color_quant/
lib.rs

1/*
2NeuQuant Neural-Net Quantization Algorithm by Anthony Dekker, 1994.
3See "Kohonen neural networks for optimal colour quantization"
4in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
5for a discussion of the algorithm.
6See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML
7
8Incorporated bugfixes and alpha channel handling from pngnq
9http://pngnq.sourceforge.net
10
11Copyright (c) 2014 The Piston Developers
12
13Permission is hereby granted, free of charge, to any person obtaining a copy
14of this software and associated documentation files (the "Software"), to deal
15in the Software without restriction, including without limitation the rights
16to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
17copies of the Software, and to permit persons to whom the Software is
18furnished to do so, subject to the following conditions:
19
20The above copyright notice and this permission notice shall be included in
21all copies or substantial portions of the Software.
22
23THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
24IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
26AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
28OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29THE SOFTWARE.
30
31NeuQuant Neural-Net Quantization Algorithm
32------------------------------------------
33
34Copyright (c) 1994 Anthony Dekker
35
36NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
37See "Kohonen neural networks for optimal colour quantization"
38in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
39for a discussion of the algorithm.
40See also  http://members.ozemail.com.au/~dekker/NEUQUANT.HTML
41
42Any party obtaining a copy of these files from the author, directly or
43indirectly, is granted, free of charge, a full and unrestricted irrevocable,
44world-wide, paid up, royalty-free, nonexclusive right and license to deal
45in this software and documentation files (the "Software"), including without
46limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
47and/or sell copies of the Software, and to permit persons who receive
48copies from any such party to do so, with the only requirement being
49that this copyright notice remain intact.
50
51*/
52
53//! # Color quantization library
54//!
55//! This library provides a color quantizer based on the [NEUQUANT](http://members.ozemail.com.au/~dekker/NEUQUANT.HTML)
56//!
57//! Original literature: Dekker, A. H. (1994). Kohonen neural networks for
58//! optimal colour quantization. *Network: Computation in Neural Systems*, 5(3), 351-367.
59//! [doi: 10.1088/0954-898X_5_3_003](https://doi.org/10.1088/0954-898X_5_3_003)
60//!
61//! See also <https://scientificgems.wordpress.com/stuff/neuquant-fast-high-quality-image-quantization/>
62//!
63//! ## Usage
64//!
65//! ```
66//! let data = vec![0; 40];
67//! let nq = color_quant::NeuQuant::new(10, 256, &data);
68//! let indixes: Vec<u8> = data.chunks(4).map(|pix| nq.index_of(pix) as u8).collect();
69//! let color_map = nq.color_map_rgba();
70//! ```
71
72mod math;
73use crate::math::clamp;
74
75use std::cmp::{max, min};
76
77const CHANNELS: usize = 4;
78
79const RADIUS_DEC: i32 = 30; // factor of 1/30 each cycle
80
81const ALPHA_BIASSHIFT: i32 = 10; // alpha starts at 1
82const INIT_ALPHA: i32 = 1 << ALPHA_BIASSHIFT; // biased by 10 bits
83
84const GAMMA: f64 = 1024.0;
85const BETA: f64 = 1.0 / GAMMA;
86const BETAGAMMA: f64 = BETA * GAMMA;
87
88// four primes near 500 - assume no image has a length so large
89// that it is divisible by all four primes
90const PRIMES: [usize; 4] = [499, 491, 478, 503];
91
92#[derive(Clone, Copy)]
93struct Quad<T> {
94    r: T,
95    g: T,
96    b: T,
97    a: T,
98}
99
100type Neuron = Quad<f64>;
101type Color = Quad<i32>;
102
103pub struct NeuQuant {
104    network: Vec<Neuron>,
105    colormap: Vec<Color>,
106    netindex: Vec<usize>,
107    bias: Vec<f64>, // bias and freq arrays for learning
108    freq: Vec<f64>,
109    samplefac: i32,
110    netsize: usize,
111}
112
113impl NeuQuant {
114    /// Creates a new neuronal network and trains it with the supplied data.
115    ///
116    /// Pixels are assumed to be in RGBA format.
117    /// `colors` should be $>=64$. `samplefac` determines the faction of
118    /// the sample that will be used to train the network. Its value must be in the
119    /// range $[1, 30]$. A value of $1$ thus produces the best result but is also
120    /// slowest. $10$ is a good compromise between speed and quality.
