enumflags2/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
//! # Enum Flags
//! `enumflags2` implements the classic bitflags datastructure. Annotate an enum
//! with `#[bitflags]`, and `BitFlags<YourEnum>` will be able to hold arbitrary combinations
//! of your enum within the space of a single integer.
//!
//! ## Example
//! ```
//! use enumflags2::{bitflags, make_bitflags, BitFlags};
//!
//! #[bitflags]
//! #[repr(u8)]
//! #[derive(Copy, Clone, Debug, PartialEq)]
//! enum Test {
//! A = 0b0001,
//! B = 0b0010,
//! C, // unspecified variants pick unused bits automatically
//! D = 0b1000,
//! }
//!
//! // Flags can be combined with |, this creates a BitFlags of your type:
//! let a_b: BitFlags<Test> = Test::A | Test::B;
//! let a_c = Test::A | Test::C;
//! let b_c_d = make_bitflags!(Test::{B | C | D});
//!
//! // The debug output lets you inspect both the numeric value and
//! // the actual flags:
//! assert_eq!(format!("{:?}", a_b), "BitFlags<Test>(0b11, A | B)");
//!
//! // But if you'd rather see only one of those, that's available too:
//! assert_eq!(format!("{}", a_b), "A | B");
//! assert_eq!(format!("{:04b}", a_b), "0011");
//!
//! // Iterate over the flags like a normal set
//! assert_eq!(a_b.iter().collect::<Vec<_>>(), &[Test::A, Test::B]);
//!
//! // Query the contents with contains and intersects
//! assert!(a_b.contains(Test::A));
//! assert!(b_c_d.contains(Test::B | Test::C));
//! assert!(!(b_c_d.contains(a_b)));
//!
//! assert!(a_b.intersects(a_c));
//! assert!(!(a_b.intersects(Test::C | Test::D)));
//! ```
//!
//! ## Optional Feature Flags
//!
//! - [`serde`](https://serde.rs/) implements `Serialize` and `Deserialize`
//! for `BitFlags<T>`.
//! - `std` implements `std::error::Error` for `FromBitsError`.
//!
//! ## `const fn`-compatible APIs
//!
//! **Background:** The subset of `const fn` features currently stabilized is pretty limited.
//! Most notably, [const traits are still at the RFC stage][const-trait-rfc],
//! which makes it impossible to use any overloaded operators in a const
//! context.
//!
//! **Naming convention:** If a separate, more limited function is provided
//! for usage in a `const fn`, the name is suffixed with `_c`.
//!
//! **Blanket implementations:** If you attempt to write a `const fn` ranging
//! over `T: BitFlag`, you will be met with an error explaining that currently,
//! the only allowed trait bound for a `const fn` is `?Sized`. You will probably
//! want to write a separate implementation for `BitFlags<T, u8>`,
//! `BitFlags<T, u16>`, etc — best accomplished by a simple macro.
//!
//! **Documentation considerations:** The strategy described above is often used
//! by `enumflags2` itself. To avoid clutter in the auto-generated documentation,
//! the implementations for widths other than `u8` are marked with `#[doc(hidden)]`.
//!
//! ## Customizing `Default`
//!
//! By default, creating an instance of `BitFlags<T>` with `Default` will result in an empty
//! set. If that's undesirable, you may customize this:
//!
//! ```
//! # use enumflags2::{BitFlags, bitflags};
//! #[bitflags(default = B | C)]
//! #[repr(u8)]
//! #[derive(Copy, Clone, Debug, PartialEq)]
//! enum Test {
//! A = 0b0001,
//! B = 0b0010,
//! C = 0b0100,
//! D = 0b1000,
//! }
//!
//! assert_eq!(BitFlags::default(), Test::B | Test::C);
//! ```
//!
