1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
//! Notify async tasks or threads.
//!
//! This is a synchronization primitive similar to [eventcounts] invented by Dmitry Vyukov.
//!
//! You can use this crate to turn non-blocking data structures into async or blocking data
//! structures. See a [simple mutex] implementation that exposes an async and a blocking interface
//! for acquiring locks.
//!
//! [eventcounts]: http://www.1024cores.net/home/lock-free-algorithms/eventcounts
//! [simple mutex]: https://github.com/smol-rs/event-listener/blob/master/examples/mutex.rs
//!
//! # Examples
//!
//! Wait until another thread sets a boolean flag:
//!
//! ```
//! use std::sync::atomic::{AtomicBool, Ordering};
//! use std::sync::Arc;
//! use std::thread;
//! use std::time::Duration;
//! use std::usize;
//! use event_listener::Event;
//!
//! let flag = Arc::new(AtomicBool::new(false));
//! let event = Arc::new(Event::new());
//!
//! // Spawn a thread that will set the flag after 1 second.
//! thread::spawn({
//!     let flag = flag.clone();
//!     let event = event.clone();
//!     move || {
//!         // Wait for a second.
//!         thread::sleep(Duration::from_secs(1));
//!
//!         // Set the flag.
//!         flag.store(true, Ordering::SeqCst);
//!
//!         // Notify all listeners that the flag has been set.
//!         event.notify(usize::MAX);
//!     }
//! });
//!
//! // Wait until the flag is set.
//! loop {
//!     // Check the flag.
//!     if flag.load(Ordering::SeqCst) {
//!         break;
//!     }
//!
//!     // Start listening for events.
//!     let listener = event.listen();
//!
//!     // Check the flag again after creating the listener.
//!     if flag.load(Ordering::SeqCst) {
//!         break;
//!     }
//!
//!     // Wait for a notification and continue the loop.
//!     listener.wait();
//! }
//! ```

#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]

use std::cell::{Cell, UnsafeCell};
use std::fmt;
use std::future::Future;
use std::mem::{self, ManuallyDrop};
use std::ops::{Deref, DerefMut};
use std::panic::{RefUnwindSafe, UnwindSafe};
use std::pin::Pin;
use std::ptr::{self, NonNull};
use std::sync::atomic::{self, AtomicPtr, AtomicUsize, Ordering};
use std::sync::{Arc, Mutex, MutexGuard};
use std::task::{Context, Poll, Waker};
use std::thread::{self, Thread};
use std::time::{Duration, Instant};
use std::usize;

/// Inner state of [`Event`].
struct Inner {
    /// The number of notified entries, or `usize::MAX` if all of them have been notified.
    ///
    /// If there are no entries, this value is set to `usize::MAX`.
    notified: AtomicUsize,

    /// A linked list holding registered listeners.
    list: Mutex<List>,

    /// A single cached list entry to avoid allocations on the fast path of the insertion.
    cache: UnsafeCell<Entry>,
}

impl Inner {
    /// Locks the list.
    fn lock(&self) -> ListGuard<'_> {
        ListGuard {
            inner: self,
            guard: self.list.lock().unwrap(),
        }
    }

    /// Returns the pointer to the single cached list entry.
    #[inline(always)]
    fn cache_ptr(&self) -> NonNull<Entry> {
        unsafe { NonNull::new_unchecked(self.cache.get()) }
    }
}

/// A synchronization primitive for notifying async tasks and threads.
///
/// Listeners can be registered using [`Event::listen()`]. There are two ways to notify listeners:
///
/// 1. [`Event::notify()`] notifies a number of listeners.
/// 2. [`Event::notify_additional()`] notifies a number of previously unnotified listeners.
///
/// If there are no active listeners at the time a notification is sent, it simply gets lost.
///
/// There are two ways for a listener to wait for a notification:
///
/// 1. In an asynchronous manner using `.await`.
/// 2. In a blocking manner by calling [`EventListener::wait()`] on it.
///
/// If a notified listener is dropped without receiving a notification, dropping will notify
/// another active listener. Whether one *additional* listener will be notified depends on what
/// kind of notification was delivered.
///
/// Listeners are registered and notified in the first-in first-out fashion, ensuring fairness.
pub struct Event {
    /// A pointer to heap-allocated inner state.
    ///
    /// This pointer is initially null and gets lazily initialized on first use. Semantically, it
    /// is an `Arc<Inner>` so it's important to keep in mind that it contributes to the [`Arc`]'s
    /// reference count.
    inner: AtomicPtr<Inner>,
}

unsafe impl Send for Event {}
unsafe impl Sync for Event {}

impl UnwindSafe for Event {}
impl RefUnwindSafe for Event {}

impl Event {
    /// Creates a new [`Event`].
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// ```
    #[inline]
    pub const fn new() -> Event {
        Event {
            inner: AtomicPtr::new(ptr::null_mut()),
        }
    }

