crossbeam_deque/
deque.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
use std::alloc::{alloc_zeroed, handle_alloc_error, Layout};
use std::boxed::Box;
use std::cell::{Cell, UnsafeCell};
use std::cmp;
use std::fmt;
use std::marker::PhantomData;
use std::mem::{self, MaybeUninit};
use std::ptr;
use std::sync::atomic::{self, AtomicIsize, AtomicPtr, AtomicUsize, Ordering};
use std::sync::Arc;

use crossbeam_epoch::{self as epoch, Atomic, Owned};
use crossbeam_utils::{Backoff, CachePadded};

// Minimum buffer capacity.
const MIN_CAP: usize = 64;
// Maximum number of tasks that can be stolen in `steal_batch()` and `steal_batch_and_pop()`.
const MAX_BATCH: usize = 32;
// If a buffer of at least this size is retired, thread-local garbage is flushed so that it gets
// deallocated as soon as possible.
const FLUSH_THRESHOLD_BYTES: usize = 1 << 10;

/// A buffer that holds tasks in a worker queue.
///
/// This is just a pointer to the buffer and its length - dropping an instance of this struct will
/// *not* deallocate the buffer.
struct Buffer<T> {
    /// Pointer to the allocated memory.
    ptr: *mut T,

    /// Capacity of the buffer. Always a power of two.
    cap: usize,
}

unsafe impl<T> Send for Buffer<T> {}

impl<T> Buffer<T> {
    /// Allocates a new buffer with the specified capacity.
    fn alloc(cap: usize) -> Buffer<T> {
        debug_assert_eq!(cap, cap.next_power_of_two());

        let ptr = Box::into_raw(
            (0..cap)
                .map(|_| MaybeUninit::<T>::uninit())
                .collect::<Box<[_]>>(),
        )
        .cast::<T>();

        Buffer { ptr, cap }
    }

    /// Deallocates the buffer.
    unsafe fn dealloc(self) {
        drop(Box::from_raw(ptr::slice_from_raw_parts_mut(
            self.ptr.cast::<MaybeUninit<T>>(),
            self.cap,
        )));
    }

    /// Returns a pointer to the task at the specified `index`.
    unsafe fn at(&self, index: isize) -> *mut T {
        // `self.cap` is always a power of two.
        // We do all the loads at `MaybeUninit` because we might realize, after loading, that we
        // don't actually have the right to access this memory.
        self.ptr.offset(index & (self.cap - 1) as isize)
    }

    /// Writes `task` into the specified `index`.
    ///
    /// This method might be concurrently called with another `read` at the same index, which is
    /// technically speaking a data race and therefore UB. We should use an atomic store here, but
    /// that would be more expensive and difficult to implement generically for all types `T`.
    /// Hence, as a hack, we use a volatile write instead.
    unsafe fn write(&self, index: isize, task: MaybeUninit<T>) {
        ptr::write_volatile(self.at(index).cast::<MaybeUninit<T>>(), task)
    }

    /// Reads a task from the specified `index`.
    ///
    /// This method might be concurrently called with another `write` at the same index, which is
    /// technically speaking a data race and therefore UB. We should use an atomic load here, but
    /// that would be more expensive and difficult to implement generically for all types `T`.
    /// Hence, as a hack, we use a volatile load instead.
    unsafe fn read(&self, index: isize) -> MaybeUninit<T> {
        ptr::read_volatile(self.at(index).cast::<MaybeUninit<T>>())
    }
}

impl<T> Clone for Buffer<T> {
    fn clone(&self) -> Buffer<T> {
        *self
    }
}

impl<T> Copy for Buffer<T> {}

/// Internal queue data shared between the worker and stealers.
///
/// The implementation is based on the following work:
///
/// 1. [Chase and Lev. Dynamic circular work-stealing deque. SPAA 2005.][chase-lev]
/// 2. [Le, Pop, Cohen, and Nardelli. Correct and efficient work-stealing for weak memory models.
///    PPoPP 2013.][weak-mem]
/// 3. [Norris and Demsky. CDSchecker: checking concurrent data structures written with C/C++
///    atomics. OOPSLA 2013.][checker]
///
/// [chase-lev]: https://dl.acm.org/citation.cfm?id=1073974
/// [weak-mem]: https://dl.acm.org/citation.cfm?id=2442524
/// [checker]: https://dl.acm.org/citation.cfm?id=2509514
struct Inner<T> {
    /// The front index.
    front: AtomicIsize,

    /// The back index.
    back: AtomicIsize,

    /// The underlying buffer.
    buffer: CachePadded<Atomic<Buffer<T>>>,
}

impl<T> Drop for Inner<T> {
    fn drop(&mut self) {
        // Load the back index, front index, and buffer.
        let b = *self.back.get_mut();
        let f = *self.front.get_mut();

        unsafe {
            let buffer = self.buffer.load(Ordering::Relaxed, epoch::unprotected());

            // Go through the buffer from front to back and drop all tasks in the queue.
            let mut i = f;
            while i != b {
                buffer.deref().at(i).drop_in_place();
                i = i.wrapping_add(1);
            }

            // Free the memory allocated by the buffer.
            buffer.into_owned().into_box().dealloc();
        }
    }
}

/// Worker queue flavor: FIFO or LIFO.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
enum Flavor {
    /// The first-in first-out flavor.
    Fifo,

    /// The last-in first-out flavor.
    Lifo,
}

/// A worker queue.
///
/// This is a FIFO or LIFO queue that is owned by a single thread, but other threads may steal
/// tasks from it. Task schedulers typically create a single worker queue per thread.
///
/// # Examples
///
/// A FIFO worker:
///
/// ```
/// use crossbeam_deque::{Steal, Worker};
///
/// let w = Worker::new_fifo();
/// let s = w.stealer();
///
/// w.push(1);
/// w.push(2);
/// w.push(3);
///
/// assert_eq!(s.steal(), Steal::Success(1));
/// assert_eq!(w.pop(), Some(2));
/// assert_eq!(w.pop(), Some(3));
/// ```
///
/// A LIFO worker:
///
/// ```
/// use crossbeam_deque::{Steal, Worker};
///
/// let w = Worker::new_lifo();
/// let s = w.stealer();
///
/// w.push(1);
/// w.push(2);
/// w.push(3);
///
/// assert_eq!(s.steal(), Steal::Success(1));
/// assert_eq!(w.pop(), Some(3));
/// assert_eq!(w.pop(), Some(2));
/// ```
pub struct Worker<T> {
    /// A reference to the inner representation of the queue.
    inner: Arc<CachePadded<Inner<T>>>,

    /// A copy of `inner.buffer` for quick access.
    buffer: Cell<Buffer<T>>,

    /// The flavor of the queue.
    flavor: Flavor,

    /// Indicates that the worker cannot be shared among threads.
    _marker: PhantomData<*mut ()>, // !Send + !Sync
}

unsafe impl<T: Send> Send for Worker<T> {}

impl<T> Worker<T> {
    /// Creates a FIFO worker queue.
    ///
    /// Tasks are pushed and popped from opposite ends.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::Worker;
    ///
    /// let w = Worker::<i32>::new_fifo();
    /// ```
    pub fn new_fifo() -> Worker<T> {
        let buffer = Buffer::alloc(MIN_CAP);

        let inner = Arc::new(CachePadded::new(Inner {
            front: AtomicIsize::new(0),
            back: AtomicIsize::new(0),
            buffer: CachePadded::new(Atomic::new(buffer)),
        }));

        Worker {
            inner,
            buffer: Cell::new(buffer),
            flavor: Flavor::Fifo,
            _marker: PhantomData,
        }
    }

    /// Creates a LIFO worker queue.
    ///
    /// Tasks are pushed and popped from the same end.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::Worker;
    ///
    /// let w = Worker::<i32>::new_lifo();
    /// ```
    pub fn new_lifo() -> Worker<T> {
        let buffer = Buffer::alloc(MIN_CAP);

        let inner = Arc::new(CachePadded::new(Inner {
            front: AtomicIsize::new(0),
            back: AtomicIsize::new(0),
            buffer: CachePadded::new(Atomic::new(buffer)),
        }));