//! [const-trait-rfc]: https://github.com/rust-lang/rfcs/pull/2632
#![warn(missing_docs)]
#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
use core::hash::{Hash, Hasher};
use core::marker::PhantomData;
use core::{cmp, ops};
#[allow(unused_imports)]
#[macro_use]
extern crate enumflags2_derive;
#[doc(hidden)]
pub use enumflags2_derive::bitflags_internal as bitflags;
// Internal macro: expand into a separate copy for each supported numeric type.
macro_rules! for_each_uint {
( $d:tt $tyvar:ident $dd:tt $docattr:ident => $($input:tt)* ) => {
macro_rules! implement {
( $d $tyvar:ty => $d($d $docattr:meta)? ) => {
$($input)*
}
}
implement! { u8 => }
implement! { u16 => doc(hidden) }
implement! { u32 => doc(hidden) }
implement! { u64 => doc(hidden) }
implement! { u128 => doc(hidden) }
}
}
/// A trait automatically implemented by `#[bitflags]` to make the enum
/// a valid type parameter for `BitFlags<T>`.
pub trait BitFlag: Copy + Clone + 'static + _internal::RawBitFlags {
/// Create a `BitFlags` with no flags set (in other words, with a value of 0).
///
/// This is a convenience reexport of [`BitFlags::empty`]. It can be called with
/// `MyFlag::empty()`, thus bypassing the need for type hints in some situations.
///
/// ```
/// # use enumflags2::{bitflags, BitFlags};
/// #[bitflags]
/// #[repr(u8)]
/// #[derive(Clone, Copy, PartialEq, Eq)]
/// enum MyFlag {
/// One = 1 << 0,
/// Two = 1 << 1,
/// Three = 1 << 2,
/// }
///
/// use enumflags2::BitFlag;
///
/// let empty = MyFlag::empty();
/// assert!(empty.is_empty());
/// assert_eq!(empty.contains(MyFlag::One), false);
/// assert_eq!(empty.contains(MyFlag::Two), false);
/// assert_eq!(empty.contains(MyFlag::Three), false);
/// ```
#[inline]
fn empty() -> BitFlags<Self> {
BitFlags::empty()
}
/// Create a `BitFlags` with all flags set.
///
/// This is a convenience reexport of [`BitFlags::all`]. It can be called with
/// `MyFlag::all()`, thus bypassing the need for type hints in some situations.
///
/// ```
/// # use enumflags2::{bitflags, BitFlags};
/// #[bitflags]
/// #[repr(u8)]
/// #[derive(Clone, Copy, PartialEq, Eq)]
/// enum MyFlag {
/// One = 1 << 0,
/// Two = 1 << 1,
/// Three = 1 << 2,
/// }
///
/// use enumflags2::BitFlag;
///
/// let all = MyFlag::all();
/// assert!(all.is_all());
/// assert_eq!(all.contains(MyFlag::One), true);
/// assert_eq!(all.contains(MyFlag::Two), true);
/// assert_eq!(all.contains(MyFlag::Three), true);
/// ```
#[inline]
fn all() -> BitFlags<Self> {
BitFlags::all()
}
/// Create a `BitFlags` if the raw value provided does not contain
/// any illegal flags.
///
/// This is a convenience reexport of [`BitFlags::from_bits`]. It can be called
/// with `MyFlag::from_bits(bits)`, thus bypassing the need for type hints in
/// some situations.
///
/// ```
/// # use enumflags2::{bitflags, BitFlags};
/// #[bitflags]
/// #[repr(u8)]
/// #[derive(Clone, Copy, PartialEq, Eq, Debug)]
/// enum MyFlag {
/// One = 1 << 0,
/// Two = 1 << 1,
/// Three = 1 << 2,
/// }
///
/// use enumflags2::BitFlag;
///
/// let flags = MyFlag::from_bits(0b11).unwrap();
/// assert_eq!(flags.contains(MyFlag::One), true);
/// assert_eq!(flags.contains(MyFlag::Two), true);
/// assert_eq!(flags.contains(MyFlag::Three), false);
/// let invalid = MyFlag::from_bits(1 << 3);
/// assert!(invalid.is_err());
/// ```
#[inline]
fn from_bits(bits: Self::Numeric) -> Result<BitFlags<Self>, FromBitsError<Self>> {
BitFlags::from_bits(bits)
}
/// Create a `BitFlags` from an underlying bitwise value. If any
/// invalid bits are set, ignore them.
///
/// This is a convenience reexport of [`BitFlags::from_bits_truncate`]. It can be
/// called with `MyFlag::from_bits_truncate(bits)`, thus bypassing the need for
/// type hints in some situations.
