event_listener/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
//! Notify async tasks or threads.
//!
//! This is a synchronization primitive similar to [eventcounts] invented by Dmitry Vyukov.
//!
//! You can use this crate to turn non-blocking data structures into async or blocking data
//! structures. See a [simple mutex] implementation that exposes an async and a blocking interface
//! for acquiring locks.
//!
//! [eventcounts]: http://www.1024cores.net/home/lock-free-algorithms/eventcounts
//! [simple mutex]: https://github.com/smol-rs/event-listener/blob/master/examples/mutex.rs
//!
//! # Examples
//!
//! Wait until another thread sets a boolean flag:
//!
//! ```
//! use std::sync::atomic::{AtomicBool, Ordering};
//! use std::sync::Arc;
//! use std::thread;
//! use std::time::Duration;
//! use std::usize;
//! use event_listener::Event;
//!
//! let flag = Arc::new(AtomicBool::new(false));
//! let event = Arc::new(Event::new());
//!
//! // Spawn a thread that will set the flag after 1 second.
//! thread::spawn({
//! let flag = flag.clone();
//! let event = event.clone();
//! move || {
//! // Wait for a second.
//! thread::sleep(Duration::from_secs(1));
//!
//! // Set the flag.
//! flag.store(true, Ordering::SeqCst);
//!
//! // Notify all listeners that the flag has been set.
//! event.notify(usize::MAX);
//! }
//! });
//!
//! // Wait until the flag is set.
//! loop {
//! // Check the flag.
//! if flag.load(Ordering::SeqCst) {
//! break;
//! }
//!
//! // Start listening for events.
//! let listener = event.listen();
//!
//! // Check the flag again after creating the listener.
//! if flag.load(Ordering::SeqCst) {
//! break;
//! }
//!
//! // Wait for a notification and continue the loop.
//! listener.wait();
//! }
//! ```
#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]
use std::cell::{Cell, UnsafeCell};
use std::fmt;
use std::future::Future;
use std::mem::{self, ManuallyDrop};
use std::ops::{Deref, DerefMut};
use std::panic::{RefUnwindSafe, UnwindSafe};
use std::pin::Pin;
use std::ptr::{self, NonNull};
use std::sync::atomic::{self, AtomicPtr, AtomicUsize, Ordering};
use std::sync::{Arc, Mutex, MutexGuard};
use std::task::{Context, Poll, Waker};
use std::thread::{self, Thread};
use std::time::{Duration, Instant};
use std::usize;
/// Inner state of [`Event`].
struct Inner {
/// The number of notified entries, or `usize::MAX` if all of them have been notified.
///
/// If there are no entries, this value is set to `usize::MAX`.
notified: AtomicUsize,
/// A linked list holding registered listeners.
list: Mutex<List>,
/// A single cached list entry to avoid allocations on the fast path of the insertion.
cache: UnsafeCell<Entry>,
}
impl Inner {
/// Locks the list.
fn lock(&self) -> ListGuard<'_> {
ListGuard {
inner: self,
guard: self.list.lock().unwrap(),
}
}
/// Returns the pointer to the single cached list entry.
#[inline(always)]
fn cache_ptr(&self) -> NonNull<Entry> {
unsafe { NonNull::new_unchecked(self.cache.get()) }
}
}
/// A synchronization primitive for notifying async tasks and threads.
///
/// Listeners can be registered using [`Event::listen()`]. There are two ways to notify listeners:
///
/// 1. [`Event::notify()`] notifies a number of listeners.
/// 2. [`Event::notify_additional()`] notifies a number of previously unnotified listeners.
///
/// If there are no active listeners at the time a notification is sent, it simply gets lost.
///
/// There are two ways for a listener to wait for a notification:
///
/// 1. In an asynchronous manner using `.await`.
/// 2. In a blocking manner by calling [`EventListener::wait()`] on it.
///
/// If a notified listener is dropped without receiving a notification, dropping will notify
/// another active listener. Whether one *additional* listener will be notified depends on what
/// kind of notification was delivered.
///
/// Listeners are registered and notified in the first-in first-out fashion, ensuring fairness.
pub struct Event {
/// A pointer to heap-allocated inner state.
