calloop/sources/
timer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
//! Timer event source
//!
//! The [`Timer`] is an event source that will fire its event after a certain amount of time
//! specified at creation. Its timing is tracked directly by the event loop core logic, and it does
//! not consume any system resource.
//!
//! As of calloop v0.11.0, the event loop always uses high-precision timers. However, the timer
//! precision varies between operating systems; for instance, the scheduler granularity on Windows
//! is about 16 milliseconds. If you need to rely on good precision timers in general, you may need
//! to enable realtime features of your OS to ensure your thread is quickly woken up by the system
//! scheduler.
//!
//! The provided event is an [`Instant`] representing the deadline for which this timer has fired
//! (which can be earlier than the current time depending on the event loop congestion).
//!
//! The callback associated with this event source is expected to return a [`TimeoutAction`], which
//! can be used to implement self-repeating timers by telling calloop to reprogram the same timer
//! for a later timeout after it has fired.

/*
 * This module provides two main types:
 *
 * - `Timer` is the user-facing type that represents a timer event source
 * - `TimerWheel` is an internal data structure for tracking registered timeouts, it is used by
 *   the polling logic in sys/mod.rs
 */

use std::{
    cell::RefCell,
    collections::BinaryHeap,
    rc::Rc,
    task::Waker,
    time::{Duration, Instant},
};

use crate::{EventSource, LoopHandle, Poll, PostAction, Readiness, Token, TokenFactory};

#[derive(Debug)]
struct Registration {
    token: Token,
    wheel: Rc<RefCell<TimerWheel>>,
    counter: u32,
}

/// A timer event source
///
/// When registered to the event loop, it will trigger an event once its deadline is reached.
/// If the deadline is in the past relative to the moment of its insertion in the event loop,
/// the `TImer` will trigger an event as soon as the event loop is dispatched.
#[derive(Debug)]
pub struct Timer {
    registration: Option<Registration>,
    deadline: Option<Instant>,
}

impl Timer {
    /// Create a timer that will fire immediately when inserted in the event loop
    pub fn immediate() -> Timer {
        Self::from_deadline(Instant::now())
    }

    /// Create a timer that will fire after a given duration from now
    pub fn from_duration(duration: Duration) -> Timer {
        Self::from_deadline_inner(Instant::now().checked_add(duration))
    }

    /// Create a timer that will fire at a given instant
    pub fn from_deadline(deadline: Instant) -> Timer {
        Self::from_deadline_inner(Some(deadline))
    }

    fn from_deadline_inner(deadline: Option<Instant>) -> Timer {
        Timer {
            registration: None,
            deadline,
        }
    }

    /// Changes the deadline of this timer to an [`Instant`]
    ///
    /// If the `Timer` is currently registered in the event loop, it needs to be
    /// re-registered for this change to take effect.
    pub fn set_deadline(&mut self, deadline: Instant) {
        self.deadline = Some(deadline);
    }

    /// Changes the deadline of this timer to a [`Duration`] from now
    ///
    /// If the `Timer` is currently registered in the event loop, it needs to be
    /// re-registered for this change to take effect.
    pub fn set_duration(&mut self, duration: Duration) {
        self.deadline = Instant::now().checked_add(duration);
    }

    /// Get the current deadline of this `Timer`
    ///
    /// Returns `None` if the timer has overflowed.
    pub fn current_deadline(&self) -> Option<Instant> {
        self.deadline
    }
}

impl EventSource for Timer {
    type Event = Instant;
    type Metadata = ();
    type Ret = TimeoutAction;
    type Error = std::io::Error;

    fn process_events<F>(
        &mut self,
        _: Readiness,
        token: Token,
        mut callback: F,
    ) -> Result<PostAction, Self::Error>
    where
        F: FnMut(Self::Event, &mut Self::Metadata) -> Self::Ret,
    {
        if let (Some(ref registration), Some(ref deadline)) = (&self.registration, &self.deadline) {
            if registration.token != token {
                return Ok(PostAction::Continue);
            }
            let new_deadline = match callback(*deadline, &mut ()) {
                TimeoutAction::Drop => return Ok(PostAction::Remove),
                TimeoutAction::ToInstant(instant) => instant,
                TimeoutAction::ToDuration(duration) => match Instant::now().checked_add(duration) {
                    Some(new_deadline) => new_deadline,
                    None => {
                        // The timer has overflowed, meaning we have no choice but to drop it.
                        self.deadline = None;
                        return Ok(PostAction::Remove);
                    }
                },
            };
            // If we received an event, we MUST have a valid counter value
            registration.wheel.borrow_mut().insert_reuse(
                registration.counter,
                new_deadline,
                registration.token,
            );
            self.deadline = Some(new_deadline);
        }
        Ok(PostAction::Continue)
    }

    fn register(&mut self, poll: &mut Poll, token_factory: &mut TokenFactory) -> crate::Result<()> {
        // Only register a deadline if we haven't overflowed.
        if let Some(deadline) = self.deadline {
            let wheel = poll.timers.clone();
            let token = token_factory.token();
            let counter = wheel.borrow_mut().insert(deadline, token);
            self.registration = Some(Registration {
                token,
                wheel,
                counter,
            });
        }