///
/// ```
/// # use enumflags2::{bitflags, BitFlags};
/// #[bitflags]
/// #[repr(u8)]
/// #[derive(Clone, Copy, PartialEq, Eq)]
/// enum MyFlag {
/// One = 1 << 0,
/// Two = 1 << 1,
/// Three = 1 << 2,
/// }
///
/// use enumflags2::BitFlag;
///
/// let flags = MyFlag::from_bits_truncate(0b1_1011);
/// assert_eq!(flags.contains(MyFlag::One), true);
/// assert_eq!(flags.contains(MyFlag::Two), true);
/// assert_eq!(flags.contains(MyFlag::Three), false);
/// ```
#[inline]
fn from_bits_truncate(bits: Self::Numeric) -> BitFlags<Self> {
BitFlags::from_bits_truncate(bits)
}
/// Create a `BitFlags` unsafely, without checking if the bits form
/// a valid bit pattern for the type.
///
/// Consider using [`from_bits`][BitFlag::from_bits]
/// or [`from_bits_truncate`][BitFlag::from_bits_truncate] instead.
///
/// # Safety
///
/// All bits set in `val` must correspond to a value of the enum.
///
/// # Example
///
/// This is a convenience reexport of [`BitFlags::from_bits_unchecked`]. It can be
/// called with `MyFlag::from_bits_unchecked(bits)`, thus bypassing the need for
/// type hints in some situations.
///
/// ```
/// # use enumflags2::{bitflags, BitFlags};
/// #[bitflags]
/// #[repr(u8)]
/// #[derive(Clone, Copy, PartialEq, Eq)]
/// enum MyFlag {
/// One = 1 << 0,
/// Two = 1 << 1,
/// Three = 1 << 2,
/// }
///
/// use enumflags2::BitFlag;
///
/// let flags = unsafe {
/// MyFlag::from_bits_unchecked(0b011)
/// };
///
/// assert_eq!(flags.contains(MyFlag::One), true);
/// assert_eq!(flags.contains(MyFlag::Two), true);
/// assert_eq!(flags.contains(MyFlag::Three), false);
/// ```
#[inline]
unsafe fn from_bits_unchecked(bits: Self::Numeric) -> BitFlags<Self> {
BitFlags::from_bits_unchecked(bits)
}
}
/// While the module is public, this is only the case because it needs to be
/// accessed by the macro. Do not use this directly. Stability guarantees
/// don't apply.
#[doc(hidden)]
pub mod _internal {
/// A trait automatically implemented by `#[bitflags]` to make the enum
/// a valid type parameter for `BitFlags<T>`.
///
/// # Safety
///
/// The values should reflect reality, like they do if the implementation
/// is generated by the procmacro.
pub unsafe trait RawBitFlags: Copy + Clone + 'static {
/// The underlying integer type.
type Numeric: BitFlagNum;
/// A value with no bits set.
const EMPTY: Self::Numeric;
/// The value used by the Default implementation. Equivalent to EMPTY, unless
/// customized.
const DEFAULT: Self::Numeric;
/// A value with all flag bits set.
const ALL_BITS: Self::Numeric;
/// The name of the type for debug formatting purposes.
///
/// This is typically `BitFlags<EnumName>`
const BITFLAGS_TYPE_NAME: &'static str;
/// Return the bits as a number type.
fn bits(self) -> Self::Numeric;
}
use ::core::fmt;
use ::core::ops::{BitAnd, BitOr, BitXor, Not, Sub};
use ::core::hash::Hash;
pub trait BitFlagNum:
Default
+ BitOr<Self, Output = Self>
+ BitAnd<Self, Output = Self>
+ BitXor<Self, Output = Self>
+ Sub<Self, Output = Self>
+ Not<Output = Self>
+ PartialOrd<Self>
+ Ord
+ Hash
+ fmt::Debug
+ fmt::Binary
+ Copy
+ Clone
{
const ONE: Self;
fn is_power_of_two(self) -> bool;
fn count_ones(self) -> u32;
fn wrapping_neg(self) -> Self;
}
for_each_uint! { $ty $hide_docs =>
impl BitFlagNum for $ty {
const ONE: Self = 1;
fn is_power_of_two(self) -> bool {
<$ty>::is_power_of_two(self)
}
fn count_ones(self) -> u32 {
<$ty>::count_ones(self)
}
fn wrapping_neg(self) -> Self {
<$ty>::wrapping_neg(self)
}
}
}
// Re-export libcore so the macro doesn't inject "extern crate" downstream.
