l, F: AsFd> Async<'l, F> {
    pub(crate) fn new<Data>(inner: Rc<LoopInner<'l, Data>>, fd: F) -> crate::Result<Async<'l, F>> {
        // set non-blocking
        let was_nonblocking = set_nonblocking(
            #[cfg(unix)]
            fd.as_fd(),
            #[cfg(windows)]
            fd.as_socket(),
            true,
        )?;
        // register in the loop
        let dispatcher = Rc::new(RefCell::new(IoDispatcher {
            #[cfg(unix)]
            fd: fd.as_fd().as_raw_fd(),
            #[cfg(windows)]
            fd: fd.as_socket().as_raw_socket(),
            token: None,
            waker: None,
            is_registered: false,
            interest: Interest::EMPTY,
            last_readiness: Readiness::EMPTY,
        }));

        {
            let mut sources = inner.sources.borrow_mut();
            let slot = sources.vacant_entry();
            slot.source = Some(dispatcher.clone());
            dispatcher.borrow_mut().token = Some(Token { inner: slot.token });
        }

        // SAFETY: We are sure to deregister on drop.
        unsafe {
            inner.register(&dispatcher)?;
        }

        // Straightforward casting would require us to add the bound `Data: 'l` but we don't actually need it
        // as this module never accesses the dispatch data, so we use transmute to erase it
        let inner: Rc<dyn IoLoopInner + 'l> =
            unsafe { std::mem::transmute(inner as Rc<dyn IoLoopInner>) };

        Ok(Async {
            fd: Some(fd),
            dispatcher,
            inner,
            was_nonblocking,
        })
    }

    /// Mutably access the underlying IO object
    pub fn get_mut(&mut self) -> &mut F {
        self.fd.as_mut().unwrap()
    }

    /// A future that resolves once the object becomes ready for reading
    pub fn readable<'s>(&'s mut self) -> Readable<'s, 'l, F> {
        Readable { io: self }
    }

    /// A future that resolves once the object becomes ready for writing
    pub fn writable<'s>(&'s mut self) -> Writable<'s, 'l, F> {
        Writable { io: self }
    }

    /// Remove the async adapter and retrieve the underlying object
    pub fn into_inner(mut self) -> F {
        self.fd.take().unwrap()
    }

    fn readiness(&self) -> Readiness {
        self.dispatcher.borrow_mut().readiness()
    }

    fn register_waker(&self, interest: Interest, waker: Waker) -> crate::Result<()> {
        {
            let mut disp = self.dispatcher.borrow_mut();
            disp.interest = interest;
            disp.waker = Some(waker);
        }
        self.inner.reregister(&self.dispatcher)
    }
}

/// A future that resolves once the associated object becomes ready for reading
#[derive(Debug)]
pub struct Readable<'s, 'l, F: AsFd> {
    io: &'s mut Async<'l, F>,
}

impl<'s, 'l, F: AsFd> std::future::Future for Readable<'s, 'l, F> {
    type Output = ();
    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> TaskPoll<()> {
        let io = &mut self.as_mut().io;
        let readiness = io.readiness();
        if readiness.readable || readiness.error {
            TaskPoll::Ready(())
        } else {
            let _ = io.register_waker(Interest::READ, cx.waker().clone());
            TaskPoll::Pending
        }
    }
}

/// A future that resolves once the associated object becomes ready for writing
#[derive(Debug)]
pub struct Writable<'s, 'l, F: AsFd> {
    io: &'s mut Async<'l, F>,
}

impl<'s, 'l, F: AsFd> std::future::Future for Writable<'s, 'l, F> {
    type Output = ();
    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> TaskPoll<()> {
        let io = &mut self.as_mut().io;
        let readiness = io.readiness();
        if readiness.writable || readiness.error {
            TaskPoll::Ready(())
        } else {
            let _ = io.register_waker(Interest::WRITE, cx.waker().clone());
            TaskPoll::Pending
        }
    }
}

impl<'l, F: AsFd> Drop for Async<'l, F> {
    fn drop(&mut self) {
        self.inner.kill(&self.dispatcher);
        // restore flags
        let _ = set_nonblocking(
            unsafe { BorrowedFd::borrow_raw(self.dispatcher.borrow().fd) },
            self.was_nonblocking,
        );
    }
}

