exif/
tiff.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
//
// Copyright (c) 2016 KAMADA Ken'ichi.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
// SUCH DAMAGE.
//

use std::fmt;
use mutate_once::MutOnce;

use crate::endian::{Endian, BigEndian, LittleEndian};
use crate::error::Error;
use crate::tag::{Context, Tag, UnitPiece};
use crate::value;
use crate::value::Value;
use crate::value::get_type_info;
use crate::util::{atou16, ctou32};

// TIFF header magic numbers [EXIF23 4.5.2].
const TIFF_BE: u16 = 0x4d4d;
const TIFF_LE: u16 = 0x4949;
const TIFF_FORTY_TWO: u16 = 0x002a;
pub const TIFF_BE_SIG: [u8; 4] = [0x4d, 0x4d, 0x00, 0x2a];
pub const TIFF_LE_SIG: [u8; 4] = [0x49, 0x49, 0x2a, 0x00];

// Partially parsed TIFF field (IFD entry).
// Value::Unknown is abused to represent a partially parsed value.
// Such a value must never be exposed to the users of this library.
#[derive(Debug)]
pub struct IfdEntry {
    // When partially parsed, the value is stored as Value::Unknown.
    // Do not leak this field to the outside.
    field: MutOnce<Field>,
}

impl IfdEntry {
    pub fn ifd_num_tag(&self) -> (In, Tag) {
        if self.field.is_fixed() {
            let field = self.field.get_ref();
            (field.ifd_num, field.tag)
        } else {
            let field = self.field.get_mut();
            (field.ifd_num, field.tag)
        }
    }

    pub fn ref_field<'a>(&'a self, data: &[u8], le: bool) -> &'a Field {
        self.parse(data, le);
        self.field.get_ref()
    }

    fn into_field(self, data: &[u8], le: bool) -> Field {
        self.parse(data, le);
        self.field.into_inner()
    }

    fn parse(&self, data: &[u8], le: bool) {
        if !self.field.is_fixed() {
            let mut field = self.field.get_mut();
            if le {
                Self::parse_value::<LittleEndian>(&mut field.value, data);
            } else {
                Self::parse_value::<BigEndian>(&mut field.value, data);
            }
        }
    }

    // Converts a partially parsed value into a real one.
    fn parse_value<E>(value: &mut Value, data: &[u8]) where E: Endian {
        match *value {
            Value::Unknown(typ, cnt, ofs) => {
                let (unitlen, parser) = get_type_info::<E>(typ);
                if unitlen != 0 {
                    *value = parser(data, ofs as usize, cnt as usize);
                }
            },
            _ => panic!("value is already parsed"),
        }
    }
}

/// A TIFF/Exif field.
#[derive(Debug, Clone)]
pub struct Field {
    /// The tag of this field.
    pub tag: Tag,
    /// The index of the IFD to which this field belongs.
    pub ifd_num: In,
    /// The value of this field.
    pub value: Value,
}

/// An IFD number.
///
/// The IFDs are indexed from 0.  The 0th IFD is for the primary image
/// and the 1st one is for the thumbnail.  Two associated constants,
/// `In::PRIMARY` and `In::THUMBNAIL`, are defined for them respectively.
///
/// # Examples
/// ```
/// use exif::In;
/// assert_eq!(In::PRIMARY.index(), 0);
/// assert_eq!(In::THUMBNAIL.index(), 1);
/// ```
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct In(pub u16);

impl In {
    pub const PRIMARY: In = In(0);
    pub const THUMBNAIL: In = In(1);

    /// Returns the IFD number.
    #[inline]
    pub fn index(self) -> u16 {
        self.0
    }
}

impl fmt::Display for In {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self.0 {
            0 => f.pad("primary"),
            1 => f.pad("thumbnail"),
            n => f.pad(&format!("IFD{}", n)),
        }
    }
}

/// Parse the Exif attributes in the TIFF format.
///
/// Returns a Vec of Exif fields and a bool.
/// The boolean value is true if the data is little endian.
/// If an error occurred, `exif::Error` is returned.
pub fn parse_exif(data: &[u8]) -> Result<(Vec<Field>, bool), Error> {
    let mut parser = Parser::new();
    parser.parse(data)?;
    let (entries, le) = (parser.entries, parser.little_endian);
    Ok((entries.into_iter().map(|e| e.into_field(data, le)).collect(), le))
}