pub mod core {
pub use core::{convert, ops, option};
}
pub struct AssertionSucceeded;
pub struct AssertionFailed;
pub trait ExactlyOneBitSet {
type X;
}
impl ExactlyOneBitSet for AssertionSucceeded {
type X = ();
}
pub trait AssertionHelper {
type Status;
}
impl AssertionHelper for [(); 1] {
type Status = AssertionSucceeded;
}
impl AssertionHelper for [(); 0] {
type Status = AssertionFailed;
}
pub const fn next_bit(x: u128) -> u128 {
1 << x.trailing_ones()
}
}
use _internal::BitFlagNum;
// Internal debug formatting implementations
mod formatting;
// impl TryFrom<T::Numeric> for BitFlags<T>
mod fallible;
pub use crate::fallible::FromBitsError;
mod iter;
pub use crate::iter::Iter;
mod const_api;
pub use crate::const_api::ConstToken;
/// Represents a set of flags of some type `T`.
/// `T` must have the `#[bitflags]` attribute applied.
///
/// A `BitFlags<T>` is as large as the `T` itself,
/// and stores one flag per bit.
///
/// ## Comparison operators, [`PartialOrd`] and [`Ord`]
///
/// To make it possible to use `BitFlags` as the key of a
/// [`BTreeMap`][std::collections::BTreeMap], `BitFlags` implements
/// [`Ord`]. There is no meaningful total order for bitflags,
/// so the implementation simply compares the integer values of the bits.
///
/// Unfortunately, this means that comparing `BitFlags` with an operator
/// like `<=` will compile, and return values that are probably useless
/// and not what you expect. In particular, `<=` does *not* check whether
/// one value is a subset of the other. Use [`BitFlags::contains`] for that.
///
/// ## Customizing `Default`
///
/// By default, creating an instance of `BitFlags<T>` with `Default` will result
/// in an empty set. If that's undesirable, you may customize this:
///
/// ```
/// # use enumflags2::{BitFlags, bitflags};
/// #[bitflags(default = B | C)]
/// #[repr(u8)]
/// #[derive(Copy, Clone, Debug, PartialEq)]
/// enum MyFlag {
/// A = 0b0001,
/// B = 0b0010,
/// C = 0b0100,
/// D = 0b1000,
/// }
///
/// assert_eq!(BitFlags::default(), MyFlag::B | MyFlag::C);
/// ```
///
/// ## Memory layout
///
/// `BitFlags<T>` is marked with the `#[repr(transparent)]` trait, meaning
/// it can be safely transmuted into the corresponding numeric type.
///
/// Usually, the same can be achieved by using [`BitFlags::bits`] in one
/// direction, and [`BitFlags::from_bits`], [`BitFlags::from_bits_truncate`],
/// or [`BitFlags::from_bits_unchecked`] in the other direction. However,
/// transmuting might still be useful if, for example, you're dealing with
/// an entire array of `BitFlags`.
///
/// When transmuting *into* a `BitFlags`, make sure that each set bit
/// corresponds to an existing flag
/// (cf. [`from_bits_unchecked`][BitFlags::from_bits_unchecked]).
///
/// For example:
///
/// ```
/// # use enumflags2::{BitFlags, bitflags};
/// #[bitflags]
/// #[repr(u8)] // <-- the repr determines the numeric type
/// #[derive(Copy, Clone)]
/// enum TransmuteMe {
/// One = 1 << 0,
/// Two = 1 << 1,
/// }
///
/// # use std::slice;
/// // NOTE: we use a small, self-contained function to handle the slice
/// // conversion to make sure the lifetimes are right.