    /// Returns a guard listening for a notification.
    ///
    /// This method emits a `SeqCst` fence after registering a listener.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// let listener = event.listen();
    /// ```
    #[cold]
    pub fn listen(&self) -> EventListener {
        let inner = self.inner();
        let listener = EventListener {
            inner: unsafe { Arc::clone(&ManuallyDrop::new(Arc::from_raw(inner))) },
            entry: unsafe { Some((*inner).lock().insert((*inner).cache_ptr())) },
        };

        // Make sure the listener is registered before whatever happens next.
        full_fence();
        listener
    }

    /// Notifies a number of active listeners.
    ///
    /// The number is allowed to be zero or exceed the current number of listeners.
    ///
    /// In contrast to [`Event::notify_additional()`], this method only makes sure *at least* `n`
    /// listeners among the active ones are notified.
    ///
    /// This method emits a `SeqCst` fence before notifying listeners.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    ///
    /// // This notification gets lost because there are no listeners.
    /// event.notify(1);
    ///
    /// let listener1 = event.listen();
    /// let listener2 = event.listen();
    /// let listener3 = event.listen();
    ///
    /// // Notifies two listeners.
    /// //
    /// // Listener queueing is fair, which means `listener1` and `listener2`
    /// // get notified here since they start listening before `listener3`.
    /// event.notify(2);
    /// ```
    #[inline]
    pub fn notify(&self, n: usize) {
        // Make sure the notification comes after whatever triggered it.
        full_fence();

        if let Some(inner) = self.try_inner() {
            // Notify if there is at least one unnotified listener and the number of notified
            // listeners is less than `n`.
            if inner.notified.load(Ordering::Acquire) < n {
                inner.lock().notify(n);
            }
        }
    }

    /// Notifies a number of active listeners without emitting a `SeqCst` fence.
    ///
    /// The number is allowed to be zero or exceed the current number of listeners.
    ///
    /// In contrast to [`Event::notify_additional()`], this method only makes sure *at least* `n`
    /// listeners among the active ones are notified.
    ///
    /// Unlike [`Event::notify()`], this method does not emit a `SeqCst` fence.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    /// use std::sync::atomic::{self, Ordering};
    ///
    /// let event = Event::new();
    ///
    /// // This notification gets lost because there are no listeners.
    /// event.notify(1);
    ///
    /// let listener1 = event.listen();
    /// let listener2 = event.listen();
    /// let listener3 = event.listen();
    ///
    /// // We should emit a fence manually when using relaxed notifications.
    /// atomic::fence(Ordering::SeqCst);
    ///
    /// // Notifies two listeners.
    /// //
    /// // Listener queueing is fair, which means `listener1` and `listener2`
    /// // get notified here since they start listening before `listener3`.
    /// event.notify(2);
    /// ```
    #[inline]
    pub fn notify_relaxed(&self, n: usize) {
        if let Some(inner) = self.try_inner() {
            // Notify if there is at least one unnotified listener and the number of notified
            // listeners is less than `n`.
            if inner.notified.load(Ordering::Acquire) < n {
                inner.lock().notify(n);
            }
        }
    }

    /// Notifies a number of active and still unnotified listeners.
    ///
    /// The number is allowed to be zero or exceed the current number of listeners.
    ///
    /// In contrast to [`Event::notify()`], this method will notify `n` *additional* listeners that
    /// were previously unnotified.
    ///
    /// This method emits a `SeqCst` fence before notifying listeners.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    ///
    /// // This notification gets lost because there are no listeners.
    /// event.notify(1);
    ///
    /// let listener1 = event.listen();
    /// let listener2 = event.listen();
    /// let listener3 = event.listen();
    ///
    /// // Notifies two listeners.
    /// //
    /// // Listener queueing is fair, which means `listener1` and `listener2`
    /// // get notified here since they start listening before `listener3`.
    /// event.notify_additional(1);
    /// event.notify_additional(1);
    /// ```
    #[inline]
    pub fn notify_additional(&self, n: usize) {
        // Make sure the notification comes after whatever triggered it.
        full_fence();

        if let Some(inner) = self.try_inner() {
            // Notify if there is at least one unnotified listener.
            if inner.notified.load(Ordering::Acquire) < usize::MAX {
                inner.lock().notify_additional(n);
            }
        }
    }