        Worker {
            inner,
            buffer: Cell::new(buffer),
            flavor: Flavor::Lifo,
            _marker: PhantomData,
        }
    }

    /// Creates a stealer for this queue.
    ///
    /// The returned stealer can be shared among threads and cloned.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::Worker;
    ///
    /// let w = Worker::<i32>::new_lifo();
    /// let s = w.stealer();
    /// ```
    pub fn stealer(&self) -> Stealer<T> {
        Stealer {
            inner: self.inner.clone(),
            flavor: self.flavor,
        }
    }

    /// Resizes the internal buffer to the new capacity of `new_cap`.
    #[cold]
    unsafe fn resize(&self, new_cap: usize) {
        // Load the back index, front index, and buffer.
        let b = self.inner.back.load(Ordering::Relaxed);
        let f = self.inner.front.load(Ordering::Relaxed);
        let buffer = self.buffer.get();

        // Allocate a new buffer and copy data from the old buffer to the new one.
        let new = Buffer::alloc(new_cap);
        let mut i = f;
        while i != b {
            ptr::copy_nonoverlapping(buffer.at(i), new.at(i), 1);
            i = i.wrapping_add(1);
        }

        let guard = &epoch::pin();

        // Replace the old buffer with the new one.
        self.buffer.replace(new);
        let old =
            self.inner
                .buffer
                .swap(Owned::new(new).into_shared(guard), Ordering::Release, guard);

        // Destroy the old buffer later.
        guard.defer_unchecked(move || old.into_owned().into_box().dealloc());

        // If the buffer is very large, then flush the thread-local garbage in order to deallocate
        // it as soon as possible.
        if mem::size_of::<T>() * new_cap >= FLUSH_THRESHOLD_BYTES {
            guard.flush();
        }
    }

    /// Reserves enough capacity so that `reserve_cap` tasks can be pushed without growing the
    /// buffer.
    fn reserve(&self, reserve_cap: usize) {
        if reserve_cap > 0 {
            // Compute the current length.
            let b = self.inner.back.load(Ordering::Relaxed);
            let f = self.inner.front.load(Ordering::SeqCst);
            let len = b.wrapping_sub(f) as usize;

            // The current capacity.
            let cap = self.buffer.get().cap;

            // Is there enough capacity to push `reserve_cap` tasks?
            if cap - len < reserve_cap {
                // Keep doubling the capacity as much as is needed.
                let mut new_cap = cap * 2;
                while new_cap - len < reserve_cap {
                    new_cap *= 2;
                }

                // Resize the buffer.
                unsafe {
                    self.resize(new_cap);
                }
            }
        }
    }

    /// Returns `true` if the queue is empty.
    ///
    /// ```
    /// use crossbeam_deque::Worker;
    ///
    /// let w = Worker::new_lifo();
    ///
    /// assert!(w.is_empty());
    /// w.push(1);
    /// assert!(!w.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        let b = self.inner.back.load(Ordering::Relaxed);
        let f = self.inner.front.load(Ordering::SeqCst);
        b.wrapping_sub(f) <= 0
    }

    /// Returns the number of tasks in the deque.
    ///
    /// ```
    /// use crossbeam_deque::Worker;
    ///
    /// let w = Worker::new_lifo();
    ///
    /// assert_eq!(w.len(), 0);
    /// w.push(1);
    /// assert_eq!(w.len(), 1);
    /// w.push(1);
    /// assert_eq!(w.len(), 2);
    /// ```
    pub fn len(&self) -> usize {
        let b = self.inner.back.load(Ordering::Relaxed);
        let f = self.inner.front.load(Ordering::SeqCst);
        b.wrapping_sub(f).max(0) as usize
    }

    /// Pushes a task into the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::Worker;
    ///
    /// let w = Worker::new_lifo();
    /// w.push(1);
    /// w.push(2);
    /// ```
    pub fn push(&self, task: T) {
        // Load the back index, front index, and buffer.
        let b = self.inner.back.load(Ordering::Relaxed);
        let f = self.inner.front.load(Ordering::Acquire);
        let mut buffer = self.buffer.get();

        // Calculate the length of the queue.
        let len = b.wrapping_sub(f);

        // Is the queue full?
        if len >= buffer.cap as isize {
            // Yes. Grow the underlying buffer.
            unsafe {
                self.resize(2 * buffer.cap);
            }
            buffer = self.buffer.get();
        }

        // Write `task` into the slot.
        unsafe {
            buffer.write(b, MaybeUninit::new(task));
        }

        atomic::fence(Ordering::Release);

        // Increment the back index.
        //
        // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data
        // races because it doesn't understand fences.
        self.inner.back.store(b.wrapping_add(1), Ordering::Release);
    }

    /// Pops a task from the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::Worker;
    ///
    /// let w = Worker::new_fifo();
    /// w.push(1);
    /// w.push(2);
    ///
    /// assert_eq!(w.pop(), Some(1));
    /// assert_eq!(w.pop(), Some(2));
    /// assert_eq!(w.pop(), None);
    /// ```
    pub fn pop(&self) -> Option<T> {
        // Load the back and front index.
        let b = self.inner.back.load(Ordering::Relaxed);
        let f = self.inner.front.load(Ordering::Relaxed);

        // Calculate the length of the queue.
        let len = b.wrapping_sub(f);

        // Is the queue empty?
        if len <= 0 {
            return None;
        }

        match self.flavor {
            // Pop from the front of the queue.
            Flavor::Fifo => {
                // Try incrementing the front index to pop the task.
                let f = self.inner.front.fetch_add(1, Ordering::SeqCst);
                let new_f = f.wrapping_add(1);

                if b.wrapping_sub(new_f) < 0 {
                    self.inner.front.store(f, Ordering::Relaxed);
                    return None;
                }

                unsafe {
                    // Read the popped task.
                    let buffer = self.buffer.get();
                    let task = buffer.read(f).assume_init();

                    // Shrink the buffer if `len - 1` is less than one fourth of the capacity.
                    if buffer.cap > MIN_CAP && len <= buffer.cap as isize / 4 {
                        self.resize(buffer.cap / 2);
                    }

                    Some(task)
                }
            }

            // Pop from the back of the queue.
            Flavor::Lifo => {
                // Decrement the back index.
                let b = b.wrapping_sub(1);
                self.inner.back.store(b, Ordering::Relaxed);

                atomic::fence(Ordering::SeqCst);

                // Load the front index.
                let f = self.inner.front.load(Ordering::Relaxed);

                // Compute the length after the back index was decremented.
                let len = b.wrapping_sub(f);

                if len < 0 {
                    // The queue is empty. Restore the back index to the original task.
                    self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed);
                    None
                } else {
                    // Read the task to be popped.
                    let buffer = self.buffer.get();
                    let mut task = unsafe { Some(buffer.read(b)) };

                    // Are we popping the last task from the queue?
                    if len == 0 {
                        // Try incrementing the front index.
                        if self
                            .inner
                            .front
                            .compare_exchange(
                                f,
                                f.wrapping_add(1),
                                Ordering::SeqCst,
                                Ordering::Relaxed,
                            )
                            .is_err()
                        {
                            // Failed. We didn't pop anything. Reset to `None`.
                            task.take();
                        }

                        // Restore the back index to the original task.
                        self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed);
                    } else {
                        // Shrink the buffer if `len` is less than one fourth of the capacity.
                        if buffer.cap > MIN_CAP && len < buffer.cap as isize / 4 {
                            unsafe {
                                self.resize(buffer.cap / 2);
                            }
                        }
                    }

                    task.map(|t| unsafe { t.assume_init() })
                }
            }
        }
    }
}

impl<T> fmt::Debug for Worker<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("Worker { .. }")
    }
}