121    pub fn new(samplefac: i32, colors: usize, pixels: &[u8]) -> Self {
122        let netsize = colors;
123        let mut this = NeuQuant {
124            network: Vec::with_capacity(netsize),
125            colormap: Vec::with_capacity(netsize),
126            netindex: vec![0; 256],
127            bias: Vec::with_capacity(netsize),
128            freq: Vec::with_capacity(netsize),
129            samplefac: samplefac,
130            netsize: colors,
131        };
132        this.init(pixels);
133        this
134    }
135
136    /// Initializes the neuronal network and trains it with the supplied data.
137    ///
138    /// This method gets called by `Self::new`.
139    pub fn init(&mut self, pixels: &[u8]) {
140        self.network.clear();
141        self.colormap.clear();
142        self.bias.clear();
143        self.freq.clear();
144        let freq = (self.netsize as f64).recip();
145        for i in 0..self.netsize {
146            let tmp = (i as f64) * 256.0 / (self.netsize as f64);
147            // Sets alpha values at 0 for dark pixels.
148            let a = if i < 16 { i as f64 * 16.0 } else { 255.0 };
149            self.network.push(Neuron {
150                r: tmp,
151                g: tmp,
152                b: tmp,
153                a: a,
154            });
155            self.colormap.push(Color {
156                r: 0,
157                g: 0,
158                b: 0,
159                a: 255,
160            });
161            self.freq.push(freq);
162            self.bias.push(0.0);
163        }
164        self.learn(pixels);
165        self.build_colormap();
166        self.build_netindex();
167    }
168
169    /// Maps the rgba-pixel in-place to the best-matching color in the color map.
170    #[inline(always)]
171    pub fn map_pixel(&self, pixel: &mut [u8]) {
172        assert!(pixel.len() == 4);
173        let (r, g, b, a) = (pixel[0], pixel[1], pixel[2], pixel[3]);
174        let i = self.search_netindex(b, g, r, a);
175        pixel[0] = self.colormap[i].r as u8;
176        pixel[1] = self.colormap[i].g as u8;
177        pixel[2] = self.colormap[i].b as u8;
178        pixel[3] = self.colormap[i].a as u8;
179    }
180
181    /// Finds the best-matching index in the color map.
182    ///
183    /// `pixel` is assumed to be in RGBA format.
184    #[inline(always)]
185    pub fn index_of(&self, pixel: &[u8]) -> usize {
186        assert!(pixel.len() == 4);
187        let (r, g, b, a) = (pixel[0], pixel[1], pixel[2], pixel[3]);
188        self.search_netindex(b, g, r, a)
189    }
190
191    /// Lookup pixel values for color at `idx` in the colormap.
192    pub fn lookup(&self, idx: usize) -> Option<[u8; 4]> {
193        self.colormap
194            .get(idx)
195            .map(|p| [p.r as u8, p.g as u8, p.b as u8, p.a as u8])
196    }
197
198    /// Returns the RGBA color map calculated from the sample.
199    pub fn color_map_rgba(&self) -> Vec<u8> {
200        let mut map = Vec::with_capacity(self.netsize * 4);
201        for entry in &self.colormap {
202            map.push(entry.r as u8);
203            map.push(entry.g as u8);
204            map.push(entry.b as u8);
205            map.push(entry.a as u8);
206        }
207        map
208    }
209
210    /// Returns the RGBA color map calculated from the sample.