///
/// This pointer is initially null and gets lazily initialized on first use. Semantically, it
/// is an `Arc<Inner>` so it's important to keep in mind that it contributes to the [`Arc`]'s
/// reference count.
inner: AtomicPtr<Inner>,
}
unsafe impl Send for Event {}
unsafe impl Sync for Event {}
impl UnwindSafe for Event {}
impl RefUnwindSafe for Event {}
impl Event {
/// Creates a new [`Event`].
///
/// # Examples
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
/// ```
#[inline]
pub const fn new() -> Event {
Event {
inner: AtomicPtr::new(ptr::null_mut()),
}
}
/// Returns a guard listening for a notification.
///
/// This method emits a `SeqCst` fence after registering a listener.
///
/// # Examples
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
/// let listener = event.listen();
/// ```
#[cold]
pub fn listen(&self) -> EventListener {
let inner = self.inner();
let listener = EventListener {
inner: unsafe { Arc::clone(&ManuallyDrop::new(Arc::from_raw(inner))) },
entry: unsafe { Some((*inner).lock().insert((*inner).cache_ptr())) },
};
// Make sure the listener is registered before whatever happens next.
full_fence();
listener
}
/// Notifies a number of active listeners.
///
/// The number is allowed to be zero or exceed the current number of listeners.
///
/// In contrast to [`Event::notify_additional()`], this method only makes sure *at least* `n`
/// listeners among the active ones are notified.
///
/// This method emits a `SeqCst` fence before notifying listeners.
///
/// # Examples
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
///
/// // This notification gets lost because there are no listeners.
/// event.notify(1);
///
/// let listener1 = event.listen();
/// let listener2 = event.listen();
/// let listener3 = event.listen();
///
/// // Notifies two listeners.
/// //
/// // Listener queueing is fair, which means `listener1` and `listener2`
/// // get notified here since they start listening before `listener3`.
/// event.notify(2);
/// ```
#[inline]
pub fn notify(&self, n: usize) {
// Make sure the notification comes after whatever triggered it.
full_fence();
if let Some(inner) = self.try_inner() {
// Notify if there is at least one unnotified listener and the number of notified
// listeners is less than `n`.
if inner.notified.load(Ordering::Acquire) < n {
inner.lock().notify(n);
}
}
}
/// Notifies a number of active listeners without emitting a `SeqCst` fence.
///
/// The number is allowed to be zero or exceed the current number of listeners.
///
/// In contrast to [`Event::notify_additional()`], this method only makes sure *at least* `n`
/// listeners among the active ones are notified.
///
/// Unlike [`Event::notify()`], this method does not emit a `SeqCst` fence.
///
/// # Examples
///
/// ```
/// use event_listener::Event;
/// use std::sync::atomic::{self, Ordering};
///
/// let event = Event::new();
///
/// // This notification gets lost because there are no listeners.
/// event.notify(1);
///
/// let listener1 = event.listen();
/// let listener2 = event.listen();
/// let listener3 = event.listen();
///
/// // We should emit a fence manually when using relaxed notifications.
/// atomic::fence(Ordering::SeqCst);
///
/// // Notifies two listeners.
/// //
/// // Listener queueing is fair, which means `listener1` and `listener2`
/// // get notified here since they start listening before `listener3`.
/// event.notify(2);
/// ```
#[inline]
pub fn notify_relaxed(&self, n: usize) {
if let Some(inner) = self.try_inner() {
// Notify if there is at least one unnotified listener and the number of notified
// listeners is less than `n`.
if inner.notified.load(Ordering::Acquire) < n {
inner.lock().notify(n);
}
}
}
/// Notifies a number of active and still unnotified listeners.
///
/// The number is allowed to be zero or exceed the current number of listeners.
///
/// In contrast to [`Event::notify()`], this method will notify `n` *additional* listeners that
/// were previously unnotified.
///
/// This method emits a `SeqCst` fence before notifying listeners.
///
/// # Examples
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
///
/// // This notification gets lost because there are no listeners.
/// event.notify(1);
///
/// let listener1 = event.listen();
/// let listener2 = event.listen();
/// let listener3 = event.listen();
///
/// // Notifies two listeners.
/// //
/// // Listener queueing is fair, which means `listener1` and `listener2`
/// // get notified here since they start listening before `listener3`.