/// A stealer handle of a worker queue.
///
/// Stealers can be shared among threads.
///
/// Task schedulers typically have a single worker queue per worker thread.
///
/// # Examples
///
/// ```
/// use crossbeam_deque::{Steal, Worker};
///
/// let w = Worker::new_lifo();
/// w.push(1);
/// w.push(2);
///
/// let s = w.stealer();
/// assert_eq!(s.steal(), Steal::Success(1));
/// assert_eq!(s.steal(), Steal::Success(2));
/// assert_eq!(s.steal(), Steal::Empty);
/// ```
pub struct Stealer<T> {
    /// A reference to the inner representation of the queue.
    inner: Arc<CachePadded<Inner<T>>>,

    /// The flavor of the queue.
    flavor: Flavor,
}

unsafe impl<T: Send> Send for Stealer<T> {}
unsafe impl<T: Send> Sync for Stealer<T> {}

impl<T> Stealer<T> {
    /// Returns `true` if the queue is empty.
    ///
    /// ```
    /// use crossbeam_deque::Worker;
    ///
    /// let w = Worker::new_lifo();
    /// let s = w.stealer();
    ///
    /// assert!(s.is_empty());
    /// w.push(1);
    /// assert!(!s.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        let f = self.inner.front.load(Ordering::Acquire);
        atomic::fence(Ordering::SeqCst);
        let b = self.inner.back.load(Ordering::Acquire);
        b.wrapping_sub(f) <= 0
    }

    /// Returns the number of tasks in the deque.
    ///
    /// ```
    /// use crossbeam_deque::Worker;
    ///
    /// let w = Worker::new_lifo();
    /// let s = w.stealer();
    ///
    /// assert_eq!(s.len(), 0);
    /// w.push(1);
    /// assert_eq!(s.len(), 1);
    /// w.push(2);
    /// assert_eq!(s.len(), 2);
    /// ```
    pub fn len(&self) -> usize {
        let f = self.inner.front.load(Ordering::Acquire);
        atomic::fence(Ordering::SeqCst);
        let b = self.inner.back.load(Ordering::Acquire);
        b.wrapping_sub(f).max(0) as usize
    }

    /// Steals a task from the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::{Steal, Worker};
    ///
    /// let w = Worker::new_lifo();
    /// w.push(1);
    /// w.push(2);
    ///
    /// let s = w.stealer();
    /// assert_eq!(s.steal(), Steal::Success(1));
    /// assert_eq!(s.steal(), Steal::Success(2));
    /// ```
    pub fn steal(&self) -> Steal<T> {
        // Load the front index.
        let f = self.inner.front.load(Ordering::Acquire);

        // A SeqCst fence is needed here.
        //
        // If the current thread is already pinned (reentrantly), we must manually issue the
        // fence. Otherwise, the following pinning will issue the fence anyway, so we don't
        // have to.
        if epoch::is_pinned() {
            atomic::fence(Ordering::SeqCst);
        }

        let guard = &epoch::pin();

        // Load the back index.
        let b = self.inner.back.load(Ordering::Acquire);

        // Is the queue empty?
        if b.wrapping_sub(f) <= 0 {
            return Steal::Empty;
        }

        // Load the buffer and read the task at the front.
        let buffer = self.inner.buffer.load(Ordering::Acquire, guard);
        let task = unsafe { buffer.deref().read(f) };

        // Try incrementing the front index to steal the task.
        // If the buffer has been swapped or the increment fails, we retry.
        if self.inner.buffer.load(Ordering::Acquire, guard) != buffer
            || self
                .inner
                .front
                .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed)
                .is_err()
        {
            // We didn't steal this task, forget it.
            return Steal::Retry;
        }

        // Return the stolen task.
        Steal::Success(unsafe { task.assume_init() })
    }

    /// Steals a batch of tasks and pushes them into another worker.
    ///
    /// How many tasks exactly will be stolen is not specified. That said, this method will try to
    /// steal around half of the tasks in the queue, but also not more than some constant limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::Worker;
    ///
    /// let w1 = Worker::new_fifo();
    /// w1.push(1);
    /// w1.push(2);
    /// w1.push(3);
    /// w1.push(4);
    ///
    /// let s = w1.stealer();
    /// let w2 = Worker::new_fifo();
    ///
    /// let _ = s.steal_batch(&w2);
    /// assert_eq!(w2.pop(), Some(1));
    /// assert_eq!(w2.pop(), Some(2));
    /// ```
    pub fn steal_batch(&self, dest: &Worker<T>) -> Steal<()> {
        self.steal_batch_with_limit(dest, MAX_BATCH)
    }

    /// Steals no more than `limit` of tasks and pushes them into another worker.
    ///
    /// How many tasks exactly will be stolen is not specified. That said, this method will try to
    /// steal around half of the tasks in the queue, but also not more than the given limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::Worker;
    ///
    /// let w1 = Worker::new_fifo();
    /// w1.push(1);
    /// w1.push(2);
    /// w1.push(3);
    /// w1.push(4);
    /// w1.push(5);
    /// w1.push(6);
    ///
    /// let s = w1.stealer();
    /// let w2 = Worker::new_fifo();
    ///
    /// let _ = s.steal_batch_with_limit(&w2, 2);
    /// assert_eq!(w2.pop(), Some(1));
    /// assert_eq!(w2.pop(), Some(2));
    /// assert_eq!(w2.pop(), None);
    ///
    /// w1.push(7);
    /// w1.push(8);
    /// // Setting a large limit does not guarantee that all elements will be popped. In this case,
    /// // half of the elements are currently popped, but the number of popped elements is considered
    /// // an implementation detail that may be changed in the future.
    /// let _ = s.steal_batch_with_limit(&w2, std::usize::MAX);
    /// assert_eq!(w2.len(), 3);
    /// ```
    pub fn steal_batch_with_limit(&self, dest: &Worker<T>, limit: usize) -> Steal<()> {
        assert!(limit > 0);
        if Arc::ptr_eq(&self.inner, &dest.inner) {
            if dest.is_empty() {
                return Steal::Empty;
            } else {
                return Steal::Success(());
            }
        }

        // Load the front index.
        let mut f = self.inner.front.load(Ordering::Acquire);

        // A SeqCst fence is needed here.
        //
        // If the current thread is already pinned (reentrantly), we must manually issue the
        // fence. Otherwise, the following pinning will issue the fence anyway, so we don't
        // have to.
        if epoch::is_pinned() {
            atomic::fence(Ordering::SeqCst);
        }

        let guard = &epoch::pin();

        // Load the back index.
        let b = self.inner.back.load(Ordering::Acquire);

        // Is the queue empty?
        let len = b.wrapping_sub(f);
        if len <= 0 {
            return Steal::Empty;
        }

        // Reserve capacity for the stolen batch.
        let batch_size = cmp::min((len as usize + 1) / 2, limit);
        dest.reserve(batch_size);
        let mut batch_size = batch_size as isize;

        // Get the destination buffer and back index.
        let dest_buffer = dest.buffer.get();
        let mut dest_b = dest.inner.back.load(Ordering::Relaxed);

        // Load the buffer.
        let buffer = self.inner.buffer.load(Ordering::Acquire, guard);

        match self.flavor {
            // Steal a batch of tasks from the front at once.
            Flavor::Fifo => {
                // Copy the batch from the source to the destination buffer.
                match dest.flavor {
                    Flavor::Fifo => {
                        for i in 0..batch_size {
                            unsafe {
                                let task = buffer.deref().read(f.wrapping_add(i));
                                dest_buffer.write(dest_b.wrapping_add(i), task);
                            }
                        }
                    }
                    Flavor::Lifo => {
                        for i in 0..batch_size {
                            unsafe {
                                let task = buffer.deref().read(f.wrapping_add(i));
                                dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task);
                            }
                        }
                    }
                }