/// fn transmute_slice<'a>(input: &'a [BitFlags<TransmuteMe>]) -> &'a [u8] {
/// unsafe {
/// slice::from_raw_parts(input.as_ptr() as *const u8, input.len())
/// }
/// }
///
/// let many_flags = &[
/// TransmuteMe::One.into(),
/// TransmuteMe::One | TransmuteMe::Two,
/// ];
///
/// let as_nums = transmute_slice(many_flags);
/// assert_eq!(as_nums, &[0b01, 0b11]);
/// ```
///
/// ## Implementation notes
///
/// You might expect this struct to be defined as
///
/// ```ignore
/// struct BitFlags<T: BitFlag> {
/// value: T::Numeric
/// }
/// ```
///
/// Ideally, that would be the case. However, because `const fn`s cannot
/// have trait bounds in current Rust, this would prevent us from providing
/// most `const fn` APIs. As a workaround, we define `BitFlags` with two
/// type parameters, with a default for the second one:
///
/// ```ignore
/// struct BitFlags<T, N = <T as BitFlag>::Numeric> {
/// value: N,
/// marker: PhantomData<T>,
/// }
/// ```
///
/// Manually providing a type for the `N` type parameter shouldn't ever
/// be necessary.
///
/// The types substituted for `T` and `N` must always match, creating a
/// `BitFlags` value where that isn't the case is only possible with
/// incorrect unsafe code.
#[derive(Copy, Clone)]
#[repr(transparent)]
pub struct BitFlags<T, N = <T as _internal::RawBitFlags>::Numeric> {
val: N,
marker: PhantomData<T>,
}
/// `make_bitflags!` provides a succint syntax for creating instances of
/// `BitFlags<T>`. Instead of repeating the name of your type for each flag
/// you want to add, try `make_bitflags!(Flags::{Foo | Bar})`.
/// ```
/// use enumflags2::{bitflags, make_bitflags};
/// #[bitflags]
/// #[repr(u8)]
/// #[derive(Clone, Copy, Debug)]
/// enum Test {
/// A = 1 << 0,
/// B = 1 << 1,
/// C = 1 << 2,
/// }
/// let x = make_bitflags!(Test::{A | C});
/// assert_eq!(x, Test::A | Test::C);
/// ```
#[macro_export]
macro_rules! make_bitflags {
( $enum:ident ::{ $($variant:ident)|* } ) => {
{
let mut n = 0;
$(
{
let flag: $enum = $enum::$variant;
n |= flag as <$enum as $crate::_internal::RawBitFlags>::Numeric;
}
)*
// SAFETY: The value has been created from numeric values of the underlying
// enum, so only valid bits are set.
unsafe { $crate::BitFlags::<$enum>::from_bits_unchecked_c(
n, $crate::BitFlags::CONST_TOKEN) }
}
}
}
/// The default value returned is one with all flags unset, i. e. [`empty`][Self::empty],
/// unless [customized](index.html#customizing-default).
impl<T> Default for BitFlags<T>
where
T: BitFlag,
{
#[inline(always)]
fn default() -> Self {
BitFlags {
val: T::DEFAULT,
marker: PhantomData,
}
}
}
impl<T: BitFlag> From<T> for BitFlags<T> {
#[inline(always)]
fn from(t: T) -> BitFlags<T> {
Self::from_flag(t)
}
}
impl<T> BitFlags<T>
where
T: BitFlag,
{
/// Create a `BitFlags` if the raw value provided does not contain
/// any illegal flags.
///
/// See also: [a convenience re-export in the `BitFlag` trait][BitFlag::from_bits],
/// which can help avoid the need for type hints.
///
/// ```
/// # use enumflags2::{bitflags, BitFlags};
/// #[bitflags]
/// #[repr(u8)]
/// #[derive(Clone, Copy, PartialEq, Eq, Debug)]
/// enum MyFlag {
/// One = 1 << 0,
/// Two = 1 << 1,
/// Three = 1 << 2,
/// }
///
/// let flags: BitFlags<MyFlag> = BitFlags::from_bits(0b11).unwrap();
/// assert_eq!(flags.contains(MyFlag::One), true);
/// assert_eq!(flags.contains(MyFlag::Two), true);
/// assert_eq!(flags.contains(MyFlag::Three), false);
/// let invalid = BitFlags::<MyFlag>::from_bits(1 << 3);
/// assert!(invalid.is_err());
/// ```
#[inline]
pub fn from_bits(bits: T::Numeric) -> Result<Self, FromBitsError<T>> {
let flags = Self::from_bits_truncate(bits);
if flags.bits() == bits {
Ok(flags)
} else {
Err(FromBitsError {
flags,
invalid: bits & !flags.bits(),
})
}
}
/// Create a `BitFlags` from an underlying bitwise value. If any
/// invalid bits are set, ignore them.