        Ok(())
    }

    fn reregister(
        &mut self,
        poll: &mut Poll,
        token_factory: &mut TokenFactory,
    ) -> crate::Result<()> {
        self.unregister(poll)?;
        self.register(poll, token_factory)
    }

    fn unregister(&mut self, poll: &mut Poll) -> crate::Result<()> {
        if let Some(registration) = self.registration.take() {
            poll.timers.borrow_mut().cancel(registration.counter);
        }
        Ok(())
    }
}

/// Action to reschedule a timeout if necessary
#[derive(Debug)]
pub enum TimeoutAction {
    /// Don't reschedule this timer
    Drop,
    /// Reschedule this timer to a given [`Instant`]
    ToInstant(Instant),
    /// Reschedule this timer to a given [`Duration`] in the future
    ToDuration(Duration),
}

// Internal representation of a timeout registered in the TimerWheel
#[derive(Debug)]
struct TimeoutData {
    deadline: Instant,
    token: RefCell<Option<Token>>,
    counter: u32,
}

// A data structure for tracking registered timeouts
#[derive(Debug)]
pub(crate) struct TimerWheel {
    heap: BinaryHeap<TimeoutData>,
    counter: u32,
}

impl TimerWheel {
    pub(crate) fn new() -> TimerWheel {
        TimerWheel {
            heap: BinaryHeap::new(),
            counter: 0,
        }
    }

    pub(crate) fn insert(&mut self, deadline: Instant, token: Token) -> u32 {
        self.heap.push(TimeoutData {
            deadline,
            token: RefCell::new(Some(token)),
            counter: self.counter,
        });
        let ret = self.counter;
        self.counter += 1;
        ret
    }

    pub(crate) fn insert_reuse(&mut self, counter: u32, deadline: Instant, token: Token) {
        self.heap.push(TimeoutData {
            deadline,
            token: RefCell::new(Some(token)),
            counter,
        });
    }

    pub(crate) fn cancel(&mut self, counter: u32) {
        self.heap
            .iter()
            .find(|data| data.counter == counter)
            .map(|data| data.token.take());
    }

    pub(crate) fn next_expired(&mut self, now: Instant) -> Option<(u32, Token)> {
        loop {
            // check if there is an expired item
            if let Some(data) = self.heap.peek() {
                if data.deadline > now {
                    return None;
                }
                // there is an expired timeout, continue the
                // loop body
            } else {
                return None;
            }

            // There is an item in the heap, this unwrap cannot blow
            let data = self.heap.pop().unwrap();
            if let Some(token) = data.token.into_inner() {
                return Some((data.counter, token));
            }
            // otherwise this timeout was cancelled, continue looping
        }
    }

    pub(crate) fn next_deadline(&self) -> Option<std::time::Instant> {
        self.heap.peek().map(|data| data.deadline)
    }
}

// trait implementations for TimeoutData

impl std::cmp::Ord for TimeoutData {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        // earlier values have priority
        self.deadline.cmp(&other.deadline).reverse()
    }
}

impl std::cmp::PartialOrd for TimeoutData {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

// This impl is required for PartialOrd but actually never used
// and the type is private, so ignore its coverage
impl std::cmp::PartialEq for TimeoutData {
    #[cfg_attr(feature = "nightly_coverage", coverage(off))]
    fn eq(&self, other: &Self) -> bool {
        self.deadline == other.deadline
    }
}

impl std::cmp::Eq for TimeoutData {}

// Logic for timer futures

/// A future that resolves once a certain timeout is expired
pub struct TimeoutFuture {
    deadline: Option<Instant>,
    waker: Rc<RefCell<Option<Waker>>>,
}

impl std::fmt::Debug for TimeoutFuture {
    #[cfg_attr(feature = "nightly_coverage", coverage(off))]
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("TimeoutFuture")
            .field("deadline", &self.deadline)
            .finish_non_exhaustive()
    }
}

impl TimeoutFuture {
    /// Create a future that resolves after a given duration
    pub fn from_duration<Data>(handle: &LoopHandle<'_, Data>, duration: Duration) -> TimeoutFuture {
        Self::from_deadline_inner(handle, Instant::now().checked_add(duration))
    }