                // Try incrementing the front index to steal the batch.
                // If the buffer has been swapped or the increment fails, we retry.
                if self.inner.buffer.load(Ordering::Acquire, guard) != buffer
                    || self
                        .inner
                        .front
                        .compare_exchange(
                            f,
                            f.wrapping_add(batch_size),
                            Ordering::SeqCst,
                            Ordering::Relaxed,
                        )
                        .is_err()
                {
                    return Steal::Retry;
                }

                dest_b = dest_b.wrapping_add(batch_size);
            }

            // Steal a batch of tasks from the front one by one.
            Flavor::Lifo => {
                // This loop may modify the batch_size, which triggers a clippy lint warning.
                // Use a new variable to avoid the warning, and to make it clear we aren't
                // modifying the loop exit condition during iteration.
                let original_batch_size = batch_size;

                for i in 0..original_batch_size {
                    // If this is not the first steal, check whether the queue is empty.
                    if i > 0 {
                        // We've already got the current front index. Now execute the fence to
                        // synchronize with other threads.
                        atomic::fence(Ordering::SeqCst);

                        // Load the back index.
                        let b = self.inner.back.load(Ordering::Acquire);

                        // Is the queue empty?
                        if b.wrapping_sub(f) <= 0 {
                            batch_size = i;
                            break;
                        }
                    }

                    // Read the task at the front.
                    let task = unsafe { buffer.deref().read(f) };

                    // Try incrementing the front index to steal the task.
                    // If the buffer has been swapped or the increment fails, we retry.
                    if self.inner.buffer.load(Ordering::Acquire, guard) != buffer
                        || self
                            .inner
                            .front
                            .compare_exchange(
                                f,
                                f.wrapping_add(1),
                                Ordering::SeqCst,
                                Ordering::Relaxed,
                            )
                            .is_err()
                    {
                        // We didn't steal this task, forget it and break from the loop.
                        batch_size = i;
                        break;
                    }

                    // Write the stolen task into the destination buffer.
                    unsafe {
                        dest_buffer.write(dest_b, task);
                    }

                    // Move the source front index and the destination back index one step forward.
                    f = f.wrapping_add(1);
                    dest_b = dest_b.wrapping_add(1);
                }

                // If we didn't steal anything, the operation needs to be retried.
                if batch_size == 0 {
                    return Steal::Retry;
                }

                // If stealing into a FIFO queue, stolen tasks need to be reversed.
                if dest.flavor == Flavor::Fifo {
                    for i in 0..batch_size / 2 {
                        unsafe {
                            let i1 = dest_b.wrapping_sub(batch_size - i);
                            let i2 = dest_b.wrapping_sub(i + 1);
                            let t1 = dest_buffer.read(i1);
                            let t2 = dest_buffer.read(i2);
                            dest_buffer.write(i1, t2);
                            dest_buffer.write(i2, t1);
                        }
                    }
                }
            }
        }

        atomic::fence(Ordering::Release);

        // Update the back index in the destination queue.
        //
        // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data
        // races because it doesn't understand fences.
        dest.inner.back.store(dest_b, Ordering::Release);

        // Return with success.
        Steal::Success(())
    }

    /// Steals a batch of tasks, pushes them into another worker, and pops a task from that worker.
    ///
    /// How many tasks exactly will be stolen is not specified. That said, this method will try to
    /// steal around half of the tasks in the queue, but also not more than some constant limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::{Steal, Worker};
    ///
    /// let w1 = Worker::new_fifo();
    /// w1.push(1);
    /// w1.push(2);
    /// w1.push(3);
    /// w1.push(4);
    ///
    /// let s = w1.stealer();
    /// let w2 = Worker::new_fifo();
    ///
    /// assert_eq!(s.steal_batch_and_pop(&w2), Steal::Success(1));
    /// assert_eq!(w2.pop(), Some(2));
    /// ```
    pub fn steal_batch_and_pop(&self, dest: &Worker<T>) -> Steal<T> {
        self.steal_batch_with_limit_and_pop(dest, MAX_BATCH)
    }

    /// Steals no more than `limit` of tasks, pushes them into another worker, and pops a task from
    /// that worker.
    ///
    /// How many tasks exactly will be stolen is not specified. That said, this method will try to
    /// steal around half of the tasks in the queue, but also not more than the given limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::{Steal, Worker};
    ///
    /// let w1 = Worker::new_fifo();
    /// w1.push(1);
    /// w1.push(2);
    /// w1.push(3);
    /// w1.push(4);
    /// w1.push(5);
    /// w1.push(6);
    ///
    /// let s = w1.stealer();
    /// let w2 = Worker::new_fifo();
    ///
    /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, 2), Steal::Success(1));
    /// assert_eq!(w2.pop(), Some(2));
    /// assert_eq!(w2.pop(), None);
    ///
    /// w1.push(7);
    /// w1.push(8);
    /// // Setting a large limit does not guarantee that all elements will be popped. In this case,
    /// // half of the elements are currently popped, but the number of popped elements is considered
    /// // an implementation detail that may be changed in the future.
    /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, std::usize::MAX), Steal::Success(3));
    /// assert_eq!(w2.pop(), Some(4));
    /// assert_eq!(w2.pop(), Some(5));
    /// assert_eq!(w2.pop(), None);
    /// ```
    pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker<T>, limit: usize) -> Steal<T> {
        assert!(limit > 0);
        if Arc::ptr_eq(&self.inner, &dest.inner) {
            match dest.pop() {
                None => return Steal::Empty,
                Some(task) => return Steal::Success(task),
            }
        }

        // Load the front index.
        let mut f = self.inner.front.load(Ordering::Acquire);

        // A SeqCst fence is needed here.
        //
        // If the current thread is already pinned (reentrantly), we must manually issue the
        // fence. Otherwise, the following pinning will issue the fence anyway, so we don't
        // have to.
        if epoch::is_pinned() {
            atomic::fence(Ordering::SeqCst);
        }

        let guard = &epoch::pin();

        // Load the back index.
        let b = self.inner.back.load(Ordering::Acquire);

        // Is the queue empty?
        let len = b.wrapping_sub(f);
        if len <= 0 {
            return Steal::Empty;
        }

        // Reserve capacity for the stolen batch.
        let batch_size = cmp::min((len as usize - 1) / 2, limit - 1);
        dest.reserve(batch_size);
        let mut batch_size = batch_size as isize;

        // Get the destination buffer and back index.
        let dest_buffer = dest.buffer.get();
        let mut dest_b = dest.inner.back.load(Ordering::Relaxed);

        // Load the buffer
        let buffer = self.inner.buffer.load(Ordering::Acquire, guard);

        // Read the task at the front.
        let mut task = unsafe { buffer.deref().read(f) };

        match self.flavor {
            // Steal a batch of tasks from the front at once.
            Flavor::Fifo => {
                // Copy the batch from the source to the destination buffer.
                match dest.flavor {
                    Flavor::Fifo => {
                        for i in 0..batch_size {
                            unsafe {
                                let task = buffer.deref().read(f.wrapping_add(i + 1));
                                dest_buffer.write(dest_b.wrapping_add(i), task);
                            }
                        }
                    }
                    Flavor::Lifo => {
                        for i in 0..batch_size {
                            unsafe {
                                let task = buffer.deref().read(f.wrapping_add(i + 1));
                                dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task);
                            }
                        }
                    }
                }

                // Try incrementing the front index to steal the task.
                // If the buffer has been swapped or the increment fails, we retry.
                if self.inner.buffer.load(Ordering::Acquire, guard) != buffer
                    || self
                        .inner
                        .front
                        .compare_exchange(
                            f,
                            f.wrapping_add(batch_size + 1),
                            Ordering::SeqCst,
                            Ordering::Relaxed,
                        )
                        .is_err()
                {
                    // We didn't steal this task, forget it.
                    return Steal::Retry;
                }

                dest_b = dest_b.wrapping_add(batch_size);
            }

            // Steal a batch of tasks from the front one by one.
            Flavor::Lifo => {
                // Try incrementing the front index to steal the task.
                if self
                    .inner
                    .front
                    .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed)
                    .is_err()
                {
                    // We didn't steal this task, forget it.
                    return Steal::Retry;
                }

                // Move the front index one step forward.
                f = f.wrapping_add(1);