    /// Notifies a number of active and still unnotified listeners without emitting a `SeqCst`
    /// fence.
    ///
    /// The number is allowed to be zero or exceed the current number of listeners.
    ///
    /// In contrast to [`Event::notify()`], this method will notify `n` *additional* listeners that
    /// were previously unnotified.
    ///
    /// Unlike [`Event::notify_additional()`], this method does not emit a `SeqCst` fence.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    /// use std::sync::atomic::{self, Ordering};
    ///
    /// let event = Event::new();
    ///
    /// // This notification gets lost because there are no listeners.
    /// event.notify(1);
    ///
    /// let listener1 = event.listen();
    /// let listener2 = event.listen();
    /// let listener3 = event.listen();
    ///
    /// // We should emit a fence manually when using relaxed notifications.
    /// atomic::fence(Ordering::SeqCst);
    ///
    /// // Notifies two listeners.
    /// //
    /// // Listener queueing is fair, which means `listener1` and `listener2`
    /// // get notified here since they start listening before `listener3`.
    /// event.notify_additional_relaxed(1);
    /// event.notify_additional_relaxed(1);
    /// ```
    #[inline]
    pub fn notify_additional_relaxed(&self, n: usize) {
        if let Some(inner) = self.try_inner() {
            // Notify if there is at least one unnotified listener.
            if inner.notified.load(Ordering::Acquire) < usize::MAX {
                inner.lock().notify_additional(n);
            }
        }
    }

    /// Returns a reference to the inner state if it was initialized.
    #[inline]
    fn try_inner(&self) -> Option<&Inner> {
        let inner = self.inner.load(Ordering::Acquire);
        unsafe { inner.as_ref() }
    }

    /// Returns a raw pointer to the inner state, initializing it if necessary.
    ///
    /// This returns a raw pointer instead of reference because `from_raw`
    /// requires raw/mut provenance: <https://github.com/rust-lang/rust/pull/67339>
    fn inner(&self) -> *const Inner {
        let mut inner = self.inner.load(Ordering::Acquire);

        // Initialize the state if this is its first use.
        if inner.is_null() {
            // Allocate on the heap.
            let new = Arc::new(Inner {
                notified: AtomicUsize::new(usize::MAX),
                list: std::sync::Mutex::new(List {
                    head: None,
                    tail: None,
                    start: None,
                    len: 0,
                    notified: 0,
                    cache_used: false,
                }),
                cache: UnsafeCell::new(Entry {
                    state: Cell::new(State::Created),
                    prev: Cell::new(None),
                    next: Cell::new(None),
                }),
            });
            // Convert the heap-allocated state into a raw pointer.
            let new = Arc::into_raw(new) as *mut Inner;

            // Attempt to replace the null-pointer with the new state pointer.
            inner = self
                .inner
                .compare_exchange(inner, new, Ordering::AcqRel, Ordering::Acquire)
                .unwrap_or_else(|x| x);

            // Check if the old pointer value was indeed null.
            if inner.is_null() {
                // If yes, then use the new state pointer.
                inner = new;
            } else {
                // If not, that means a concurrent operation has initialized the state.
                // In that case, use the old pointer and deallocate the new one.
                unsafe {
                    drop(Arc::from_raw(new));
                }
            }
        }

        inner
    }
}

impl Drop for Event {
    #[inline]
    fn drop(&mut self) {
        let inner: *mut Inner = *self.inner.get_mut();

        // If the state pointer has been initialized, deallocate it.
        if !inner.is_null() {
            unsafe {
                drop(Arc::from_raw(inner));
            }
        }
    }
}

impl fmt::Debug for Event {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("Event { .. }")
    }
}

impl Default for Event {
    fn default() -> Event {
        Event::new()
    }
}

/// A guard waiting for a notification from an [`Event`].
///
/// There are two ways for a listener to wait for a notification:
///
/// 1. In an asynchronous manner using `.await`.
/// 2. In a blocking manner by calling [`EventListener::wait()`] on it.
///
/// If a notified listener is dropped without receiving a notification, dropping will notify
/// another active listener. Whether one *additional* listener will be notified depends on what
/// kind of notification was delivered.
pub struct EventListener {
    /// A reference to [`Event`]'s inner state.
    inner: Arc<Inner>,