211    pub fn color_map_rgb(&self) -> Vec<u8> {
212        let mut map = Vec::with_capacity(self.netsize * 3);
213        for entry in &self.colormap {
214            map.push(entry.r as u8);
215            map.push(entry.g as u8);
216            map.push(entry.b as u8);
217        }
218        map
219    }
220
221    /// Move neuron i towards biased (a,b,g,r) by factor alpha
222    fn salter_single(&mut self, alpha: f64, i: i32, quad: Quad<f64>) {
223        let n = &mut self.network[i as usize];
224        n.b -= alpha * (n.b - quad.b);
225        n.g -= alpha * (n.g - quad.g);
226        n.r -= alpha * (n.r - quad.r);
227        n.a -= alpha * (n.a - quad.a);
228    }
229
230    /// Move neuron adjacent neurons towards biased (a,b,g,r) by factor alpha
231    fn alter_neighbour(&mut self, alpha: f64, rad: i32, i: i32, quad: Quad<f64>) {
232        let lo = max(i - rad, 0);
233        let hi = min(i + rad, self.netsize as i32);
234        let mut j = i + 1;
235        let mut k = i - 1;
236        let mut q = 0;
237
238        while (j < hi) || (k > lo) {
239            let rad_sq = rad as f64 * rad as f64;
240            let alpha = (alpha * (rad_sq - q as f64 * q as f64)) / rad_sq;
241            q += 1;
242            if j < hi {
243                let p = &mut self.network[j as usize];
244                p.b -= alpha * (p.b - quad.b);
245                p.g -= alpha * (p.g - quad.g);
246                p.r -= alpha * (p.r - quad.r);
247                p.a -= alpha * (p.a - quad.a);
248                j += 1;
249            }
250            if k > lo {
251                let p = &mut self.network[k as usize];
252                p.b -= alpha * (p.b - quad.b);
253                p.g -= alpha * (p.g - quad.g);
254                p.r -= alpha * (p.r - quad.r);
255                p.a -= alpha * (p.a - quad.a);
256                k -= 1;
257            }
258        }
259    }
260
261    /// Search for biased BGR values
262    /// finds closest neuron (min dist) and updates freq
263    /// finds best neuron (min dist-bias) and returns position
264    /// for frequently chosen neurons, freq[i] is high and bias[i] is negative
265    /// bias[i] = gamma*((1/self.netsize)-freq[i])
266    fn contest(&mut self, b: f64, g: f64, r: f64, a: f64) -> i32 {
267        use std::f64;
268
269        let mut bestd = f64::MAX;
270        let mut bestbiasd: f64 = bestd;
271        let mut bestpos = -1;
272        let mut bestbiaspos: i32 = bestpos;
273
274        for i in 0..self.netsize {
275            let bestbiasd_biased = bestbiasd + self.bias[i];
276            let mut dist;
277            let n = &self.network[i];
278            dist = (n.b - b).abs();
279            dist += (n.r - r).abs();
280            if dist < bestd || dist < bestbiasd_biased {
281                dist += (n.g - g).abs();
282                dist += (n.a - a).abs();
283                if dist < bestd {
284                    bestd = dist;
285                    bestpos = i as i32;
286                }
287                let biasdist = dist - self.bias[i];
288                if biasdist < bestbiasd {
289                    bestbiasd = biasdist;
290                    bestbiaspos = i as i32;
291                }
292            }
293            self.freq[i] -= BETA * self.freq[i];
294            self.bias[i] += BETAGAMMA * self.freq[i];
295        }
296        self.freq[bestpos as usize] += BETA;
297        self.bias[bestpos as usize] -= BETAGAMMA;
298        return bestbiaspos;
299    }
300
301    /// Main learning loop
302    /// Note: the number of learning cycles is crucial and the parameters are not
303    /// optimized for net sizes < 26 or > 256. 1064 colors seems to work fine
304    fn learn(&mut self, pixels: &[u8]) {
305        let initrad: i32 = self.netsize as i32 / 8; // for 256 cols, radius starts at 32
306        let radiusbiasshift: i32 = 6;
307        let radiusbias: i32 = 1 << radiusbiasshift;
308        let init_bias_radius: i32 = initrad * radiusbias;
309        let mut bias_radius = init_bias_radius;
310        let alphadec = 30 + ((self.samplefac - 1) / 3);
311        let lengthcount = pixels.len() / CHANNELS;
312        let samplepixels = lengthcount / self.samplefac as usize;
313        // learning cycles
314        let n_cycles = match self.netsize >> 1 {
315            n if n <= 100 => 100,
316            n => n,
317        };
318        let delta = match samplepixels / n_cycles {
319            0 => 1,
320            n => n,
321        };
322        let mut alpha = INIT_ALPHA;
323
324        let mut rad = bias_radius >> radiusbiasshift;
325        if rad <= 1 {
326            rad = 0
327        };
328
329        let mut pos = 0;
330        let step = *PRIMES
331            .iter()
332            .find(|&&prime| lengthcount % prime != 0)
333            .unwrap_or(&PRIMES[3]);
334
335        let mut i = 0;
336        while i < samplepixels {
337            let (r, g, b, a) = {
338                let p = &pixels[CHANNELS * pos..][..CHANNELS];
339                (p[0] as f64, p[1] as f64, p[2] as f64, p[3] as f64)
340            };
341
342            let j = self.contest(b, g, r, a);
343