                // Repeat the same procedure for the batch steals.
                //
                // This loop may modify the batch_size, which triggers a clippy lint warning.
                // Use a new variable to avoid the warning, and to make it clear we aren't
                // modifying the loop exit condition during iteration.
                let original_batch_size = batch_size;
                for i in 0..original_batch_size {
                    // We've already got the current front index. Now execute the fence to
                    // synchronize with other threads.
                    atomic::fence(Ordering::SeqCst);

                    // Load the back index.
                    let b = self.inner.back.load(Ordering::Acquire);

                    // Is the queue empty?
                    if b.wrapping_sub(f) <= 0 {
                        batch_size = i;
                        break;
                    }

                    // Read the task at the front.
                    let tmp = unsafe { buffer.deref().read(f) };

                    // Try incrementing the front index to steal the task.
                    // If the buffer has been swapped or the increment fails, we retry.
                    if self.inner.buffer.load(Ordering::Acquire, guard) != buffer
                        || self
                            .inner
                            .front
                            .compare_exchange(
                                f,
                                f.wrapping_add(1),
                                Ordering::SeqCst,
                                Ordering::Relaxed,
                            )
                            .is_err()
                    {
                        // We didn't steal this task, forget it and break from the loop.
                        batch_size = i;
                        break;
                    }

                    // Write the previously stolen task into the destination buffer.
                    unsafe {
                        dest_buffer.write(dest_b, mem::replace(&mut task, tmp));
                    }

                    // Move the source front index and the destination back index one step forward.
                    f = f.wrapping_add(1);
                    dest_b = dest_b.wrapping_add(1);
                }

                // If stealing into a FIFO queue, stolen tasks need to be reversed.
                if dest.flavor == Flavor::Fifo {
                    for i in 0..batch_size / 2 {
                        unsafe {
                            let i1 = dest_b.wrapping_sub(batch_size - i);
                            let i2 = dest_b.wrapping_sub(i + 1);
                            let t1 = dest_buffer.read(i1);
                            let t2 = dest_buffer.read(i2);
                            dest_buffer.write(i1, t2);
                            dest_buffer.write(i2, t1);
                        }
                    }
                }
            }
        }

        atomic::fence(Ordering::Release);

        // Update the back index in the destination queue.
        //
        // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data
        // races because it doesn't understand fences.
        dest.inner.back.store(dest_b, Ordering::Release);

        // Return with success.
        Steal::Success(unsafe { task.assume_init() })
    }
}

impl<T> Clone for Stealer<T> {
    fn clone(&self) -> Stealer<T> {
        Stealer {
            inner: self.inner.clone(),
            flavor: self.flavor,
        }
    }
}

impl<T> fmt::Debug for Stealer<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("Stealer { .. }")
    }
}

// Bits indicating the state of a slot:
// * If a task has been written into the slot, `WRITE` is set.
// * If a task has been read from the slot, `READ` is set.
// * If the block is being destroyed, `DESTROY` is set.
const WRITE: usize = 1;
const READ: usize = 2;
const DESTROY: usize = 4;

// Each block covers one "lap" of indices.
const LAP: usize = 64;
// The maximum number of values a block can hold.
const BLOCK_CAP: usize = LAP - 1;
// How many lower bits are reserved for metadata.
const SHIFT: usize = 1;
// Indicates that the block is not the last one.
const HAS_NEXT: usize = 1;

/// A slot in a block.
struct Slot<T> {
    /// The task.
    task: UnsafeCell<MaybeUninit<T>>,

    /// The state of the slot.
    state: AtomicUsize,
}

impl<T> Slot<T> {
    /// Waits until a task is written into the slot.
    fn wait_write(&self) {
        let backoff = Backoff::new();
        while self.state.load(Ordering::Acquire) & WRITE == 0 {
            backoff.snooze();
        }
    }
}

/// A block in a linked list.
///
/// Each block in the list can hold up to `BLOCK_CAP` values.
struct Block<T> {
    /// The next block in the linked list.
    next: AtomicPtr<Block<T>>,

    /// Slots for values.
    slots: [Slot<T>; BLOCK_CAP],
}

impl<T> Block<T> {
    const LAYOUT: Layout = {
        let layout = Layout::new::<Self>();
        assert!(
            layout.size() != 0,
            "Block should never be zero-sized, as it has an AtomicPtr field"
        );
        layout
    };

    /// Creates an empty block.
    fn new() -> Box<Self> {
        // SAFETY: layout is not zero-sized
        let ptr = unsafe { alloc_zeroed(Self::LAYOUT) };
        // Handle allocation failure
        if ptr.is_null() {
            handle_alloc_error(Self::LAYOUT)
        }
        // SAFETY: This is safe because:
        //  [1] `Block::next` (AtomicPtr) may be safely zero initialized.
        //  [2] `Block::slots` (Array) may be safely zero initialized because of [3, 4].
        //  [3] `Slot::task` (UnsafeCell) may be safely zero initialized because it
        //       holds a MaybeUninit.
        //  [4] `Slot::state` (AtomicUsize) may be safely zero initialized.
        // TODO: unsafe { Box::new_zeroed().assume_init() }
        unsafe { Box::from_raw(ptr.cast()) }
    }

    /// Waits until the next pointer is set.
    fn wait_next(&self) -> *mut Block<T> {
        let backoff = Backoff::new();
        loop {
            let next = self.next.load(Ordering::Acquire);
            if !next.is_null() {
                return next;
            }
            backoff.snooze();
        }
    }

    /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block.
    unsafe fn destroy(this: *mut Block<T>, count: usize) {
        // It is not necessary to set the `DESTROY` bit in the last slot because that slot has
        // begun destruction of the block.
        for i in (0..count).rev() {
            let slot = (*this).slots.get_unchecked(i);

            // Mark the `DESTROY` bit if a thread is still using the slot.
            if slot.state.load(Ordering::Acquire) & READ == 0
                && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0
            {
                // If a thread is still using the slot, it will continue destruction of the block.
                return;
            }
        }

        // No thread is using the block, now it is safe to destroy it.
        drop(Box::from_raw(this));
    }
}

/// A position in a queue.
struct Position<T> {
    /// The index in the queue.
    index: AtomicUsize,

    /// The block in the linked list.
    block: AtomicPtr<Block<T>>,
}

/// An injector queue.
///
/// This is a FIFO queue that can be shared among multiple threads. Task schedulers typically have
/// a single injector queue, which is the entry point for new tasks.
///
/// # Examples
///
/// ```
/// use crossbeam_deque::{Injector, Steal};
///
/// let q = Injector::new();
/// q.push(1);
/// q.push(2);
///
/// assert_eq!(q.steal(), Steal::Success(1));
/// assert_eq!(q.steal(), Steal::Success(2));
/// assert_eq!(q.steal(), Steal::Empty);
/// ```
pub struct Injector<T> {
    /// The head of the queue.
    head: CachePadded<Position<T>>,

    /// The tail of the queue.
    tail: CachePadded<Position<T>>,

    /// Indicates that dropping a `Injector<T>` may drop values of type `T`.
    _marker: PhantomData<T>,
}

unsafe impl<T: Send> Send for Injector<T> {}
unsafe impl<T: Send> Sync for Injector<T> {}

impl<T> Default for Injector<T> {
    fn default() -> Self {
        let block = Box::into_raw(Block::<T>::new());
        Self {
            head: CachePadded::new(Position {
                block: AtomicPtr::new(block),
                index: AtomicUsize::new(0),
            }),
            tail: CachePadded::new(Position {
                block: AtomicPtr::new(block),
                index: AtomicUsize::new(0),
            }),
            _marker: PhantomData,
        }
    }
}

impl<T> Injector<T> {
    /// Creates a new injector queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::Injector;
    ///
    /// let q = Injector::<i32>::new();
    /// ```
    pub fn new() -> Injector<T> {
        Self::default()
    }