    /// A pointer to this listener's entry in the linked list.
    entry: Option<NonNull<Entry>>,
}

unsafe impl Send for EventListener {}
unsafe impl Sync for EventListener {}

impl UnwindSafe for EventListener {}
impl RefUnwindSafe for EventListener {}

impl EventListener {
    /// Blocks until a notification is received.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// let listener = event.listen();
    ///
    /// // Notify `listener`.
    /// event.notify(1);
    ///
    /// // Receive the notification.
    /// listener.wait();
    /// ```
    pub fn wait(self) {
        self.wait_internal(None);
    }

    /// Blocks until a notification is received or a timeout is reached.
    ///
    /// Returns `true` if a notification was received.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// let listener = event.listen();
    ///
    /// // There are no notification so this times out.
    /// assert!(!listener.wait_timeout(Duration::from_secs(1)));
    /// ```
    pub fn wait_timeout(self, timeout: Duration) -> bool {
        self.wait_internal(Some(Instant::now() + timeout))
    }

    /// Blocks until a notification is received or a deadline is reached.
    ///
    /// Returns `true` if a notification was received.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::{Duration, Instant};
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// let listener = event.listen();
    ///
    /// // There are no notification so this times out.
    /// assert!(!listener.wait_deadline(Instant::now() + Duration::from_secs(1)));
    /// ```
    pub fn wait_deadline(self, deadline: Instant) -> bool {
        self.wait_internal(Some(deadline))
    }

    /// Drops this listener and discards its notification (if any) without notifying another
    /// active listener.
    ///
    /// Returns `true` if a notification was discarded.
    ///
    /// # Examples
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// let listener1 = event.listen();
    /// let listener2 = event.listen();
    ///
    /// event.notify(1);
    ///
    /// assert!(listener1.discard());
    /// assert!(!listener2.discard());
    /// ```
    pub fn discard(mut self) -> bool {
        // If this listener has never picked up a notification...
        if let Some(entry) = self.entry.take() {
            let mut list = self.inner.lock();
            // Remove the listener from the list and return `true` if it was notified.
            if let State::Notified(_) = list.remove(entry, self.inner.cache_ptr()) {
                return true;
            }
        }
        false
    }

    /// Returns `true` if this listener listens to the given `Event`.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// let listener = event.listen();
    ///
    /// assert!(listener.listens_to(&event));
    /// ```
    #[inline]
    pub fn listens_to(&self, event: &Event) -> bool {
        ptr::eq::<Inner>(&*self.inner, event.inner.load(Ordering::Acquire))
    }

    /// Returns `true` if both listeners listen to the same `Event`.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// let listener1 = event.listen();
    /// let listener2 = event.listen();
    ///
    /// assert!(listener1.same_event(&listener2));
    /// ```
    pub fn same_event(&self, other: &EventListener) -> bool {
        ptr::eq::<Inner>(&*self.inner, &*other.inner)
    }

    fn wait_internal(mut self, deadline: Option<Instant>) -> bool {
        // Take out the entry pointer and set it to `None`.
        let entry = match self.entry.take() {
            None => unreachable!("cannot wait twice on an `EventListener`"),
            Some(entry) => entry,
        };

        // Set this listener's state to `Waiting`.
        {
            let mut list = self.inner.lock();
            let e = unsafe { entry.as_ref() };

            // Do a dummy replace operation in order to take out the state.
            match e.state.replace(State::Notified(false)) {
                State::Notified(_) => {
                    // If this listener has been notified, remove it from the list and return.
                    list.remove(entry, self.inner.cache_ptr());
                    return true;
                }
                // Otherwise, set the state to `Waiting`.
                _ => e.state.set(State::Waiting(thread::current())),
            }
        }

        // Wait until a notification is received or the timeout is reached.
        loop {
            match deadline {
                None => thread::park(),

                Some(deadline) => {
                    // Check for timeout.
                    let now = Instant::now();
                    if now >= deadline {
                        // Remove the entry and check if notified.
                        return self
                            .inner
                            .lock()
                            .remove(entry, self.inner.cache_ptr())
                            .is_notified();
                    }

                    // Park until the deadline.
                    thread::park_timeout(deadline - now);
                }
            }

            let mut list = self.inner.lock();
            let e = unsafe { entry.as_ref() };

            // Do a dummy replace operation in order to take out the state.
            match e.state.replace(State::Notified(false)) {
                State::Notified(_) => {
                    // If this listener has been notified, remove it from the list and return.
                    list.remove(entry, self.inner.cache_ptr());
                    return true;
                }
                // Otherwise, set the state back to `Waiting`.
                state => e.state.set(state),
            }
        }
    }
}

impl fmt::Debug for EventListener {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("EventListener { .. }")
    }
}

impl Future for EventListener {
    type Output = ();