    /// Create a future that resolves at a given instant
    pub fn from_deadline<Data>(handle: &LoopHandle<'_, Data>, deadline: Instant) -> TimeoutFuture {
        Self::from_deadline_inner(handle, Some(deadline))
    }

    /// Create a future that resolves at a given instant
    fn from_deadline_inner<Data>(
        handle: &LoopHandle<'_, Data>,
        deadline: Option<Instant>,
    ) -> TimeoutFuture {
        let timer = Timer::from_deadline_inner(deadline);
        let waker = Rc::new(RefCell::new(None::<Waker>));
        handle
            .insert_source(timer, {
                let waker = waker.clone();
                move |_, &mut (), _| {
                    if let Some(waker) = waker.borrow_mut().clone() {
                        waker.wake()
                    }
                    TimeoutAction::Drop
                }
            })
            .unwrap();

        TimeoutFuture { deadline, waker }
    }
}

impl std::future::Future for TimeoutFuture {
    type Output = ();

    fn poll(
        self: std::pin::Pin<&mut Self>,
        cx: &mut std::task::Context<'_>,
    ) -> std::task::Poll<Self::Output> {
        match self.deadline {
            None => return std::task::Poll::Pending,

            Some(deadline) => {
                if Instant::now() >= deadline {
                    return std::task::Poll::Ready(());
                }
            }
        }

        *self.waker.borrow_mut() = Some(cx.waker().clone());
        std::task::Poll::Pending
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::*;
    use std::time::Duration;

    #[test]
    fn simple_timer() {
        let mut event_loop = EventLoop::try_new().unwrap();

        let mut dispatched = false;

        event_loop
            .handle()
            .insert_source(
                Timer::from_duration(Duration::from_millis(100)),
                |_, &mut (), dispatched| {
                    *dispatched = true;
                    TimeoutAction::Drop
                },
            )
            .unwrap();

        event_loop
            .dispatch(Some(Duration::ZERO), &mut dispatched)
            .unwrap();
        // not yet dispatched
        assert!(!dispatched);

        event_loop
            .dispatch(Some(Duration::from_millis(150)), &mut dispatched)
            .unwrap();
        // now dispatched
        assert!(dispatched);
    }

    #[test]
    fn simple_timer_instant() {
        let mut event_loop = EventLoop::try_new().unwrap();

        let mut dispatched = false;

        event_loop
            .handle()
            .insert_source(
                Timer::from_duration(Duration::from_millis(100)),
                |_, &mut (), dispatched| {
                    *dispatched = true;
                    TimeoutAction::Drop
                },
            )
            .unwrap();

        event_loop
            .dispatch(Some(Duration::from_millis(150)), &mut dispatched)
            .unwrap();
        // now dispatched
        assert!(dispatched);
    }

    #[test]
    fn immediate_timer() {
        let mut event_loop = EventLoop::try_new().unwrap();

        let mut dispatched = false;

        event_loop
            .handle()
            .insert_source(Timer::immediate(), |_, &mut (), dispatched| {
                *dispatched = true;
                TimeoutAction::Drop
            })
            .unwrap();

        event_loop
            .dispatch(Some(Duration::ZERO), &mut dispatched)
            .unwrap();
        // now dispatched
        assert!(dispatched);
    }

    // We cannot actually test high precision timers, as they are only high precision in release mode
    // This test is here to ensure that the high-precision codepath are executed and work as intended
    // even if we cannot test if they are actually high precision
    #[test]
    fn high_precision_timer() {
        let mut event_loop = EventLoop::try_new().unwrap();

        let mut dispatched = false;

        event_loop
            .handle()
            .insert_source(
                Timer::from_duration(Duration::from_millis(100)),
                |_, &mut (), dispatched| {
                    *dispatched = true;
                    TimeoutAction::Drop
                },
            )
            .unwrap();

        event_loop
            .dispatch(Some(Duration::ZERO), &mut dispatched)
            .unwrap();
        // not yet dispatched
        assert!(!dispatched);

        event_loop
            .dispatch(Some(Duration::from_micros(10200)), &mut dispatched)
            .unwrap();
        // yet not dispatched
        assert!(!dispatched);

        event_loop
            .dispatch(Some(Duration::from_millis(100)), &mut dispatched)
            .unwrap();
        // now dispatched
        assert!(dispatched);
    }