/// event.notify_additional(1);
/// event.notify_additional(1);
/// ```
#[inline]
pub fn notify_additional(&self, n: usize) {
// Make sure the notification comes after whatever triggered it.
full_fence();
if let Some(inner) = self.try_inner() {
// Notify if there is at least one unnotified listener.
if inner.notified.load(Ordering::Acquire) < usize::MAX {
inner.lock().notify_additional(n);
}
}
}
/// Notifies a number of active and still unnotified listeners without emitting a `SeqCst`
/// fence.
///
/// The number is allowed to be zero or exceed the current number of listeners.
///
/// In contrast to [`Event::notify()`], this method will notify `n` *additional* listeners that
/// were previously unnotified.
///
/// Unlike [`Event::notify_additional()`], this method does not emit a `SeqCst` fence.
///
/// # Examples
///
/// ```
/// use event_listener::Event;
/// use std::sync::atomic::{self, Ordering};
///
/// let event = Event::new();
///
/// // This notification gets lost because there are no listeners.
/// event.notify(1);
///
/// let listener1 = event.listen();
/// let listener2 = event.listen();
/// let listener3 = event.listen();
///
/// // We should emit a fence manually when using relaxed notifications.
/// atomic::fence(Ordering::SeqCst);
///
/// // Notifies two listeners.
/// //
/// // Listener queueing is fair, which means `listener1` and `listener2`
/// // get notified here since they start listening before `listener3`.
/// event.notify_additional_relaxed(1);
/// event.notify_additional_relaxed(1);
/// ```
#[inline]
pub fn notify_additional_relaxed(&self, n: usize) {
if let Some(inner) = self.try_inner() {
// Notify if there is at least one unnotified listener.
if inner.notified.load(Ordering::Acquire) < usize::MAX {
inner.lock().notify_additional(n);
}
}
}
/// Returns a reference to the inner state if it was initialized.
#[inline]
fn try_inner(&self) -> Option<&Inner> {
let inner = self.inner.load(Ordering::Acquire);
unsafe { inner.as_ref() }
}
/// Returns a raw pointer to the inner state, initializing it if necessary.
///
/// This returns a raw pointer instead of reference because `from_raw`
/// requires raw/mut provenance: <https://github.com/rust-lang/rust/pull/67339>
fn inner(&self) -> *const Inner {
let mut inner = self.inner.load(Ordering::Acquire);
// Initialize the state if this is its first use.
if inner.is_null() {
// Allocate on the heap.
let new = Arc::new(Inner {
notified: AtomicUsize::new(usize::MAX),
list: std::sync::Mutex::new(List {
head: None,
tail: None,
start: None,
len: 0,
notified: 0,
cache_used: false,
}),
cache: UnsafeCell::new(Entry {
state: Cell::new(State::Created),
prev: Cell::new(None),
next: Cell::new(None),
}),
});
// Convert the heap-allocated state into a raw pointer.
let new = Arc::into_raw(new) as *mut Inner;
// Attempt to replace the null-pointer with the new state pointer.
inner = self
.inner
.compare_exchange(inner, new, Ordering::AcqRel, Ordering::Acquire)
.unwrap_or_else(|x| x);
// Check if the old pointer value was indeed null.
if inner.is_null() {
// If yes, then use the new state pointer.
inner = new;
} else {
// If not, that means a concurrent operation has initialized the state.
// In that case, use the old pointer and deallocate the new one.
unsafe {
drop(Arc::from_raw(new));
}
}
}
inner
}
}
impl Drop for Event {
#[inline]
fn drop(&mut self) {
let inner: *mut Inner = *self.inner.get_mut();
// If the state pointer has been initialized, deallocate it.
if !inner.is_null() {
unsafe {
drop(Arc::from_raw(inner));
}
}
}
}
impl fmt::Debug for Event {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("Event { .. }")
}
}
impl Default for Event {
fn default() -> Event {
Event::new()
}
}
/// A guard waiting for a notification from an [`Event`].
///
/// There are two ways for a listener to wait for a notification:
///
/// 1. In an asynchronous manner using `.await`.
/// 2. In a blocking manner by calling [`EventListener::wait()`] on it.