#[derive(Debug)]
pub struct Parser {
    pub entries: Vec<IfdEntry>,
    pub little_endian: bool,
}

impl Parser {
    pub fn new() -> Self {
        Self { entries: Vec::new(), little_endian: false }
    }

    pub fn parse(&mut self, data: &[u8]) -> Result<(), Error> {
        // Check the byte order and call the real parser.
        if data.len() < 8 {
            return Err(Error::InvalidFormat("Truncated TIFF header"));
        }
        match BigEndian::loadu16(data, 0) {
            TIFF_BE => {
                self.little_endian = false;
                self.parse_sub::<BigEndian>(data)
            },
            TIFF_LE => {
                self.little_endian = true;
                self.parse_sub::<LittleEndian>(data)
            },
            _ => Err(Error::InvalidFormat("Invalid TIFF byte order")),
        }
    }

    fn parse_sub<E>(&mut self, data: &[u8])
                    -> Result<(), Error> where E: Endian {
        // Parse the rest of the header (42 and the IFD offset).
        if E::loadu16(data, 2) != TIFF_FORTY_TWO {
            return Err(Error::InvalidFormat("Invalid forty two"));
        }
        let mut ifd_offset = E::loadu32(data, 4) as usize;
        let mut ifd_num_ck = Some(0);
        while ifd_offset != 0 {
            let ifd_num = ifd_num_ck
                .ok_or(Error::InvalidFormat("Too many IFDs"))?;
            // Limit the number of IFDs to defend against resource exhaustion
            // attacks.
            if ifd_num >= 8 {
                return Err(Error::InvalidFormat("Limit the IFD count to 8"));
            }
            ifd_offset = self.parse_ifd::<E>(
                data, ifd_offset, Context::Tiff, ifd_num)?;
            ifd_num_ck = ifd_num.checked_add(1);
        }
        Ok(())
    }

    // Parse IFD [EXIF23 4.6.2].
    fn parse_ifd<E>(&mut self, data: &[u8],
                    offset: usize, ctx: Context, ifd_num: u16)
                    -> Result<usize, Error> where E: Endian {
        // Count (the number of the entries).
        if data.len() < offset || data.len() - offset < 2 {
            return Err(Error::InvalidFormat("Truncated IFD count"));
        }
        let count = E::loadu16(data, offset) as usize;

        // Array of entries.  (count * 12) never overflows.
        if data.len() - offset - 2 < count * 12 {
            return Err(Error::InvalidFormat("Truncated IFD"));
        }
        for i in 0..count as usize {
            let tag = E::loadu16(data, offset + 2 + i * 12);
            let typ = E::loadu16(data, offset + 2 + i * 12 + 2);
            let cnt = E::loadu32(data, offset + 2 + i * 12 + 4);
            let valofs_at = offset + 2 + i * 12 + 8;
            let (unitlen, _parser) = get_type_info::<E>(typ);
            let vallen = unitlen.checked_mul(cnt as usize).ok_or(
                Error::InvalidFormat("Invalid entry count"))?;
            let mut val = if vallen <= 4 {
                Value::Unknown(typ, cnt, valofs_at as u32)
            } else {
                let ofs = E::loadu32(data, valofs_at) as usize;
                if data.len() < ofs || data.len() - ofs < vallen {
                    return Err(Error::InvalidFormat("Truncated field value"));
                }
                Value::Unknown(typ, cnt, ofs as u32)
            };

            // No infinite recursion will occur because the context is not
            // recursively defined.
            let tag = Tag(ctx, tag);
            match tag {
                Tag::ExifIFDPointer => self.parse_child_ifd::<E>(
                    data, &mut val, Context::Exif, ifd_num)?,
                Tag::GPSInfoIFDPointer => self.parse_child_ifd::<E>(
                    data, &mut val, Context::Gps, ifd_num)?,
                Tag::InteropIFDPointer => self.parse_child_ifd::<E>(
                    data, &mut val, Context::Interop, ifd_num)?,
                _ => self.entries.push(IfdEntry { field: Field {
                    tag: tag, ifd_num: In(ifd_num), value: val }.into()}),
            }
        }

