exr/block/
lines.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
//! Extract lines from a block of pixel bytes.

use crate::math::*;
use std::io::{Cursor};
use crate::error::{Result, UnitResult};
use smallvec::SmallVec;
use std::ops::Range;
use crate::block::{BlockIndex};
use crate::meta::attribute::ChannelList;


/// A single line of pixels.
/// Use [LineRef] or [LineRefMut] for easier type names.
#[derive(Clone, Copy, Eq, PartialEq, Debug)]
pub struct LineSlice<T> {

    // TODO also store enum SampleType, as it would always be matched in every place it is used

    /// Where this line is located inside the image.
    pub location: LineIndex,

    /// The raw bytes of the pixel line, either `&[u8]` or `&mut [u8]`.
    /// Must be re-interpreted as slice of f16, f32, or u32,
    /// according to the channel data type.
    pub value: T,
}


/// An reference to a single line of pixels.
/// May go across the whole image or just a tile section of it.
///
/// This line contains an immutable slice that all samples will be read from.
pub type LineRef<'s> = LineSlice<&'s [u8]>;

/// A reference to a single mutable line of pixels.
/// May go across the whole image or just a tile section of it.
///
/// This line contains a mutable slice that all samples will be written to.
pub type LineRefMut<'s> = LineSlice<&'s mut [u8]>;


/// Specifies where a row of pixels lies inside an image.
/// This is a globally unique identifier which includes
/// the layer, channel index, and pixel location.
#[derive(Clone, Copy, Eq, PartialEq, Debug, Hash)]
pub struct LineIndex {

    /// Index of the layer.
    pub layer: usize,

    /// The channel index of the layer.
    pub channel: usize,

    /// Index of the mip or rip level in the image.
    pub level: Vec2<usize>,

    /// Position of the most left pixel of the row.
    pub position: Vec2<usize>,

    /// The width of the line; the number of samples in this row,
    /// that is, the number of f16, f32, or u32 values.
    pub sample_count: usize,
}


impl LineIndex {

    /// Iterates the lines of this block index in interleaved fashion:
    /// For each line in this block, this iterator steps once through each channel.
    /// This is how lines are stored in a pixel data block.
    ///
    /// Does not check whether `self.layer_index`, `self.level`, `self.size` and `self.position` are valid indices.__
    // TODO be sure this cannot produce incorrect data, as this is not further checked but only handled with panics
    #[inline]
    #[must_use]
    pub fn lines_in_block(block: BlockIndex, channels: &ChannelList) -> impl Iterator<Item=(Range<usize>, LineIndex)> {
        struct LineIter {
            layer: usize, level: Vec2<usize>, width: usize,
            end_y: usize, x: usize, channel_sizes: SmallVec<[usize; 8]>,
            byte: usize, channel: usize, y: usize,
        }

        // FIXME what about sub sampling??

        impl Iterator for LineIter {
            type Item = (Range<usize>, LineIndex);
            // TODO size hint?

            fn next(&mut self) -> Option<Self::Item> {
                if self.y < self.end_y {

                    // compute return value before incrementing
                    let byte_len = self.channel_sizes[self.channel];
                    let return_value = (
                        (self.byte .. self.byte + byte_len),
                        LineIndex {
                            channel: self.channel,
                            layer: self.layer,
                            level: self.level,
                            position: Vec2(self.x, self.y),
                            sample_count: self.width,
                        }
                    );

                    { // increment indices
                        self.byte += byte_len;
                        self.channel += 1;

                        if self.channel == self.channel_sizes.len() {
                            self.channel = 0;
                            self.y += 1;
                        }
                    }

                    Some(return_value)
                }

                else {
                    None
                }
            }
        }

        let channel_line_sizes: SmallVec<[usize; 8]> = channels.list.iter()
            .map(move |channel| block.pixel_size.0 * channel.sample_type.bytes_per_sample()) // FIXME is it fewer samples per tile or just fewer tiles for sampled images???
            .collect();

        LineIter {
            layer: block.layer,
            level: block.level,
            width: block.pixel_size.0,
            x: block.pixel_position.0,
            end_y: block.pixel_position.y() + block.pixel_size.height(),
            channel_sizes: channel_line_sizes,

            byte: 0,
            channel: 0,
            y: block.pixel_position.y()
        }
    }
}



impl<'s> LineRefMut<'s> {

    /// Writes the samples (f16, f32, u32 values) into this line value reference.
    /// Use `write_samples` if there is not slice available.
    #[inline]
    #[must_use]
    pub fn write_samples_from_slice<T: crate::io::Data>(self, slice: &[T]) -> UnitResult {
        debug_assert_eq!(slice.len(), self.location.sample_count, "slice size does not match the line width");
        debug_assert_eq!(self.value.len(), self.location.sample_count * T::BYTE_SIZE, "sample type size does not match line byte size");

        T::write_slice(&mut Cursor::new(self.value), slice)
    }

    /// Iterate over all samples in this line, from left to right.
    /// The supplied `get_line` function returns the sample value
    /// for a given sample index within the line,
    /// which starts at zero for each individual line.
    /// Use `write_samples_from_slice` if you already have a slice of samples.
    #[inline]
    #[must_use]
    pub fn write_samples<T: crate::io::Data>(self, mut get_sample: impl FnMut(usize) -> T) -> UnitResult {
        debug_assert_eq!(self.value.len(), self.location.sample_count * T::BYTE_SIZE, "sample type size does not match line byte size");

        let mut write = Cursor::new(self.value);

        for index in 0..self.location.sample_count {
            T::write(get_sample(index), &mut write)?;
        }

        Ok(())
    }
}

impl LineRef<'_> {

    /// Read the samples (f16, f32, u32 values) from this line value reference.
    /// Use `read_samples` if there is not slice available.
    pub fn read_samples_into_slice<T: crate::io::Data>(self, slice: &mut [T]) -> UnitResult {
        debug_assert_eq!(slice.len(), self.location.sample_count, "slice size does not match the line width");
        debug_assert_eq!(self.value.len(), self.location.sample_count * T::BYTE_SIZE, "sample type size does not match line byte size");

        T::read_slice(&mut Cursor::new(self.value), slice)
    }

    /// Iterate over all samples in this line, from left to right.
    /// Use `read_sample_into_slice` if you already have a slice of samples.
    pub fn read_samples<T: crate::io::Data>(&self) -> impl Iterator<Item = Result<T>> + '_ {
        debug_assert_eq!(self.value.len(), self.location.sample_count * T::BYTE_SIZE, "sample type size does not match line byte size");

        let mut read = self.value; // FIXME deep data
        (0..self.location.sample_count).map(move |_| T::read(&mut read))
    }
}