impl<'l, F: AsFd> Unpin for Async<'l, F> {}

trait IoLoopInner {
    unsafe fn register(&self, dispatcher: &RefCell<IoDispatcher>) -> crate::Result<()>;
    fn reregister(&self, dispatcher: &RefCell<IoDispatcher>) -> crate::Result<()>;
    fn kill(&self, dispatcher: &RefCell<IoDispatcher>);
}

impl<'l, Data> IoLoopInner for LoopInner<'l, Data> {
    unsafe fn register(&self, dispatcher: &RefCell<IoDispatcher>) -> crate::Result<()> {
        let disp = dispatcher.borrow();
        self.poll.borrow_mut().register(
            unsafe { BorrowedFd::borrow_raw(disp.fd) },
            Interest::EMPTY,
            Mode::OneShot,
            disp.token.expect("No token for IO dispatcher"),
        )
    }

    fn reregister(&self, dispatcher: &RefCell<IoDispatcher>) -> crate::Result<()> {
        let disp = dispatcher.borrow();
        self.poll.borrow_mut().reregister(
            unsafe { BorrowedFd::borrow_raw(disp.fd) },
            disp.interest,
            Mode::OneShot,
            disp.token.expect("No token for IO dispatcher"),
        )
    }

    fn kill(&self, dispatcher: &RefCell<IoDispatcher>) {
        let token = dispatcher
            .borrow()
            .token
            .expect("No token for IO dispatcher");
        if let Ok(slot) = self.sources.borrow_mut().get_mut(token.inner) {
            slot.source = None;
        }
    }
}

struct IoDispatcher {
    fd: RawFd, // FIXME: `BorrowedFd`? How to statically verify it doesn't outlive file?
    token: Option<Token>,
    waker: Option<Waker>,
    is_registered: bool,
    interest: Interest,
    last_readiness: Readiness,
}

impl IoDispatcher {
    fn readiness(&mut self) -> Readiness {
        std::mem::replace(&mut self.last_readiness, Readiness::EMPTY)
    }
}

impl<Data> EventDispatcher<Data> for RefCell<IoDispatcher> {
    fn process_events(
        &self,
        readiness: Readiness,
        _token: Token,
        _data: &mut Data,
    ) -> crate::Result<PostAction> {
        let mut disp = self.borrow_mut();
        disp.last_readiness = readiness;
        if let Some(waker) = disp.waker.take() {
            waker.wake();
        }
        Ok(PostAction::Continue)
    }

    fn register(
        &self,
        _: &mut Poll,
        _: &mut AdditionalLifecycleEventsSet,
        _: &mut TokenFactory,
    ) -> crate::Result<()> {
        // registration is handled by IoLoopInner
        unreachable!()
    }

    fn reregister(
        &self,
        _: &mut Poll,
        _: &mut AdditionalLifecycleEventsSet,
        _: &mut TokenFactory,
    ) -> crate::Result<bool> {
        // registration is handled by IoLoopInner
        unreachable!()
    }

    fn unregister(
        &self,
        poll: &mut Poll,
        _: &mut AdditionalLifecycleEventsSet,
        _: RegistrationToken,
    ) -> crate::Result<bool> {
        let disp = self.borrow();
        if disp.is_registered {
            poll.unregister(unsafe { BorrowedFd::borrow_raw(disp.fd) })?;
        }
        Ok(true)
    }

    fn before_sleep(&self) -> crate::Result<Option<(Readiness, Token)>> {
        Ok(None)
    }
    fn before_handle_events(&self, _: EventIterator<'_>) {}
}

/*
 * Async IO trait implementations
 */

#[cfg(feature = "futures-io")]
#[cfg_attr(docsrs, doc(cfg(feature = "futures-io")))]
impl<'l, F: AsFd + std::io::Read> AsyncRead for Async<'l, F> {
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> TaskPoll<std::io::Result<usize>> {
        match (*self).get_mut().read(buf) {
            Err(err) if err.kind() == std::io::ErrorKind::WouldBlock => {}
            res => return TaskPoll::Ready(res),
        }
        self.register_waker(Interest::READ, cx.waker().clone())?;
        TaskPoll::Pending
    }

    fn poll_read_vectored(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &mut [IoSliceMut<'_>],
    ) -> TaskPoll<std::io::Result<usize>> {
        match (*self).get_mut().read_vectored(bufs) {
            Err(err) if err.kind() == std::io::ErrorKind::WouldBlock => {}
            res => return TaskPoll::Ready(res),
        }
        self.register_waker(Interest::READ, cx.waker().clone())?;
        TaskPoll::Pending
    }
}