    /// Pushes a task into the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::Injector;
    ///
    /// let w = Injector::new();
    /// w.push(1);
    /// w.push(2);
    /// ```
    pub fn push(&self, task: T) {
        let backoff = Backoff::new();
        let mut tail = self.tail.index.load(Ordering::Acquire);
        let mut block = self.tail.block.load(Ordering::Acquire);
        let mut next_block = None;

        loop {
            // Calculate the offset of the index into the block.
            let offset = (tail >> SHIFT) % LAP;

            // If we reached the end of the block, wait until the next one is installed.
            if offset == BLOCK_CAP {
                backoff.snooze();
                tail = self.tail.index.load(Ordering::Acquire);
                block = self.tail.block.load(Ordering::Acquire);
                continue;
            }

            // If we're going to have to install the next block, allocate it in advance in order to
            // make the wait for other threads as short as possible.
            if offset + 1 == BLOCK_CAP && next_block.is_none() {
                next_block = Some(Block::<T>::new());
            }

            let new_tail = tail + (1 << SHIFT);

            // Try advancing the tail forward.
            match self.tail.index.compare_exchange_weak(
                tail,
                new_tail,
                Ordering::SeqCst,
                Ordering::Acquire,
            ) {
                Ok(_) => unsafe {
                    // If we've reached the end of the block, install the next one.
                    if offset + 1 == BLOCK_CAP {
                        let next_block = Box::into_raw(next_block.unwrap());
                        let next_index = new_tail.wrapping_add(1 << SHIFT);

                        self.tail.block.store(next_block, Ordering::Release);
                        self.tail.index.store(next_index, Ordering::Release);
                        (*block).next.store(next_block, Ordering::Release);
                    }

                    // Write the task into the slot.
                    let slot = (*block).slots.get_unchecked(offset);
                    slot.task.get().write(MaybeUninit::new(task));
                    slot.state.fetch_or(WRITE, Ordering::Release);

                    return;
                },
                Err(t) => {
                    tail = t;
                    block = self.tail.block.load(Ordering::Acquire);
                    backoff.spin();
                }
            }
        }
    }

    /// Steals a task from the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::{Injector, Steal};
    ///
    /// let q = Injector::new();
    /// q.push(1);
    /// q.push(2);
    ///
    /// assert_eq!(q.steal(), Steal::Success(1));
    /// assert_eq!(q.steal(), Steal::Success(2));
    /// assert_eq!(q.steal(), Steal::Empty);
    /// ```
    pub fn steal(&self) -> Steal<T> {
        let mut head;
        let mut block;
        let mut offset;

        let backoff = Backoff::new();
        loop {
            head = self.head.index.load(Ordering::Acquire);
            block = self.head.block.load(Ordering::Acquire);

            // Calculate the offset of the index into the block.
            offset = (head >> SHIFT) % LAP;

            // If we reached the end of the block, wait until the next one is installed.
            if offset == BLOCK_CAP {
                backoff.snooze();
            } else {
                break;
            }
        }

        let mut new_head = head + (1 << SHIFT);

        if new_head & HAS_NEXT == 0 {
            atomic::fence(Ordering::SeqCst);
            let tail = self.tail.index.load(Ordering::Relaxed);

            // If the tail equals the head, that means the queue is empty.
            if head >> SHIFT == tail >> SHIFT {
                return Steal::Empty;
            }

            // If head and tail are not in the same block, set `HAS_NEXT` in head.
            if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
                new_head |= HAS_NEXT;
            }
        }

        // Try moving the head index forward.
        if self
            .head
            .index
            .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire)
            .is_err()
        {
            return Steal::Retry;
        }

        unsafe {
            // If we've reached the end of the block, move to the next one.
            if offset + 1 == BLOCK_CAP {
                let next = (*block).wait_next();
                let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
                if !(*next).next.load(Ordering::Relaxed).is_null() {
                    next_index |= HAS_NEXT;
                }

                self.head.block.store(next, Ordering::Release);
                self.head.index.store(next_index, Ordering::Release);
            }

            // Read the task.
            let slot = (*block).slots.get_unchecked(offset);
            slot.wait_write();
            let task = slot.task.get().read().assume_init();

            // Destroy the block if we've reached the end, or if another thread wanted to destroy
            // but couldn't because we were busy reading from the slot.
            if (offset + 1 == BLOCK_CAP)
                || (slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0)
            {
                Block::destroy(block, offset);
            }

            Steal::Success(task)
        }
    }

    /// Steals a batch of tasks and pushes them into a worker.
    ///
    /// How many tasks exactly will be stolen is not specified. That said, this method will try to
    /// steal around half of the tasks in the queue, but also not more than some constant limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::{Injector, Worker};
    ///
    /// let q = Injector::new();
    /// q.push(1);
    /// q.push(2);
    /// q.push(3);
    /// q.push(4);
    ///
    /// let w = Worker::new_fifo();
    /// let _ = q.steal_batch(&w);
    /// assert_eq!(w.pop(), Some(1));
    /// assert_eq!(w.pop(), Some(2));
    /// ```
    pub fn steal_batch(&self, dest: &Worker<T>) -> Steal<()> {
        self.steal_batch_with_limit(dest, MAX_BATCH)
    }

    /// Steals no more than of tasks and pushes them into a worker.
    ///
    /// How many tasks exactly will be stolen is not specified. That said, this method will try to
    /// steal around half of the tasks in the queue, but also not more than some constant limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::{Injector, Worker};
    ///
    /// let q = Injector::new();
    /// q.push(1);
    /// q.push(2);
    /// q.push(3);
    /// q.push(4);
    /// q.push(5);
    /// q.push(6);
    ///
    /// let w = Worker::new_fifo();
    /// let _ = q.steal_batch_with_limit(&w, 2);
    /// assert_eq!(w.pop(), Some(1));
    /// assert_eq!(w.pop(), Some(2));
    /// assert_eq!(w.pop(), None);
    ///
    /// q.push(7);
    /// q.push(8);
    /// // Setting a large limit does not guarantee that all elements will be popped. In this case,
    /// // half of the elements are currently popped, but the number of popped elements is considered
    /// // an implementation detail that may be changed in the future.
    /// let _ = q.steal_batch_with_limit(&w, std::usize::MAX);
    /// assert_eq!(w.len(), 3);
    /// ```
    pub fn steal_batch_with_limit(&self, dest: &Worker<T>, limit: usize) -> Steal<()> {
        assert!(limit > 0);
        let mut head;
        let mut block;
        let mut offset;

        let backoff = Backoff::new();
        loop {
            head = self.head.index.load(Ordering::Acquire);
            block = self.head.block.load(Ordering::Acquire);

            // Calculate the offset of the index into the block.
            offset = (head >> SHIFT) % LAP;

            // If we reached the end of the block, wait until the next one is installed.
            if offset == BLOCK_CAP {
                backoff.snooze();
            } else {
                break;
            }
        }

        let mut new_head = head;
        let advance;

        if new_head & HAS_NEXT == 0 {
            atomic::fence(Ordering::SeqCst);
            let tail = self.tail.index.load(Ordering::Relaxed);

            // If the tail equals the head, that means the queue is empty.
            if head >> SHIFT == tail >> SHIFT {
                return Steal::Empty;
            }

            // If head and tail are not in the same block, set `HAS_NEXT` in head. Also, calculate
            // the right batch size to steal.
            if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
                new_head |= HAS_NEXT;
                // We can steal all tasks till the end of the block.
                advance = (BLOCK_CAP - offset).min(limit);
            } else {
                let len = (tail - head) >> SHIFT;
                // Steal half of the available tasks.
                advance = ((len + 1) / 2).min(limit);
            }
        } else {
            // We can steal all tasks till the end of the block.
            advance = (BLOCK_CAP - offset).min(limit);
        }

        new_head += advance << SHIFT;
        let new_offset = offset + advance;

        // Try moving the head index forward.
        if self
            .head
            .index
            .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire)
            .is_err()
        {
            return Steal::Retry;
        }

        // Reserve capacity for the stolen batch.
        let batch_size = new_offset - offset;
        dest.reserve(batch_size);