344            let alpha_ = (1.0 * alpha as f64) / INIT_ALPHA as f64;
345            self.salter_single(alpha_, j, Quad { b, g, r, a });
346            if rad > 0 {
347                self.alter_neighbour(alpha_, rad, j, Quad { b, g, r, a })
348            };
349
350            pos += step;
351            while pos >= lengthcount {
352                pos -= lengthcount
353            }
354
355            i += 1;
356            if i % delta == 0 {
357                alpha -= alpha / alphadec;
358                bias_radius -= bias_radius / RADIUS_DEC;
359                rad = bias_radius >> radiusbiasshift;
360                if rad <= 1 {
361                    rad = 0
362                };
363            }
364        }
365    }
366
367    /// initializes the color map
368    fn build_colormap(&mut self) {
369        for i in 0usize..self.netsize {
370            self.colormap[i].b = clamp(self.network[i].b.round() as i32);
371            self.colormap[i].g = clamp(self.network[i].g.round() as i32);
372            self.colormap[i].r = clamp(self.network[i].r.round() as i32);
373            self.colormap[i].a = clamp(self.network[i].a.round() as i32);
374        }
375    }
376
377    /// Insertion sort of network and building of netindex[0..255]
378    fn build_netindex(&mut self) {
379        let mut previouscol = 0;
380        let mut startpos = 0;
381
382        for i in 0..self.netsize {
383            let mut p = self.colormap[i];
384            let mut q;
385            let mut smallpos = i;
386            let mut smallval = p.g as usize; // index on g
387                                             // find smallest in i..netsize-1
388            for j in (i + 1)..self.netsize {
389                q = self.colormap[j];
390                if (q.g as usize) < smallval {
391                    // index on g
392                    smallpos = j;
393                    smallval = q.g as usize; // index on g
394                }
395            }
396            q = self.colormap[smallpos];
397            // swap p (i) and q (smallpos) entries
398            if i != smallpos {
399                ::std::mem::swap(&mut p, &mut q);
400                self.colormap[i] = p;
401                self.colormap[smallpos] = q;
402            }
403            // smallval entry is now in position i
404            if smallval != previouscol {
405                self.netindex[previouscol] = (startpos + i) >> 1;
406                for j in (previouscol + 1)..smallval {
407                    self.netindex[j] = i
408                }
409                previouscol = smallval;
410                startpos = i;
411            }
412        }
413        let max_netpos = self.netsize - 1;
414        self.netindex[previouscol] = (startpos + max_netpos) >> 1;
415        for j in (previouscol + 1)..256 {
416            self.netindex[j] = max_netpos
417        } // really 256
418    }
419
420    /// Search for best matching color
421    fn search_netindex(&self, b: u8, g: u8, r: u8, a: u8) -> usize {
422        let mut bestd = 1 << 30; // ~ 1_000_000
423        let mut best = 0;
424        // start at netindex[g] and work outwards
425        let mut i = self.netindex[g as usize];
426        let mut j = if i > 0 { i - 1 } else { 0 };
427
428        while (i < self.netsize) || (j > 0) {
429            if i < self.netsize {
430                let p = self.colormap[i];
431                let mut e = p.g - g as i32;
432                let mut dist = e * e; // inx key
433                if dist >= bestd {
434                    break;
435                } else {
436                    e = p.b - b as i32;
437                    dist += e * e;
438                    if dist < bestd {
439                        e = p.r - r as i32;
440                        dist += e * e;
441                        if dist < bestd {
442                            e = p.a - a as i32;
443                            dist += e * e;
444                            if dist < bestd {
445                                bestd = dist;
446                                best = i;
447                            }
448                        }
449                    }
450                    i += 1;
451                }
452            }
453            if j > 0 {
454                let p = self.colormap[j];
455                let mut e = p.g - g as i32;
456                let mut dist = e * e; // inx key
457                if dist >= bestd {
458                    break;
459                } else {
460                    e = p.b - b as i32;
461                    dist += e * e;
462                    if dist < bestd {
463                        e = p.r - r as i32;
464                        dist += e * e;
465                        if dist < bestd {
466                            e = p.a - a as i32;
467                            dist += e * e;
468                            if dist < bestd {
469                                bestd = dist;
470                                best = j;
471                            }
472                        }
473                    }
474                    j -= 1;
475                }
476            }
477        }
478        best
479    }
480}