#[cfg(feature = "futures-io")]
#[cfg_attr(docsrs, doc(cfg(feature = "futures-io")))]
impl<'l, F: AsFd + std::io::Write> AsyncWrite for Async<'l, F> {
    fn poll_write(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> TaskPoll<std::io::Result<usize>> {
        match (*self).get_mut().write(buf) {
            Err(err) if err.kind() == std::io::ErrorKind::WouldBlock => {}
            res => return TaskPoll::Ready(res),
        }
        self.register_waker(Interest::WRITE, cx.waker().clone())?;
        TaskPoll::Pending
    }

    fn poll_write_vectored(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &[IoSlice<'_>],
    ) -> TaskPoll<std::io::Result<usize>> {
        match (*self).get_mut().write_vectored(bufs) {
            Err(err) if err.kind() == std::io::ErrorKind::WouldBlock => {}
            res => return TaskPoll::Ready(res),
        }
        self.register_waker(Interest::WRITE, cx.waker().clone())?;
        TaskPoll::Pending
    }

    fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> TaskPoll<std::io::Result<()>> {
        match (*self).get_mut().flush() {
            Err(err) if err.kind() == std::io::ErrorKind::WouldBlock => {}
            res => return TaskPoll::Ready(res),
        }
        self.register_waker(Interest::WRITE, cx.waker().clone())?;
        TaskPoll::Pending
    }

    fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> TaskPoll<std::io::Result<()>> {
        self.poll_flush(cx)
    }
}

// https://github.com/smol-rs/async-io/blob/6499077421495f2200d5b86918399f3a84bbe8e4/src/lib.rs#L2171-L2195
/// Set the nonblocking status of an FD and return whether it was nonblocking before.
#[allow(clippy::needless_return)]
#[inline]
fn set_nonblocking(fd: BorrowedFd<'_>, is_nonblocking: bool) -> std::io::Result<bool> {
    #[cfg(windows)]
    {
        rustix::io::ioctl_fionbio(fd, is_nonblocking)?;

        // Unfortunately it is impossible to tell if a socket was nonblocking on Windows.
        // Just say it wasn't for now.
        return Ok(false);
    }

    #[cfg(not(windows))]
    {
        let previous = rustix::fs::fcntl_getfl(fd)?;
        let new = if is_nonblocking {
            previous | rustix::fs::OFlags::NONBLOCK
        } else {
            previous & !(rustix::fs::OFlags::NONBLOCK)
        };
        if new != previous {
            rustix::fs::fcntl_setfl(fd, new)?;
        }

        return Ok(previous.contains(rustix::fs::OFlags::NONBLOCK));
    }
}

#[cfg(all(test, unix, feature = "executor", feature = "futures-io"))]
mod tests {
    use futures::io::{AsyncReadExt, AsyncWriteExt};

    use crate::sources::futures::executor;

    #[test]
    fn read_write() {
        let mut event_loop = crate::EventLoop::try_new().unwrap();
        let handle = event_loop.handle();
        let (exec, sched) = executor().unwrap();
        handle
            .insert_source(exec, move |ret, &mut (), got| {
                *got = ret;
            })
            .unwrap();

        let (tx, rx) = std::os::unix::net::UnixStream::pair().unwrap();
        let mut tx = handle.adapt_io(tx).unwrap();
        let mut rx = handle.adapt_io(rx).unwrap();
        let received = std::rc::Rc::new(std::cell::Cell::new(false));
        let fut_received = received.clone();

        sched
            .schedule(async move {
                let mut buf = [0; 12];
                rx.read_exact(&mut buf).await.unwrap();
                assert_eq!(&buf, b"Hello World!");
                fut_received.set(true);
            })
            .unwrap();

        // The receiving future alone cannot advance
        event_loop
            .dispatch(Some(std::time::Duration::from_millis(10)), &mut ())
            .unwrap();
        assert!(!received.get());

        // schedule the writing future as well and wait until finish
        sched
            .schedule(async move {
                tx.write_all(b"Hello World!").await.unwrap();
                tx.flush().await.unwrap();
            })
            .unwrap();

        while !received.get() {
            event_loop.dispatch(None, &mut ()).unwrap();
        }
    }