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let mut list = self.inner.lock();

        let entry = match self.entry {
            None => unreachable!("cannot poll a completed `EventListener` future"),
            Some(entry) => entry,
        };
        let state = unsafe { &entry.as_ref().state };

        // Do a dummy replace operation in order to take out the state.
        match state.replace(State::Notified(false)) {
            State::Notified(_) => {
                // If this listener has been notified, remove it from the list and return.
                list.remove(entry, self.inner.cache_ptr());
                drop(list);
                self.entry = None;
                return Poll::Ready(());
            }
            State::Created => {
                // If the listener was just created, put it in the `Polling` state.
                state.set(State::Polling(cx.waker().clone()));
            }
            State::Polling(w) => {
                // If the listener was in the `Polling` state, update the waker.
                if w.will_wake(cx.waker()) {
                    state.set(State::Polling(w));
                } else {
                    state.set(State::Polling(cx.waker().clone()));
                }
            }
            State::Waiting(_) => {
                unreachable!("cannot poll and wait on `EventListener` at the same time")
            }
        }

        Poll::Pending
    }
}

impl Drop for EventListener {
    fn drop(&mut self) {
        // If this listener has never picked up a notification...
        if let Some(entry) = self.entry.take() {
            let mut list = self.inner.lock();

            // But if a notification was delivered to it...
            if let State::Notified(additional) = list.remove(entry, self.inner.cache_ptr()) {
                // Then pass it on to another active listener.
                if additional {
                    list.notify_additional(1);
                } else {
                    list.notify(1);
                }
            }
        }
    }
}

/// A guard holding the linked list locked.
struct ListGuard<'a> {
    /// A reference to [`Event`]'s inner state.
    inner: &'a Inner,

    /// The actual guard that acquired the linked list.
    guard: MutexGuard<'a, List>,
}

impl Drop for ListGuard<'_> {
    #[inline]
    fn drop(&mut self) {
        let list = &mut **self;

        // Update the atomic `notified` counter.
        let notified = if list.notified < list.len {
            list.notified
        } else {
            usize::MAX
        };
        self.inner.notified.store(notified, Ordering::Release);
    }
}

impl Deref for ListGuard<'_> {
    type Target = List;

    #[inline]
    fn deref(&self) -> &List {
        &*self.guard
    }
}

impl DerefMut for ListGuard<'_> {
    #[inline]
    fn deref_mut(&mut self) -> &mut List {
        &mut *self.guard
    }
}

/// The state of a listener.
enum State {
    /// It has just been created.
    Created,

    /// It has received a notification.
    ///
    /// The `bool` is `true` if this was an "additional" notification.
    Notified(bool),

    /// An async task is polling it.
    Polling(Waker),

    /// A thread is blocked on it.
    Waiting(Thread),
}

impl State {
    /// Returns `true` if this is the `Notified` state.
    #[inline]
    fn is_notified(&self) -> bool {
        match self {
            State::Notified(_) => true,
            State::Created | State::Polling(_) | State::Waiting(_) => false,
        }
    }
}

/// An entry representing a registered listener.
struct Entry {
    /// THe state of this listener.
    state: Cell<State>,

    /// Previous entry in the linked list.
    prev: Cell<Option<NonNull<Entry>>>,

    /// Next entry in the linked list.
    next: Cell<Option<NonNull<Entry>>>,
}

/// A linked list of entries.
struct List {
    /// First entry in the list.
    head: Option<NonNull<Entry>>,

    /// Last entry in the list.
    tail: Option<NonNull<Entry>>,

    /// The first unnotified entry in the list.
    start: Option<NonNull<Entry>>,

    /// Total number of entries in the list.
    len: usize,

    /// The number of notified entries in the list.
    notified: usize,

    /// Whether the cached entry is used.
    cache_used: bool,
}

impl List {
    /// Inserts a new entry into the list.
    fn insert(&mut self, cache: NonNull<Entry>) -> NonNull<Entry> {
        unsafe {
            let entry = Entry {
                state: Cell::new(State::Created),
                prev: Cell::new(self.tail),
                next: Cell::new(None),
            };

            let entry = if self.cache_used {
                // Allocate an entry that is going to become the new tail.
                NonNull::new_unchecked(Box::into_raw(Box::new(entry)))
            } else {
                // No need to allocate - we can use the cached entry.
                self.cache_used = true;
                cache.as_ptr().write(entry);
                cache
            };