        // Offset to the next IFD.
        if data.len() - offset - 2 - count * 12 < 4 {
            return Err(Error::InvalidFormat("Truncated next IFD offset"));
        }
        let next_ifd_offset = E::loadu32(data, offset + 2 + count * 12);
        Ok(next_ifd_offset as usize)
    }

    fn parse_child_ifd<E>(&mut self, data: &[u8],
                          pointer: &mut Value, ctx: Context, ifd_num: u16)
                          -> Result<(), Error> where E: Endian {
        // The pointer is not yet parsed, so do it here.
        IfdEntry::parse_value::<E>(pointer, data);

        // A pointer field has type == LONG and count == 1, so the
        // value (IFD offset) must be embedded in the "value offset"
        // element of the field.
        let ofs = pointer.get_uint(0).ok_or(
            Error::InvalidFormat("Invalid pointer"))? as usize;
        match self.parse_ifd::<E>(data, ofs, ctx, ifd_num)? {
            0 => Ok(()),
            _ => Err(Error::InvalidFormat("Unexpected next IFD")),
        }
    }
}

pub fn is_tiff(buf: &[u8]) -> bool {
    buf.starts_with(&TIFF_BE_SIG) || buf.starts_with(&TIFF_LE_SIG)
}

/// A struct used to parse a DateTime field.
///
/// # Examples
/// ```
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use exif::DateTime;
/// let dt = DateTime::from_ascii(b"2016:05:04 03:02:01")?;
/// assert_eq!(dt.year, 2016);
/// assert_eq!(dt.to_string(), "2016-05-04 03:02:01");
/// # Ok(()) }
/// ```
#[derive(Debug)]
pub struct DateTime {
    pub year: u16,
    pub month: u8,
    pub day: u8,
    pub hour: u8,
    pub minute: u8,
    pub second: u8,
    /// The subsecond data in nanoseconds.  If the Exif attribute has
    /// more sigfinicant digits, they are rounded down.
    pub nanosecond: Option<u32>,
    /// The offset of the time zone in minutes.
    pub offset: Option<i16>,
}

impl DateTime {
    /// Parse an ASCII data of a DateTime field.  The range of a number
    /// is not validated, so, for example, 13 may be returned as the month.
    ///
    /// If the value is blank, `Error::BlankValue` is returned.
    pub fn from_ascii(data: &[u8]) -> Result<DateTime, Error> {
        if data == b"    :  :     :  :  " || data == b"                   " {
            return Err(Error::BlankValue("DateTime is blank"));
        } else if data.len() < 19 {
            return Err(Error::InvalidFormat("DateTime too short"));
        } else if !(data[4] == b':' && data[7] == b':' && data[10] == b' ' &&
                    data[13] == b':' && data[16] == b':') {
            return Err(Error::InvalidFormat("Invalid DateTime delimiter"));
        }
        Ok(DateTime {
            year: atou16(&data[0..4])?,
            month: atou16(&data[5..7])? as u8,
            day: atou16(&data[8..10])? as u8,
            hour: atou16(&data[11..13])? as u8,
            minute: atou16(&data[14..16])? as u8,
            second: atou16(&data[17..19])? as u8,
            nanosecond: None,
            offset: None,
        })
    }

    /// Parses an SubsecTime-like field.
    pub fn parse_subsec(&mut self, data: &[u8]) -> Result<(), Error> {
        let mut subsec = 0;
        let mut ndigits = 0;
        for &c in data {
            if c == b' ' {
                break;
            }
            subsec = subsec * 10 + ctou32(c)?;
            ndigits += 1;
            if ndigits >= 9 {
                break;
            }
        }
        if ndigits == 0 {
            self.nanosecond = None;
        } else {
            for _ in ndigits..9 {
                subsec *= 10;
            }
            self.nanosecond = Some(subsec);
        }
        Ok(())
    }