///
/// See also: [a convenience re-export in the `BitFlag` trait][BitFlag::from_bits_truncate],
/// which can help avoid the need for type hints.
///
/// ```
/// # use enumflags2::{bitflags, BitFlags};
/// #[bitflags]
/// #[repr(u8)]
/// #[derive(Clone, Copy, PartialEq, Eq)]
/// enum MyFlag {
/// One = 1 << 0,
/// Two = 1 << 1,
/// Three = 1 << 2,
/// }
///
/// let flags: BitFlags<MyFlag> = BitFlags::from_bits_truncate(0b1_1011);
/// assert_eq!(flags.contains(MyFlag::One), true);
/// assert_eq!(flags.contains(MyFlag::Two), true);
/// assert_eq!(flags.contains(MyFlag::Three), false);
/// ```
#[must_use]
#[inline(always)]
pub fn from_bits_truncate(bits: T::Numeric) -> Self {
// SAFETY: We're truncating out all the invalid bits, so the remaining
// ones must be valid.
unsafe { BitFlags::from_bits_unchecked(bits & T::ALL_BITS) }
}
/// Create a new BitFlags unsafely, without checking if the bits form
/// a valid bit pattern for the type.
///
/// Consider using [`from_bits`][BitFlags::from_bits]
/// or [`from_bits_truncate`][BitFlags::from_bits_truncate] instead.
///
/// # Safety
///
/// All bits set in `val` must correspond to a value of the enum.
///
/// # Example
///
/// ```
/// # use enumflags2::{bitflags, BitFlags};
/// #[bitflags]
/// #[repr(u8)]
/// #[derive(Clone, Copy, PartialEq, Eq)]
/// enum MyFlag {
/// One = 1 << 0,
/// Two = 1 << 1,
/// Three = 1 << 2,
/// }
///
/// let flags: BitFlags<MyFlag> = unsafe {
/// BitFlags::from_bits_unchecked(0b011)
/// };
///
/// assert_eq!(flags.contains(MyFlag::One), true);
/// assert_eq!(flags.contains(MyFlag::Two), true);
/// assert_eq!(flags.contains(MyFlag::Three), false);
/// ```
#[must_use]
#[inline(always)]
pub unsafe fn from_bits_unchecked(val: T::Numeric) -> Self {
BitFlags {
val,
marker: PhantomData,
}
}
/// Turn a `T` into a `BitFlags<T>`. Also available as `flag.into()`.
#[must_use]
#[inline(always)]
pub fn from_flag(flag: T) -> Self {
// SAFETY: A value of the underlying enum is valid by definition.
unsafe { Self::from_bits_unchecked(flag.bits()) }
}
/// Create a `BitFlags` with no flags set (in other words, with a value of `0`).
///
/// See also: [`BitFlag::empty`], a convenience reexport;
/// [`BitFlags::EMPTY`], the same functionality available
/// as a constant for `const fn` code.
///
/// ```
/// # use enumflags2::{bitflags, BitFlags};
/// #[bitflags]
/// #[repr(u8)]
/// #[derive(Clone, Copy, PartialEq, Eq)]
/// enum MyFlag {
/// One = 1 << 0,
/// Two = 1 << 1,
/// Three = 1 << 2,
/// }
///
/// let empty: BitFlags<MyFlag> = BitFlags::empty();
/// assert!(empty.is_empty());
/// assert_eq!(empty.contains(MyFlag::One), false);
/// assert_eq!(empty.contains(MyFlag::Two), false);
/// assert_eq!(empty.contains(MyFlag::Three), false);
/// ```
#[inline(always)]
pub fn empty() -> Self {
Self::EMPTY
}
/// Create a `BitFlags` with all flags set.
///
/// See also: [`BitFlag::all`], a convenience reexport;
/// [`BitFlags::ALL`], the same functionality available
/// as a constant for `const fn` code.