///
/// If a notified listener is dropped without receiving a notification, dropping will notify
/// another active listener. Whether one *additional* listener will be notified depends on what
/// kind of notification was delivered.
pub struct EventListener {
/// A reference to [`Event`]'s inner state.
inner: Arc<Inner>,
/// A pointer to this listener's entry in the linked list.
entry: Option<NonNull<Entry>>,
}
unsafe impl Send for EventListener {}
unsafe impl Sync for EventListener {}
impl UnwindSafe for EventListener {}
impl RefUnwindSafe for EventListener {}
impl EventListener {
/// Blocks until a notification is received.
///
/// # Examples
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
/// let listener = event.listen();
///
/// // Notify `listener`.
/// event.notify(1);
///
/// // Receive the notification.
/// listener.wait();
/// ```
pub fn wait(self) {
self.wait_internal(None);
}
/// Blocks until a notification is received or a timeout is reached.
///
/// Returns `true` if a notification was received.
///
/// # Examples
///
/// ```
/// use std::time::Duration;
/// use event_listener::Event;
///
/// let event = Event::new();
/// let listener = event.listen();
///
/// // There are no notification so this times out.
/// assert!(!listener.wait_timeout(Duration::from_secs(1)));
/// ```
pub fn wait_timeout(self, timeout: Duration) -> bool {
self.wait_internal(Some(Instant::now() + timeout))
}
/// Blocks until a notification is received or a deadline is reached.
///
/// Returns `true` if a notification was received.
///
/// # Examples
///
/// ```
/// use std::time::{Duration, Instant};
/// use event_listener::Event;
///
/// let event = Event::new();
/// let listener = event.listen();
///
/// // There are no notification so this times out.
/// assert!(!listener.wait_deadline(Instant::now() + Duration::from_secs(1)));
/// ```
pub fn wait_deadline(self, deadline: Instant) -> bool {
self.wait_internal(Some(deadline))
}
/// Drops this listener and discards its notification (if any) without notifying another
/// active listener.
///
/// Returns `true` if a notification was discarded.
///
/// # Examples
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
/// let listener1 = event.listen();
/// let listener2 = event.listen();
///
/// event.notify(1);
///
/// assert!(listener1.discard());
/// assert!(!listener2.discard());
/// ```
pub fn discard(mut self) -> bool {
// If this listener has never picked up a notification...
if let Some(entry) = self.entry.take() {
let mut list = self.inner.lock();
// Remove the listener from the list and return `true` if it was notified.
if let State::Notified(_) = list.remove(entry, self.inner.cache_ptr()) {
return true;
}
}
false
}
/// Returns `true` if this listener listens to the given `Event`.
///
/// # Examples
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
/// let listener = event.listen();
///
/// assert!(listener.listens_to(&event));
/// ```
#[inline]
pub fn listens_to(&self, event: &Event) -> bool {
ptr::eq::<Inner>(&*self.inner, event.inner.load(Ordering::Acquire))
}
/// Returns `true` if both listeners listen to the same `Event`.
///
/// # Examples
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
/// let listener1 = event.listen();
/// let listener2 = event.listen();
///
/// assert!(listener1.same_event(&listener2));
/// ```
pub fn same_event(&self, other: &EventListener) -> bool {
ptr::eq::<Inner>(&*self.inner, &*other.inner)
}
fn wait_internal(mut self, deadline: Option<Instant>) -> bool {
// Take out the entry pointer and set it to `None`.
let entry = match self.entry.take() {
None => unreachable!("cannot wait twice on an `EventListener`"),
Some(entry) => entry,
};
// Set this listener's state to `Waiting`.
{
let mut list = self.inner.lock();
let e = unsafe { entry.as_ref() };
// Do a dummy replace operation in order to take out the state.
match e.state.replace(State::Notified(false)) {
State::Notified(_) => {
// If this listener has been notified, remove it from the list and return.
list.remove(entry, self.inner.cache_ptr());
return true;
}
// Otherwise, set the state to `Waiting`.