            // Replace the tail with the new entry.
            match mem::replace(&mut self.tail, Some(entry)) {
                None => self.head = Some(entry),
                Some(t) => t.as_ref().next.set(Some(entry)),
            }

            // If there were no unnotified entries, this one is the first now.
            if self.start.is_none() {
                self.start = self.tail;
            }

            // Bump the entry count.
            self.len += 1;

            entry
        }
    }

    /// Removes an entry from the list and returns its state.
    fn remove(&mut self, entry: NonNull<Entry>, cache: NonNull<Entry>) -> State {
        unsafe {
            let prev = entry.as_ref().prev.get();
            let next = entry.as_ref().next.get();

            // Unlink from the previous entry.
            match prev {
                None => self.head = next,
                Some(p) => p.as_ref().next.set(next),
            }

            // Unlink from the next entry.
            match next {
                None => self.tail = prev,
                Some(n) => n.as_ref().prev.set(prev),
            }

            // If this was the first unnotified entry, move the pointer to the next one.
            if self.start == Some(entry) {
                self.start = next;
            }

            // Extract the state.
            let state = if ptr::eq(entry.as_ptr(), cache.as_ptr()) {
                // Free the cached entry.
                self.cache_used = false;
                entry.as_ref().state.replace(State::Created)
            } else {
                // Deallocate the entry.
                Box::from_raw(entry.as_ptr()).state.into_inner()
            };

            // Update the counters.
            if state.is_notified() {
                self.notified -= 1;
            }
            self.len -= 1;

            state
        }
    }

    /// Notifies a number of entries.
    #[cold]
    fn notify(&mut self, mut n: usize) {
        if n <= self.notified {
            return;
        }
        n -= self.notified;

        while n > 0 {
            n -= 1;

            // Notify the first unnotified entry.
            match self.start {
                None => break,
                Some(e) => {
                    // Get the entry and move the pointer forward.
                    let e = unsafe { e.as_ref() };
                    self.start = e.next.get();

                    // Set the state of this entry to `Notified` and notify.
                    match e.state.replace(State::Notified(false)) {
                        State::Notified(_) => {}
                        State::Created => {}
                        State::Polling(w) => w.wake(),
                        State::Waiting(t) => t.unpark(),
                    }

                    // Update the counter.
                    self.notified += 1;
                }
            }
        }
    }

    /// Notifies a number of additional entries.
    #[cold]
    fn notify_additional(&mut self, mut n: usize) {
        while n > 0 {
            n -= 1;

            // Notify the first unnotified entry.
            match self.start {
                None => break,
                Some(e) => {
                    // Get the entry and move the pointer forward.
                    let e = unsafe { e.as_ref() };
                    self.start = e.next.get();

                    // Set the state of this entry to `Notified` and notify.
                    match e.state.replace(State::Notified(true)) {
                        State::Notified(_) => {}
                        State::Created => {}
                        State::Polling(w) => w.wake(),
                        State::Waiting(t) => t.unpark(),
                    }

                    // Update the counter.
                    self.notified += 1;
                }
            }
        }
    }
}

/// Equivalent to `atomic::fence(Ordering::SeqCst)`, but in some cases faster.
#[inline]
fn full_fence() {
    if cfg!(all(
        any(target_arch = "x86", target_arch = "x86_64"),
        not(miri)
    )) {
        // HACK(stjepang): On x86 architectures there are two different ways of executing
        // a `SeqCst` fence.
        //
        // 1. `atomic::fence(SeqCst)`, which compiles into a `mfence` instruction.
        // 2. `_.compare_exchange(_, _, SeqCst, SeqCst)`, which compiles into a `lock cmpxchg` instruction.
        //
        // Both instructions have the effect of a full barrier, but empirical benchmarks have shown
        // that the second one is sometimes a bit faster.
        //
        // The ideal solution here would be to use inline assembly, but we're instead creating a
        // temporary atomic variable and compare-and-exchanging its value. No sane compiler to
        // x86 platforms is going to optimize this away.
        atomic::compiler_fence(Ordering::SeqCst);
        let a = AtomicUsize::new(0);
        let _ = a.compare_exchange(0, 1, Ordering::SeqCst, Ordering::SeqCst);
        atomic::compiler_fence(Ordering::SeqCst);
    } else {
        atomic::fence(Ordering::SeqCst);
    }
}