    #[test]
    fn read_write_vectored() {
        let mut event_loop = crate::EventLoop::try_new().unwrap();
        let handle = event_loop.handle();
        let (exec, sched) = executor().unwrap();
        handle
            .insert_source(exec, move |ret, &mut (), got| {
                *got = ret;
            })
            .unwrap();

        let (tx, rx) = std::os::unix::net::UnixStream::pair().unwrap();
        let mut tx = handle.adapt_io(tx).unwrap();
        let mut rx = handle.adapt_io(rx).unwrap();
        let received = std::rc::Rc::new(std::cell::Cell::new(false));
        let fut_received = received.clone();

        sched
            .schedule(async move {
                let mut buf = [0; 12];
                let mut ioslices = buf
                    .chunks_mut(2)
                    .map(std::io::IoSliceMut::new)
                    .collect::<Vec<_>>();
                let count = rx.read_vectored(&mut ioslices).await.unwrap();
                assert_eq!(count, 12);
                assert_eq!(&buf, b"Hello World!");
                fut_received.set(true);
            })
            .unwrap();

        // The receiving future alone cannot advance
        event_loop
            .dispatch(Some(std::time::Duration::from_millis(10)), &mut ())
            .unwrap();
        assert!(!received.get());

        // schedule the writing future as well and wait until finish
        sched
            .schedule(async move {
                let buf = b"Hello World!";
                let ioslices = buf.chunks(2).map(std::io::IoSlice::new).collect::<Vec<_>>();
                let count = tx.write_vectored(&ioslices).await.unwrap();
                assert_eq!(count, 12);
                tx.flush().await.unwrap();
            })
            .unwrap();

        while !received.get() {
            event_loop.dispatch(None, &mut ()).unwrap();
        }
    }

    #[test]
    fn readable() {
        use std::io::Write;

        let mut event_loop = crate::EventLoop::try_new().unwrap();
        let handle = event_loop.handle();
        let (exec, sched) = executor().unwrap();
        handle
            .insert_source(exec, move |(), &mut (), got| {
                *got = true;
            })
            .unwrap();

        let (mut tx, rx) = std::os::unix::net::UnixStream::pair().unwrap();

        let mut rx = handle.adapt_io(rx).unwrap();
        sched
            .schedule(async move {
                rx.readable().await;
            })
            .unwrap();

        let mut dispatched = false;

        event_loop
            .dispatch(Some(std::time::Duration::from_millis(100)), &mut dispatched)
            .unwrap();
        // The socket is not yet readable, so the readable() future has not completed
        assert!(!dispatched);

        tx.write_all(&[42]).unwrap();
        tx.flush().unwrap();

        // Now we should become readable
        while !dispatched {
            event_loop.dispatch(None, &mut dispatched).unwrap();
        }
    }

    #[test]
    fn writable() {
        use std::io::{BufReader, BufWriter, Read, Write};

        let mut event_loop = crate::EventLoop::try_new().unwrap();
        let handle = event_loop.handle();
        let (exec, sched) = executor().unwrap();
        handle
            .insert_source(exec, move |(), &mut (), got| {
                *got = true;
            })
            .unwrap();

        let (mut tx, mut rx) = std::os::unix::net::UnixStream::pair().unwrap();
        tx.set_nonblocking(true).unwrap();
        rx.set_nonblocking(true).unwrap();

        // First, fill the socket buffers
        {
            let mut writer = BufWriter::new(&mut tx);
            let data = vec![42u8; 1024];
            loop {
                if writer.write(&data).is_err() {
                    break;
                }
            }
        }

        // Now, wait for it to be readable
        let mut tx = handle.adapt_io(tx).unwrap();
        sched
            .schedule(async move {
                tx.writable().await;
            })
            .unwrap();

        let mut dispatched = false;

        event_loop
            .dispatch(Some(std::time::Duration::from_millis(100)), &mut dispatched)
            .unwrap();
        // The socket is not yet writable, so the readable() future has not completed
        assert!(!dispatched);

        // now read everything
        {
            let mut reader = BufReader::new(&mut rx);
            let mut buffer = vec![0u8; 1024];
            loop {
                if reader.read(&mut buffer).is_err() {
                    break;
                }
            }
        }

        // Now we should become writable
        while !dispatched {
            event_loop.dispatch(None, &mut dispatched).unwrap();
        }
    }
}