_ => e.state.set(State::Waiting(thread::current())),
}
}
// Wait until a notification is received or the timeout is reached.
loop {
match deadline {
None => thread::park(),
Some(deadline) => {
// Check for timeout.
let now = Instant::now();
if now >= deadline {
// Remove the entry and check if notified.
return self
.inner
.lock()
.remove(entry, self.inner.cache_ptr())
.is_notified();
}
// Park until the deadline.
thread::park_timeout(deadline - now);
}
}
let mut list = self.inner.lock();
let e = unsafe { entry.as_ref() };
// Do a dummy replace operation in order to take out the state.
match e.state.replace(State::Notified(false)) {
State::Notified(_) => {
// If this listener has been notified, remove it from the list and return.
list.remove(entry, self.inner.cache_ptr());
return true;
}
// Otherwise, set the state back to `Waiting`.
state => e.state.set(state),
}
}
}
}
impl fmt::Debug for EventListener {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("EventListener { .. }")
}
}
impl Future for EventListener {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut list = self.inner.lock();
let entry = match self.entry {
None => unreachable!("cannot poll a completed `EventListener` future"),
Some(entry) => entry,
};
let state = unsafe { &entry.as_ref().state };
// Do a dummy replace operation in order to take out the state.
match state.replace(State::Notified(false)) {
State::Notified(_) => {
// If this listener has been notified, remove it from the list and return.
list.remove(entry, self.inner.cache_ptr());
drop(list);
self.entry = None;
return Poll::Ready(());
}
State::Created => {
// If the listener was just created, put it in the `Polling` state.
state.set(State::Polling(cx.waker().clone()));
}
State::Polling(w) => {
// If the listener was in the `Polling` state, update the waker.
if w.will_wake(cx.waker()) {
state.set(State::Polling(w));
} else {
state.set(State::Polling(cx.waker().clone()));
}
}
State::Waiting(_) => {
unreachable!("cannot poll and wait on `EventListener` at the same time")
}
}
Poll::Pending
}
}
impl Drop for EventListener {
fn drop(&mut self) {
// If this listener has never picked up a notification...
if let Some(entry) = self.entry.take() {
let mut list = self.inner.lock();
// But if a notification was delivered to it...
if let State::Notified(additional) = list.remove(entry, self.inner.cache_ptr()) {
// Then pass it on to another active listener.
if additional {
list.notify_additional(1);
} else {
list.notify(1);
}
}
}
}
}
/// A guard holding the linked list locked.
struct ListGuard<'a> {
/// A reference to [`Event`]'s inner state.
inner: &'a Inner,
/// The actual guard that acquired the linked list.
guard: MutexGuard<'a, List>,
}
impl Drop for ListGuard<'_> {
#[inline]
fn drop(&mut self) {
let list = &mut **self;
// Update the atomic `notified` counter.
let notified = if list.notified < list.len {
list.notified
} else {
usize::MAX
};
self.inner.notified.store(notified, Ordering::Release);
}
}
impl Deref for ListGuard<'_> {
type Target = List;
#[inline]
fn deref(&self) -> &List {
&*self.guard
}
}
impl DerefMut for ListGuard<'_> {
#[inline]
fn deref_mut(&mut self) -> &mut List {
&mut *self.guard
}
}
/// The state of a listener.
enum State {
/// It has just been created.
Created,
/// It has received a notification.
///
/// The `bool` is `true` if this was an "additional" notification.
Notified(bool),
/// An async task is polling it.
Polling(Waker),
/// A thread is blocked on it.
Waiting(Thread),
}
impl State {
/// Returns `true` if this is the `Notified` state.
#[inline]
fn is_notified(&self) -> bool {
match self {
State::Notified(_) => true,
State::Created | State::Polling(_) | State::Waiting(_) => false,
}
}
}
/// An entry representing a registered listener.
struct Entry {
/// THe state of this listener.
state: Cell<State>,
/// Previous entry in the linked list.
prev: Cell<Option<NonNull<Entry>>>,
/// Next entry in the linked list.
next: Cell<Option<NonNull<Entry>>>,
}
/// A linked list of entries.
struct List {
/// First entry in the list.
head: Option<NonNull<Entry>>,
/// Last entry in the list.
tail: Option<NonNull<Entry>>,
/// The first unnotified entry in the list.
start: Option<NonNull<Entry>>,
/// Total number of entries in the list.
len: usize,
/// The number of notified entries in the list.
notified: usize,
/// Whether the cached entry is used.
cache_used: bool,
}
impl List {
/// Inserts a new entry into the list.
fn insert(&mut self, cache: NonNull<Entry>) -> NonNull<Entry> {
unsafe {
let entry = Entry {
state: Cell::new(State::Created),
prev: Cell::new(self.tail),
next: Cell::new(None),
};
let entry = if self.cache_used {
// Allocate an entry that is going to become the new tail.