    /// Parses an OffsetTime-like field.
    pub fn parse_offset(&mut self, data: &[u8]) -> Result<(), Error> {
        if data == b"   :  " || data == b"      " {
            return Err(Error::BlankValue("OffsetTime is blank"));
        } else if data.len() < 6 {
            return Err(Error::InvalidFormat("OffsetTime too short"));
        } else if data[3] != b':' {
            return Err(Error::InvalidFormat("Invalid OffsetTime delimiter"));
        }
        let hour = atou16(&data[1..3])?;
        let min = atou16(&data[4..6])?;
        let offset = (hour * 60 + min) as i16;
        self.offset = Some(match data[0] {
            b'+' => offset,
            b'-' => -offset,
            _ => return Err(Error::InvalidFormat("Invalid OffsetTime sign")),
        });
        Ok(())
    }
}

impl fmt::Display for DateTime {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:04}-{:02}-{:02} {:02}:{:02}:{:02}",
               self.year, self.month, self.day,
               self.hour, self.minute, self.second)
    }
}

impl Field {
    /// Returns an object that implements `std::fmt::Display` for
    /// printing the value of this field in a tag-specific format.
    ///
    /// To print the value with the unit, call `with_unit` method on the
    /// returned object.  It takes a parameter, which is either `()`,
    /// `&Field`, or `&Exif`, that provides the unit information.
    /// If the unit does not depend on another field, `()` can be used.
    /// Otherwise, `&Field` or `&Exif` should be used.
    ///
    /// # Examples
    ///
    /// ```
    /// use exif::{Field, In, Tag, Value};
    ///
    /// let xres = Field {
    ///     tag: Tag::XResolution,
    ///     ifd_num: In::PRIMARY,
    ///     value: Value::Rational(vec![(72, 1).into()]),
    /// };
    /// let resunit = Field {
    ///     tag: Tag::ResolutionUnit,
    ///     ifd_num: In::PRIMARY,
    ///     value: Value::Short(vec![3]),
    /// };
    /// assert_eq!(xres.display_value().to_string(), "72");
    /// assert_eq!(resunit.display_value().to_string(), "cm");
    /// // The unit of XResolution is indicated by ResolutionUnit.
    /// assert_eq!(xres.display_value().with_unit(&resunit).to_string(),
    ///            "72 pixels per cm");
    /// // If ResolutionUnit is not given, the default value is used.
    /// assert_eq!(xres.display_value().with_unit(()).to_string(),
    ///            "72 pixels per inch");
    /// assert_eq!(xres.display_value().with_unit(&xres).to_string(),
    ///            "72 pixels per inch");
    ///
    /// let flen = Field {
    ///     tag: Tag::FocalLengthIn35mmFilm,
    ///     ifd_num: In::PRIMARY,
    ///     value: Value::Short(vec![24]),
    /// };
    /// // The unit of the focal length is always mm, so the argument
    /// // has nothing to do with the result.
    /// assert_eq!(flen.display_value().with_unit(()).to_string(),
    ///            "24 mm");
    /// assert_eq!(flen.display_value().with_unit(&resunit).to_string(),
    ///            "24 mm");
    /// ```
    #[inline]
    pub fn display_value(&self) -> DisplayValue {
        DisplayValue {
            tag: self.tag,
            ifd_num: self.ifd_num,
            value_display: self.value.display_as(self.tag),
        }
    }
}

/// Helper struct for printing a value in a tag-specific format.
pub struct DisplayValue<'a> {
    tag: Tag,
    ifd_num: In,
    value_display: value::Display<'a>,
}

impl<'a> DisplayValue<'a> {
    #[inline]
    pub fn with_unit<T>(&self, unit_provider: T)
                        -> DisplayValueUnit<'a, T> where T: ProvideUnit<'a> {
        DisplayValueUnit {
            ifd_num: self.ifd_num,
            value_display: self.value_display,
            unit: self.tag.unit(),
            unit_provider: unit_provider,
        }
    }
}

impl<'a> fmt::Display for DisplayValue<'a> {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.value_display.fmt(f)
    }
}

/// Helper struct for printing a value with its unit.
pub struct DisplayValueUnit<'a, T> where T: ProvideUnit<'a> {
    ifd_num: In,
    value_display: value::Display<'a>,
    unit: Option<&'static [UnitPiece]>,
    unit_provider: T,
}

impl<'a, T> fmt::Display for DisplayValueUnit<'a, T> where T: ProvideUnit<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if let Some(unit) = self.unit {
            assert!(!unit.is_empty());
            for piece in unit {
                match *piece {
                    UnitPiece::Value => self.value_display.fmt(f),
                    UnitPiece::Str(s) => f.write_str(s),
                    UnitPiece::Tag(tag) =>
                        if let Some(x) = self.unit_provider.get_field(
                                tag, self.ifd_num) {
                            x.value.display_as(tag).fmt(f)
                        } else if let Some(x) = tag.default_value() {
                            x.display_as(tag).fmt(f)
                        } else {
                            write!(f, "[{} missing]", tag)
                        },
                }?
            }
            Ok(())
        } else {
            self.value_display.fmt(f)
        }
    }
}