///
/// ```
/// # use enumflags2::{bitflags, BitFlags};
/// #[bitflags]
/// #[repr(u8)]
/// #[derive(Clone, Copy, PartialEq, Eq)]
/// enum MyFlag {
/// One = 1 << 0,
/// Two = 1 << 1,
/// Three = 1 << 2,
/// }
///
/// let empty: BitFlags<MyFlag> = BitFlags::all();
/// assert!(empty.is_all());
/// assert_eq!(empty.contains(MyFlag::One), true);
/// assert_eq!(empty.contains(MyFlag::Two), true);
/// assert_eq!(empty.contains(MyFlag::Three), true);
/// ```
#[inline(always)]
pub fn all() -> Self {
Self::ALL
}
/// Returns true if all flags are set
#[inline(always)]
pub fn is_all(self) -> bool {
self.val == T::ALL_BITS
}
/// Returns true if no flag is set
#[inline(always)]
pub fn is_empty(self) -> bool {
self.val == T::EMPTY
}
/// Returns the number of flags set.
#[inline(always)]
pub fn len(self) -> usize {
self.val.count_ones() as usize
}
/// If exactly one flag is set, the flag is returned. Otherwise, returns `None`.
///
/// See also [`Itertools::exactly_one`](https://docs.rs/itertools/latest/itertools/trait.Itertools.html#method.exactly_one).
#[inline(always)]
pub fn exactly_one(self) -> Option<T> {
if self.val.is_power_of_two() {
// SAFETY: By the invariant of the BitFlags type, all bits are valid
// in isolation for the underlying enum.
Some(unsafe { core::mem::transmute_copy(&self.val) })
} else {
None
}
}
/// Returns the underlying bitwise value.
///
/// ```
/// # use enumflags2::{bitflags, BitFlags};
/// #[bitflags]
/// #[repr(u8)]
/// #[derive(Clone, Copy)]
/// enum Flags {
/// Foo = 1 << 0,
/// Bar = 1 << 1,
/// }
///
/// let both_flags = Flags::Foo | Flags::Bar;
/// assert_eq!(both_flags.bits(), 0b11);
/// ```
#[inline(always)]
pub fn bits(self) -> T::Numeric {
self.val
}
/// Returns true if at least one flag is shared.
#[inline(always)]
pub fn intersects<B: Into<BitFlags<T>>>(self, other: B) -> bool {
(self.bits() & other.into().bits()) != Self::EMPTY.val
}
/// Returns true if all flags are contained.
#[inline(always)]
pub fn contains<B: Into<BitFlags<T>>>(self, other: B) -> bool {
let other = other.into();
(self.bits() & other.bits()) == other.bits()
}
/// Toggles the matching bits
#[inline(always)]
pub fn toggle<B: Into<BitFlags<T>>>(&mut self, other: B) {
*self ^= other.into();
}
/// Inserts the flags into the BitFlag
#[inline(always)]
pub fn insert<B: Into<BitFlags<T>>>(&mut self, other: B) {
*self |= other.into();
}
/// Removes the matching flags
#[inline(always)]
pub fn remove<B: Into<BitFlags<T>>>(&mut self, other: B) {
*self &= !other.into();
}
/// Inserts if `cond` holds, else removes
///
/// ```
/// # use enumflags2::bitflags;
/// #[bitflags]
/// #[derive(Clone, Copy, PartialEq, Debug)]
/// #[repr(u8)]
/// enum MyFlag {
/// A = 1 << 0,
/// B = 1 << 1,
/// C = 1 << 2,
/// }
///
/// let mut state = MyFlag::A | MyFlag::C;
/// state.set(MyFlag::A | MyFlag::B, false);
///
/// // Because the condition was false, both
/// // `A` and `B` are removed from the set
/// assert_eq!(state, MyFlag::C);
/// ```
#[inline(always)]
pub fn set<B: Into<BitFlags<T>>>(&mut self, other: B, cond: bool) {
if cond {
self.insert(other);
} else {
self.remove(other);
}
}
}
impl<T, N: PartialEq> PartialEq for BitFlags<T, N> {
#[inline(always)]
fn eq(&self, other: &Self) -> bool {
self.val == other.val
}
}
impl<T, N: Eq> Eq for BitFlags<T, N> {}
impl<T, N: PartialOrd> PartialOrd for BitFlags<T, N> {
#[inline(always)]
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
self.val.partial_cmp(&other.val)
}
}
impl<T, N: Ord> Ord for BitFlags<T, N> {
#[inline(always)]
fn cmp(&self, other: &Self) -> cmp::Ordering {
self.val.cmp(&other.val)
}
}
// Clippy complains when Hash is derived while PartialEq is implemented manually
impl<T, N: Hash> Hash for BitFlags<T, N> {
#[inline(always)]
fn hash<H: Hasher>(&self, state: &mut H) {
self.val.hash(state)
}
}
impl<T> cmp::PartialEq<T> for BitFlags<T>
where
T: BitFlag,
{
#[inline(always)]
fn eq(&self, other: &T) -> bool {
self.bits() == Into::<Self>::into(*other).bits()
}
}
impl<T, B> ops::BitOr<B> for BitFlags<T>
where
T: BitFlag,
B: Into<BitFlags<T>>,
{
type Output = BitFlags<T>;
#[inline(always)]
fn bitor(self, other: B) -> BitFlags<T> {
// SAFETY: The two operands are known to be composed of valid bits,
// and 0 | 0 = 0 in the columns of the invalid bits.