    #[test]
    fn cancel_timer() {
        let mut event_loop = EventLoop::try_new().unwrap();

        let mut dispatched = false;

        let token = event_loop
            .handle()
            .insert_source(
                Timer::from_duration(Duration::from_millis(100)),
                |_, &mut (), dispatched| {
                    *dispatched = true;
                    TimeoutAction::Drop
                },
            )
            .unwrap();

        event_loop
            .dispatch(Some(Duration::ZERO), &mut dispatched)
            .unwrap();
        // not yet dispatched
        assert!(!dispatched);

        event_loop.handle().remove(token);

        event_loop
            .dispatch(Some(Duration::from_millis(150)), &mut dispatched)
            .unwrap();
        // still not dispatched
        assert!(!dispatched);
    }

    #[test]
    fn repeating_timer() {
        let mut event_loop = EventLoop::try_new().unwrap();

        let mut dispatched = 0;

        event_loop
            .handle()
            .insert_source(
                Timer::from_duration(Duration::from_millis(500)),
                |_, &mut (), dispatched| {
                    *dispatched += 1;
                    TimeoutAction::ToDuration(Duration::from_millis(500))
                },
            )
            .unwrap();

        event_loop
            .dispatch(Some(Duration::from_millis(250)), &mut dispatched)
            .unwrap();
        assert_eq!(dispatched, 0);

        event_loop
            .dispatch(Some(Duration::from_millis(510)), &mut dispatched)
            .unwrap();
        assert_eq!(dispatched, 1);

        event_loop
            .dispatch(Some(Duration::from_millis(510)), &mut dispatched)
            .unwrap();
        assert_eq!(dispatched, 2);

        event_loop
            .dispatch(Some(Duration::from_millis(510)), &mut dispatched)
            .unwrap();
        assert_eq!(dispatched, 3);
    }

    #[cfg(feature = "executor")]
    #[test]
    fn timeout_future() {
        let mut event_loop = EventLoop::try_new().unwrap();

        let mut dispatched = 0;

        let timeout_1 =
            TimeoutFuture::from_duration(&event_loop.handle(), Duration::from_millis(500));
        let timeout_2 =
            TimeoutFuture::from_duration(&event_loop.handle(), Duration::from_millis(1500));
        // This one should never go off.
        let timeout_3 = TimeoutFuture::from_duration(&event_loop.handle(), Duration::MAX);

        let (exec, sched) = crate::sources::futures::executor().unwrap();
        event_loop
            .handle()
            .insert_source(exec, move |(), &mut (), got| {
                *got += 1;
            })
            .unwrap();

        sched.schedule(timeout_1).unwrap();
        sched.schedule(timeout_2).unwrap();
        sched.schedule(timeout_3).unwrap();

        // We do a 0-timeout dispatch after every regular dispatch to let the timeout triggers
        // flow back to the executor

        event_loop
            .dispatch(Some(Duration::ZERO), &mut dispatched)
            .unwrap();
        event_loop
            .dispatch(Some(Duration::ZERO), &mut dispatched)
            .unwrap();
        assert_eq!(dispatched, 0);

        event_loop
            .dispatch(Some(Duration::from_millis(1000)), &mut dispatched)
            .unwrap();
        event_loop
            .dispatch(Some(Duration::ZERO), &mut dispatched)
            .unwrap();
        assert_eq!(dispatched, 1);

        event_loop
            .dispatch(Some(Duration::from_millis(1100)), &mut dispatched)
            .unwrap();
        event_loop
            .dispatch(Some(Duration::ZERO), &mut dispatched)
            .unwrap();
        assert_eq!(dispatched, 2);
    }

    #[test]
    fn no_overflow() {
        let mut event_loop = EventLoop::try_new().unwrap();

        let mut dispatched = 0;

        event_loop
            .handle()
            .insert_source(
                Timer::from_duration(Duration::from_millis(500)),
                |_, &mut (), dispatched| {
                    *dispatched += 1;
                    TimeoutAction::Drop
                },
            )
            .unwrap();

        event_loop
            .handle()
            .insert_source(Timer::from_duration(Duration::MAX), |_, &mut (), _| {
                panic!("This timer should never go off")
            })
            .unwrap();

        event_loop
            .dispatch(Some(Duration::from_millis(250)), &mut dispatched)
            .unwrap();
        assert_eq!(dispatched, 0);

        event_loop
            .dispatch(Some(Duration::from_millis(510)), &mut dispatched)
            .unwrap();
        assert_eq!(dispatched, 1);

        event_loop
            .dispatch(Some(Duration::from_millis(510)), &mut dispatched)
            .unwrap();
        assert_eq!(dispatched, 1);
    }
}