pub trait ProvideUnit<'a>: Copy {
    fn get_field(self, tag: Tag, ifd_num: In) -> Option<&'a Field>;
}

impl<'a> ProvideUnit<'a> for () {
    fn get_field(self, _tag: Tag, _ifd_num: In) -> Option<&'a Field> {
        None
    }
}

impl<'a> ProvideUnit<'a> for &'a Field {
    fn get_field(self, tag: Tag, ifd_num: In) -> Option<&'a Field> {
        Some(self).filter(|x| x.tag == tag && x.ifd_num == ifd_num)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn in_convert() {
        assert_eq!(In::PRIMARY.index(), 0);
        assert_eq!(In::THUMBNAIL.index(), 1);
        assert_eq!(In(2).index(), 2);
        assert_eq!(In(65535).index(), 65535);
        assert_eq!(In::PRIMARY, In(0));
    }

    #[test]
    fn in_display() {
        assert_eq!(format!("{:10}", In::PRIMARY), "primary   ");
        assert_eq!(format!("{:>10}", In::THUMBNAIL), " thumbnail");
        assert_eq!(format!("{:10}", In(2)), "IFD2      ");
        assert_eq!(format!("{:^10}", In(65535)), " IFD65535 ");
    }

    #[test]
    fn truncated() {
        let mut data =
            b"MM\0\x2a\0\0\0\x08\
              \0\x01\x01\0\0\x03\0\0\0\x01\0\x14\0\0\0\0\0\0".to_vec();
        parse_exif(&data).unwrap();
        while let Some(_) = data.pop() {
            parse_exif(&data).unwrap_err();
        }
    }

    // Before the error is returned, the IFD is parsed multiple times
    // as the 0th, 1st, ..., and n-th IFDs.
    #[test]
    fn inf_loop_by_next() {
        let data = b"MM\0\x2a\0\0\0\x08\
                     \0\x01\x01\0\0\x03\0\0\0\x01\0\x14\0\0\0\0\0\x08";
        assert_err_pat!(parse_exif(data),
                        Error::InvalidFormat("Limit the IFD count to 8"));
    }

    #[test]
    fn inf_loop_by_exif_next() {
        let data = b"MM\x00\x2a\x00\x00\x00\x08\
                     \x00\x01\x87\x69\x00\x04\x00\x00\x00\x01\x00\x00\x00\x1a\
                     \x00\x00\x00\x00\
                     \x00\x01\x90\x00\x00\x07\x00\x00\x00\x040231\
                     \x00\x00\x00\x08";
        assert_err_pat!(parse_exif(data),
                        Error::InvalidFormat("Unexpected next IFD"));
    }

    #[test]
    fn unknown_field() {
        let data = b"MM\0\x2a\0\0\0\x08\
                     \0\x01\x01\0\xff\xff\0\0\0\x01\0\x14\0\0\0\0\0\0";
        let (v, _le) = parse_exif(data).unwrap();
        assert_eq!(v.len(), 1);
        assert_pat!(v[0].value, Value::Unknown(0xffff, 1, 0x12));
    }

    #[test]
    fn date_time() {
        let mut dt = DateTime::from_ascii(b"2016:05:04 03:02:01").unwrap();
        assert_eq!(dt.year, 2016);
        assert_eq!(dt.to_string(), "2016-05-04 03:02:01");

        dt.parse_subsec(b"987").unwrap();
        assert_eq!(dt.nanosecond.unwrap(), 987000000);
        dt.parse_subsec(b"000987").unwrap();
        assert_eq!(dt.nanosecond.unwrap(), 987000);
        dt.parse_subsec(b"987654321").unwrap();
        assert_eq!(dt.nanosecond.unwrap(), 987654321);
        dt.parse_subsec(b"9876543219").unwrap();
        assert_eq!(dt.nanosecond.unwrap(), 987654321);
        dt.parse_subsec(b"130   ").unwrap();
        assert_eq!(dt.nanosecond.unwrap(), 130000000);
        dt.parse_subsec(b"0").unwrap();
        assert_eq!(dt.nanosecond.unwrap(), 0);
        dt.parse_subsec(b"").unwrap();
        assert!(dt.nanosecond.is_none());
        dt.parse_subsec(b" ").unwrap();
        assert!(dt.nanosecond.is_none());