unsafe { BitFlags::from_bits_unchecked(self.bits() | other.into().bits()) }
}
}
impl<T, B> ops::BitAnd<B> for BitFlags<T>
where
T: BitFlag,
B: Into<BitFlags<T>>,
{
type Output = BitFlags<T>;
#[inline(always)]
fn bitand(self, other: B) -> BitFlags<T> {
// SAFETY: The two operands are known to be composed of valid bits,
// and 0 & 0 = 0 in the columns of the invalid bits.
unsafe { BitFlags::from_bits_unchecked(self.bits() & other.into().bits()) }
}
}
impl<T, B> ops::BitXor<B> for BitFlags<T>
where
T: BitFlag,
B: Into<BitFlags<T>>,
{
type Output = BitFlags<T>;
#[inline(always)]
fn bitxor(self, other: B) -> BitFlags<T> {
// SAFETY: The two operands are known to be composed of valid bits,
// and 0 ^ 0 = 0 in the columns of the invalid bits.
unsafe { BitFlags::from_bits_unchecked(self.bits() ^ other.into().bits()) }
}
}
impl<T, B> ops::BitOrAssign<B> for BitFlags<T>
where
T: BitFlag,
B: Into<BitFlags<T>>,
{
#[inline(always)]
fn bitor_assign(&mut self, other: B) {
*self = *self | other;
}
}
impl<T, B> ops::BitAndAssign<B> for BitFlags<T>
where
T: BitFlag,
B: Into<BitFlags<T>>,
{
#[inline(always)]
fn bitand_assign(&mut self, other: B) {
*self = *self & other;
}
}
impl<T, B> ops::BitXorAssign<B> for BitFlags<T>
where
T: BitFlag,
B: Into<BitFlags<T>>,
{
#[inline(always)]
fn bitxor_assign(&mut self, other: B) {
*self = *self ^ other;
}
}
impl<T> ops::Not for BitFlags<T>
where
T: BitFlag,
{
type Output = BitFlags<T>;
#[inline(always)]
fn not(self) -> BitFlags<T> {
BitFlags::from_bits_truncate(!self.bits())
}
}
#[cfg(feature = "serde")]
mod impl_serde {
use super::{BitFlag, BitFlags};
use serde::de::{Error, Unexpected};
use serde::{Deserialize, Serialize};
impl<'a, T> Deserialize<'a> for BitFlags<T>
where
T: BitFlag,
T::Numeric: Deserialize<'a> + Into<u64>,
{
fn deserialize<D: serde::Deserializer<'a>>(d: D) -> Result<Self, D::Error> {
let val = T::Numeric::deserialize(d)?;
Self::from_bits(val).map_err(|_| {
D::Error::invalid_value(
Unexpected::Unsigned(val.into()),
&"valid bit representation",
)
})
}
}
impl<T> Serialize for BitFlags<T>
where
T: BitFlag,
T::Numeric: Serialize,
{
fn serialize<S: serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
T::Numeric::serialize(&self.val, s)
}
}
}