        // Get the destination buffer and back index.
        let dest_buffer = dest.buffer.get();
        let dest_b = dest.inner.back.load(Ordering::Relaxed);

        unsafe {
            // If we've reached the end of the block, move to the next one.
            if new_offset == BLOCK_CAP {
                let next = (*block).wait_next();
                let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
                if !(*next).next.load(Ordering::Relaxed).is_null() {
                    next_index |= HAS_NEXT;
                }

                self.head.block.store(next, Ordering::Release);
                self.head.index.store(next_index, Ordering::Release);
            }

            // Copy values from the injector into the destination queue.
            match dest.flavor {
                Flavor::Fifo => {
                    for i in 0..batch_size {
                        // Read the task.
                        let slot = (*block).slots.get_unchecked(offset + i);
                        slot.wait_write();
                        let task = slot.task.get().read();

                        // Write it into the destination queue.
                        dest_buffer.write(dest_b.wrapping_add(i as isize), task);
                    }
                }

                Flavor::Lifo => {
                    for i in 0..batch_size {
                        // Read the task.
                        let slot = (*block).slots.get_unchecked(offset + i);
                        slot.wait_write();
                        let task = slot.task.get().read();

                        // Write it into the destination queue.
                        dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task);
                    }
                }
            }

            atomic::fence(Ordering::Release);

            // Update the back index in the destination queue.
            //
            // This ordering could be `Relaxed`, but then thread sanitizer would falsely report
            // data races because it doesn't understand fences.
            dest.inner
                .back
                .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release);

            // Destroy the block if we've reached the end, or if another thread wanted to destroy
            // but couldn't because we were busy reading from the slot.
            if new_offset == BLOCK_CAP {
                Block::destroy(block, offset);
            } else {
                for i in offset..new_offset {
                    let slot = (*block).slots.get_unchecked(i);

                    if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
                        Block::destroy(block, offset);
                        break;
                    }
                }
            }

            Steal::Success(())
        }
    }

    /// Steals a batch of tasks, pushes them into a worker, and pops a task from that worker.
    ///
    /// How many tasks exactly will be stolen is not specified. That said, this method will try to
    /// steal around half of the tasks in the queue, but also not more than some constant limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::{Injector, Steal, Worker};
    ///
    /// let q = Injector::new();
    /// q.push(1);
    /// q.push(2);
    /// q.push(3);
    /// q.push(4);
    ///
    /// let w = Worker::new_fifo();
    /// assert_eq!(q.steal_batch_and_pop(&w), Steal::Success(1));
    /// assert_eq!(w.pop(), Some(2));
    /// ```
    pub fn steal_batch_and_pop(&self, dest: &Worker<T>) -> Steal<T> {
        // TODO: we use `MAX_BATCH + 1` as the hard limit for Injecter as the performance is slightly
        // better, but we may change it in the future to be compatible with the same method in Stealer.
        self.steal_batch_with_limit_and_pop(dest, MAX_BATCH + 1)
    }

    /// Steals no more than `limit` of tasks, pushes them into a worker, and pops a task from that worker.
    ///
    /// How many tasks exactly will be stolen is not specified. That said, this method will try to
    /// steal around half of the tasks in the queue, but also not more than the given limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::{Injector, Steal, Worker};
    ///
    /// let q = Injector::new();
    /// q.push(1);
    /// q.push(2);
    /// q.push(3);
    /// q.push(4);
    /// q.push(5);
    /// q.push(6);
    ///
    /// let w = Worker::new_fifo();
    /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, 2), Steal::Success(1));
    /// assert_eq!(w.pop(), Some(2));
    /// assert_eq!(w.pop(), None);
    ///
    /// q.push(7);
    /// // Setting a large limit does not guarantee that all elements will be popped. In this case,
    /// // half of the elements are currently popped, but the number of popped elements is considered
    /// // an implementation detail that may be changed in the future.
    /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, std::usize::MAX), Steal::Success(3));
    /// assert_eq!(w.pop(), Some(4));
    /// assert_eq!(w.pop(), Some(5));
    /// assert_eq!(w.pop(), None);
    /// ```
    pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker<T>, limit: usize) -> Steal<T> {
        assert!(limit > 0);
        let mut head;
        let mut block;
        let mut offset;

        let backoff = Backoff::new();
        loop {
            head = self.head.index.load(Ordering::Acquire);
            block = self.head.block.load(Ordering::Acquire);

            // Calculate the offset of the index into the block.
            offset = (head >> SHIFT) % LAP;

            // If we reached the end of the block, wait until the next one is installed.
            if offset == BLOCK_CAP {
                backoff.snooze();
            } else {
                break;
            }
        }

        let mut new_head = head;
        let advance;

        if new_head & HAS_NEXT == 0 {
            atomic::fence(Ordering::SeqCst);
            let tail = self.tail.index.load(Ordering::Relaxed);

            // If the tail equals the head, that means the queue is empty.
            if head >> SHIFT == tail >> SHIFT {
                return Steal::Empty;
            }

            // If head and tail are not in the same block, set `HAS_NEXT` in head.
            if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
                new_head |= HAS_NEXT;
                // We can steal all tasks till the end of the block.
                advance = (BLOCK_CAP - offset).min(limit);
            } else {
                let len = (tail - head) >> SHIFT;
                // Steal half of the available tasks.
                advance = ((len + 1) / 2).min(limit);
            }
        } else {
            // We can steal all tasks till the end of the block.
            advance = (BLOCK_CAP - offset).min(limit);
        }

        new_head += advance << SHIFT;
        let new_offset = offset + advance;

        // Try moving the head index forward.
        if self
            .head
            .index
            .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire)
            .is_err()
        {
            return Steal::Retry;
        }

        // Reserve capacity for the stolen batch.
        let batch_size = new_offset - offset - 1;
        dest.reserve(batch_size);

        // Get the destination buffer and back index.
        let dest_buffer = dest.buffer.get();
        let dest_b = dest.inner.back.load(Ordering::Relaxed);

        unsafe {
            // If we've reached the end of the block, move to the next one.
            if new_offset == BLOCK_CAP {
                let next = (*block).wait_next();
                let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
                if !(*next).next.load(Ordering::Relaxed).is_null() {
                    next_index |= HAS_NEXT;
                }

                self.head.block.store(next, Ordering::Release);
                self.head.index.store(next_index, Ordering::Release);
            }

            // Read the task.
            let slot = (*block).slots.get_unchecked(offset);
            slot.wait_write();
            let task = slot.task.get().read();

            match dest.flavor {
                Flavor::Fifo => {
                    // Copy values from the injector into the destination queue.
                    for i in 0..batch_size {
                        // Read the task.
                        let slot = (*block).slots.get_unchecked(offset + i + 1);
                        slot.wait_write();
                        let task = slot.task.get().read();

                        // Write it into the destination queue.
                        dest_buffer.write(dest_b.wrapping_add(i as isize), task);
                    }
                }

                Flavor::Lifo => {
                    // Copy values from the injector into the destination queue.
                    for i in 0..batch_size {
                        // Read the task.
                        let slot = (*block).slots.get_unchecked(offset + i + 1);
                        slot.wait_write();
                        let task = slot.task.get().read();

                        // Write it into the destination queue.
                        dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task);
                    }
                }
            }

            atomic::fence(Ordering::Release);

            // Update the back index in the destination queue.
            //
            // This ordering could be `Relaxed`, but then thread sanitizer would falsely report
            // data races because it doesn't understand fences.
            dest.inner
                .back
                .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release);

            // Destroy the block if we've reached the end, or if another thread wanted to destroy
            // but couldn't because we were busy reading from the slot.
            if new_offset == BLOCK_CAP {
                Block::destroy(block, offset);
            } else {
                for i in offset..new_offset {
                    let slot = (*block).slots.get_unchecked(i);

                    if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
                        Block::destroy(block, offset);
                        break;
                    }
                }
            }