        dt.parse_offset(b"+00:00").unwrap();
        assert_eq!(dt.offset.unwrap(), 0);
        dt.parse_offset(b"+01:23").unwrap();
        assert_eq!(dt.offset.unwrap(), 83);
        dt.parse_offset(b"+99:99").unwrap();
        assert_eq!(dt.offset.unwrap(), 6039);
        dt.parse_offset(b"-01:23").unwrap();
        assert_eq!(dt.offset.unwrap(), -83);
        dt.parse_offset(b"-99:99").unwrap();
        assert_eq!(dt.offset.unwrap(), -6039);
        assert_err_pat!(dt.parse_offset(b"   :  "), Error::BlankValue(_));
        assert_err_pat!(dt.parse_offset(b"      "), Error::BlankValue(_));
    }

    #[test]
    fn display_value_with_unit() {
        let cm = Field {
            tag: Tag::ResolutionUnit,
            ifd_num: In::PRIMARY,
            value: Value::Short(vec![3]),
        };
        let cm_tn = Field {
            tag: Tag::ResolutionUnit,
            ifd_num: In::THUMBNAIL,
            value: Value::Short(vec![3]),
        };
        // No unit.
        let exifver = Field {
            tag: Tag::ExifVersion,
            ifd_num: In::PRIMARY,
            value: Value::Undefined(b"0231".to_vec(), 0),
        };
        assert_eq!(exifver.display_value().to_string(),
                   "2.31");
        assert_eq!(exifver.display_value().with_unit(()).to_string(),
                   "2.31");
        assert_eq!(exifver.display_value().with_unit(&cm).to_string(),
                   "2.31");
        // Fixed string.
        let width = Field {
            tag: Tag::ImageWidth,
            ifd_num: In::PRIMARY,
            value: Value::Short(vec![257]),
        };
        assert_eq!(width.display_value().to_string(),
                   "257");
        assert_eq!(width.display_value().with_unit(()).to_string(),
                   "257 pixels");
        assert_eq!(width.display_value().with_unit(&cm).to_string(),
                   "257 pixels");
        // Unit tag (with a non-default value).
        // Unit tag is missing but the default is specified.
        let xres = Field {
            tag: Tag::XResolution,
            ifd_num: In::PRIMARY,
            value: Value::Rational(vec![(300, 1).into()]),
        };
        assert_eq!(xres.display_value().to_string(),
                   "300");
        assert_eq!(xres.display_value().with_unit(()).to_string(),
                   "300 pixels per inch");
        assert_eq!(xres.display_value().with_unit(&cm).to_string(),
                   "300 pixels per cm");
        assert_eq!(xres.display_value().with_unit(&cm_tn).to_string(),
                   "300 pixels per inch");
        // Unit tag is missing and the default is not specified.
        let gpslat = Field {
            tag: Tag::GPSLatitude,
            ifd_num: In::PRIMARY,
            value: Value::Rational(vec![
                (10, 1).into(), (0, 1).into(), (1, 10).into()]),
        };
        assert_eq!(gpslat.display_value().to_string(),
                   "10 deg 0 min 0.1 sec");
        assert_eq!(gpslat.display_value().with_unit(()).to_string(),
                   "10 deg 0 min 0.1 sec [GPSLatitudeRef missing]");
        assert_eq!(gpslat.display_value().with_unit(&cm).to_string(),
                   "10 deg 0 min 0.1 sec [GPSLatitudeRef missing]");
    }

    #[test]
    fn no_borrow_no_move() {
        let resunit = Field {
            tag: Tag::ResolutionUnit,
            ifd_num: In::PRIMARY,
            value: Value::Short(vec![3]),
        };
        // This fails to compile with "temporary value dropped while
        // borrowed" error if with_unit() borrows self.
        let d = resunit.display_value().with_unit(());
        assert_eq!(d.to_string(), "cm");
        // This fails to compile if with_unit() moves self.
        let d1 = resunit.display_value();
        let d2 = d1.with_unit(());
        assert_eq!(d1.to_string(), "cm");
        assert_eq!(d2.to_string(), "cm");
    }
}