NonNull::new_unchecked(Box::into_raw(Box::new(entry)))
} else {
// No need to allocate - we can use the cached entry.
self.cache_used = true;
cache.as_ptr().write(entry);
cache
};
// Replace the tail with the new entry.
match mem::replace(&mut self.tail, Some(entry)) {
None => self.head = Some(entry),
Some(t) => t.as_ref().next.set(Some(entry)),
}
// If there were no unnotified entries, this one is the first now.
if self.start.is_none() {
self.start = self.tail;
}
// Bump the entry count.
self.len += 1;
entry
}
}
/// Removes an entry from the list and returns its state.
fn remove(&mut self, entry: NonNull<Entry>, cache: NonNull<Entry>) -> State {
unsafe {
let prev = entry.as_ref().prev.get();
let next = entry.as_ref().next.get();
// Unlink from the previous entry.
match prev {
None => self.head = next,
Some(p) => p.as_ref().next.set(next),
}
// Unlink from the next entry.
match next {
None => self.tail = prev,
Some(n) => n.as_ref().prev.set(prev),
}
// If this was the first unnotified entry, move the pointer to the next one.
if self.start == Some(entry) {
self.start = next;
}
// Extract the state.
let state = if ptr::eq(entry.as_ptr(), cache.as_ptr()) {
// Free the cached entry.
self.cache_used = false;
entry.as_ref().state.replace(State::Created)
} else {
// Deallocate the entry.
Box::from_raw(entry.as_ptr()).state.into_inner()
};
// Update the counters.
if state.is_notified() {
self.notified -= 1;
}
self.len -= 1;
state
}
}
/// Notifies a number of entries.
#[cold]
fn notify(&mut self, mut n: usize) {
if n <= self.notified {
return;
}
n -= self.notified;
while n > 0 {
n -= 1;
// Notify the first unnotified entry.
match self.start {
None => break,
Some(e) => {
// Get the entry and move the pointer forward.
let e = unsafe { e.as_ref() };
self.start = e.next.get();
// Set the state of this entry to `Notified` and notify.
match e.state.replace(State::Notified(false)) {
State::Notified(_) => {}
State::Created => {}
State::Polling(w) => w.wake(),
State::Waiting(t) => t.unpark(),
}
// Update the counter.
self.notified += 1;
}
}
}
}
/// Notifies a number of additional entries.
#[cold]
fn notify_additional(&mut self, mut n: usize) {
while n > 0 {
n -= 1;
// Notify the first unnotified entry.
match self.start {
None => break,
Some(e) => {
// Get the entry and move the pointer forward.
let e = unsafe { e.as_ref() };
self.start = e.next.get();
// Set the state of this entry to `Notified` and notify.
match e.state.replace(State::Notified(true)) {
State::Notified(_) => {}
State::Created => {}
State::Polling(w) => w.wake(),
State::Waiting(t) => t.unpark(),
}
// Update the counter.
self.notified += 1;
}
}
}
}
}
/// Equivalent to `atomic::fence(Ordering::SeqCst)`, but in some cases faster.
#[inline]
fn full_fence() {
if cfg!(all(
any(target_arch = "x86", target_arch = "x86_64"),
not(miri)
)) {
// HACK(stjepang): On x86 architectures there are two different ways of executing
// a `SeqCst` fence.
//
// 1. `atomic::fence(SeqCst)`, which compiles into a `mfence` instruction.
// 2. `_.compare_exchange(_, _, SeqCst, SeqCst)`, which compiles into a `lock cmpxchg` instruction.
//
// Both instructions have the effect of a full barrier, but empirical benchmarks have shown
// that the second one is sometimes a bit faster.
//
// The ideal solution here would be to use inline assembly, but we're instead creating a
// temporary atomic variable and compare-and-exchanging its value. No sane compiler to
// x86 platforms is going to optimize this away.
atomic::compiler_fence(Ordering::SeqCst);
let a = AtomicUsize::new(0);
let _ = a.compare_exchange(0, 1, Ordering::SeqCst, Ordering::SeqCst);
atomic::compiler_fence(Ordering::SeqCst);
} else {
atomic::fence(Ordering::SeqCst);
}
}