            Steal::Success(task.assume_init())
        }
    }

    /// Returns `true` if the queue is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::Injector;
    ///
    /// let q = Injector::new();
    ///
    /// assert!(q.is_empty());
    /// q.push(1);
    /// assert!(!q.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        let head = self.head.index.load(Ordering::SeqCst);
        let tail = self.tail.index.load(Ordering::SeqCst);
        head >> SHIFT == tail >> SHIFT
    }

    /// Returns the number of tasks in the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::Injector;
    ///
    /// let q = Injector::new();
    ///
    /// assert_eq!(q.len(), 0);
    /// q.push(1);
    /// assert_eq!(q.len(), 1);
    /// q.push(1);
    /// assert_eq!(q.len(), 2);
    /// ```
    pub fn len(&self) -> usize {
        loop {
            // Load the tail index, then load the head index.
            let mut tail = self.tail.index.load(Ordering::SeqCst);
            let mut head = self.head.index.load(Ordering::SeqCst);

            // If the tail index didn't change, we've got consistent indices to work with.
            if self.tail.index.load(Ordering::SeqCst) == tail {
                // Erase the lower bits.
                tail &= !((1 << SHIFT) - 1);
                head &= !((1 << SHIFT) - 1);

                // Fix up indices if they fall onto block ends.
                if (tail >> SHIFT) & (LAP - 1) == LAP - 1 {
                    tail = tail.wrapping_add(1 << SHIFT);
                }
                if (head >> SHIFT) & (LAP - 1) == LAP - 1 {
                    head = head.wrapping_add(1 << SHIFT);
                }

                // Rotate indices so that head falls into the first block.
                let lap = (head >> SHIFT) / LAP;
                tail = tail.wrapping_sub((lap * LAP) << SHIFT);
                head = head.wrapping_sub((lap * LAP) << SHIFT);

                // Remove the lower bits.
                tail >>= SHIFT;
                head >>= SHIFT;

                // Return the difference minus the number of blocks between tail and head.
                return tail - head - tail / LAP;
            }
        }
    }
}

impl<T> Drop for Injector<T> {
    fn drop(&mut self) {
        let mut head = *self.head.index.get_mut();
        let mut tail = *self.tail.index.get_mut();
        let mut block = *self.head.block.get_mut();

        // Erase the lower bits.
        head &= !((1 << SHIFT) - 1);
        tail &= !((1 << SHIFT) - 1);

        unsafe {
            // Drop all values between `head` and `tail` and deallocate the heap-allocated blocks.
            while head != tail {
                let offset = (head >> SHIFT) % LAP;

                if offset < BLOCK_CAP {
                    // Drop the task in the slot.
                    let slot = (*block).slots.get_unchecked(offset);
                    (*slot.task.get()).assume_init_drop();
                } else {
                    // Deallocate the block and move to the next one.
                    let next = *(*block).next.get_mut();
                    drop(Box::from_raw(block));
                    block = next;
                }

                head = head.wrapping_add(1 << SHIFT);
            }

            // Deallocate the last remaining block.
            drop(Box::from_raw(block));
        }
    }
}

impl<T> fmt::Debug for Injector<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("Worker { .. }")
    }
}

/// Possible outcomes of a steal operation.
///
/// # Examples
///
/// There are lots of ways to chain results of steal operations together:
///
/// ```
/// use crossbeam_deque::Steal::{self, Empty, Retry, Success};
///
/// let collect = |v: Vec<Steal<i32>>| v.into_iter().collect::<Steal<i32>>();
///
/// assert_eq!(collect(vec![Empty, Empty, Empty]), Empty);
/// assert_eq!(collect(vec![Empty, Retry, Empty]), Retry);
/// assert_eq!(collect(vec![Retry, Success(1), Empty]), Success(1));
///
/// assert_eq!(collect(vec![Empty, Empty]).or_else(|| Retry), Retry);
/// assert_eq!(collect(vec![Retry, Empty]).or_else(|| Success(1)), Success(1));
/// ```
#[must_use]
#[derive(PartialEq, Eq, Copy, Clone)]
pub enum Steal<T> {
    /// The queue was empty at the time of stealing.
    Empty,

    /// At least one task was successfully stolen.
    Success(T),

    /// The steal operation needs to be retried.
    Retry,
}

impl<T> Steal<T> {
    /// Returns `true` if the queue was empty at the time of stealing.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::Steal::{Empty, Retry, Success};
    ///
    /// assert!(!Success(7).is_empty());
    /// assert!(!Retry::<i32>.is_empty());
    ///
    /// assert!(Empty::<i32>.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        match self {
            Steal::Empty => true,
            _ => false,
        }
    }

    /// Returns `true` if at least one task was stolen.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::Steal::{Empty, Retry, Success};
    ///
    /// assert!(!Empty::<i32>.is_success());
    /// assert!(!Retry::<i32>.is_success());
    ///
    /// assert!(Success(7).is_success());
    /// ```
    pub fn is_success(&self) -> bool {
        match self {
            Steal::Success(_) => true,
            _ => false,
        }
    }

    /// Returns `true` if the steal operation needs to be retried.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::Steal::{Empty, Retry, Success};
    ///
    /// assert!(!Empty::<i32>.is_retry());
    /// assert!(!Success(7).is_retry());
    ///
    /// assert!(Retry::<i32>.is_retry());
    /// ```
    pub fn is_retry(&self) -> bool {
        match self {
            Steal::Retry => true,
            _ => false,
        }
    }

    /// Returns the result of the operation, if successful.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::Steal::{Empty, Retry, Success};
    ///
    /// assert_eq!(Empty::<i32>.success(), None);
    /// assert_eq!(Retry::<i32>.success(), None);
    ///
    /// assert_eq!(Success(7).success(), Some(7));
    /// ```
    pub fn success(self) -> Option<T> {
        match self {
            Steal::Success(res) => Some(res),
            _ => None,
        }
    }

    /// If no task was stolen, attempts another steal operation.
    ///
    /// Returns this steal result if it is `Success`. Otherwise, closure `f` is invoked and then:
    ///
    /// * If the second steal resulted in `Success`, it is returned.
    /// * If both steals were unsuccessful but any resulted in `Retry`, then `Retry` is returned.
    /// * If both resulted in `None`, then `None` is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_deque::Steal::{Empty, Retry, Success};
    ///
    /// assert_eq!(Success(1).or_else(|| Success(2)), Success(1));
    /// assert_eq!(Retry.or_else(|| Success(2)), Success(2));
    ///
    /// assert_eq!(Retry.or_else(|| Empty), Retry::<i32>);
    /// assert_eq!(Empty.or_else(|| Retry), Retry::<i32>);
    ///
    /// assert_eq!(Empty.or_else(|| Empty), Empty::<i32>);
    /// ```
    pub fn or_else<F>(self, f: F) -> Steal<T>
    where
        F: FnOnce() -> Steal<T>,
    {
        match self {
            Steal::Empty => f(),
            Steal::Success(_) => self,
            Steal::Retry => {
                if let Steal::Success(res) = f() {
                    Steal::Success(res)
                } else {
                    Steal::Retry
                }
            }
        }
    }
}

impl<T> fmt::Debug for Steal<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Steal::Empty => f.pad("Empty"),
            Steal::Success(_) => f.pad("Success(..)"),
            Steal::Retry => f.pad("Retry"),
        }
    }
}

impl<T> FromIterator<Steal<T>> for Steal<T> {
    /// Consumes items until a `Success` is found and returns it.
    ///
    /// If no `Success` was found, but there was at least one `Retry`, then returns `Retry`.
    /// Otherwise, `Empty` is returned.
    fn from_iter<I>(iter: I) -> Steal<T>
    where
        I: IntoIterator<Item = Steal<T>>,
    {
        let mut retry = false;
        for s in iter {
            match &s {
                Steal::Empty => {}
                Steal::Success(_) => return s,
                Steal::Retry => retry = true,
            }
        }

        if retry {
            Steal::Retry
        } else {
            Steal::Empty
        }
    }
}