exr/compression/b44/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
mod table;

use crate::compression::{mod_p, ByteVec};
use crate::error::usize_to_i32;
use crate::io::Data;
use crate::meta::attribute::ChannelList;
use crate::prelude::*;
use std::cmp::min;
use std::mem::size_of;
use table::{EXP_TABLE, LOG_TABLE};
use lebe::io::{ReadPrimitive, WriteEndian};

const BLOCK_SAMPLE_COUNT: usize = 4;

// As B44 compression is only use on f16 channels, we can have a conste for this value.
const BLOCK_X_BYTE_COUNT: usize = BLOCK_SAMPLE_COUNT * size_of::<u16>();

#[inline]
fn convert_from_linear(s: &mut [u16; 16]) {
    for v in s {
        *v = EXP_TABLE[*v as usize];
    }
}

#[inline]
fn convert_to_linear(s: &mut [u16; 16]) {
    for v in s {
        *v = LOG_TABLE[*v as usize];
    }
}

#[inline]
fn shift_and_round(x: i32, shift: i32) -> i32 {
    let x = x << 1;
    let a = (1 << shift) - 1;
    let shift = shift + 1;
    let b = (x >> shift) & 1;
    (x + a + b) >> shift
}

/// Pack a block of 4 by 4 16-bit pixels (32 bytes, the array `s`) into either 14 or 3 bytes.
fn pack(s: [u16; 16], b: &mut [u8], optimize_flat_fields: bool, exact_max: bool) -> usize {

    let mut t = [0u16; 16];

    for i in 0..16 {
        if (s[i] & 0x7c00) == 0x7c00 {
            t[i] = 0x8000;
        } else if (s[i] & 0x8000) != 0 {
            t[i] = !s[i];
        } else {
            t[i] = s[i] | 0x8000;
        }
    }

    let t_max = t.iter().max().unwrap();

    // Compute a set of running differences, r[0] ... r[14]:
    // Find a shift value such that after rounding off the
    // rightmost bits and shifting all differences are between
    // -32 and +31.  Then bias the differences so that they
    // end up between 0 and 63.
    let mut shift = -1;
    let mut d = [0i32; 16];
    let mut r = [0i32; 15];
    let mut r_min: i32;
    let mut r_max: i32;

    const BIAS: i32 = 0x20;

    loop {
        shift += 1;

        // Compute absolute differences, d[0] ... d[15],
        // between t_max and t[0] ... t[15].
        //
        // Shift and round the absolute differences.
        d.iter_mut()
            .zip(&t)
            .for_each(|(d_v, t_v)| *d_v = shift_and_round((t_max - t_v).into(), shift));

        // Convert d[0] .. d[15] into running differences
        r[0] = d[0] - d[4] + BIAS;
        r[1] = d[4] - d[8] + BIAS;
        r[2] = d[8] - d[12] + BIAS;

        r[3] = d[0] - d[1] + BIAS;
        r[4] = d[4] - d[5] + BIAS;
        r[5] = d[8] - d[9] + BIAS;
        r[6] = d[12] - d[13] + BIAS;

        r[7] = d[1] - d[2] + BIAS;
        r[8] = d[5] - d[6] + BIAS;
        r[9] = d[9] - d[10] + BIAS;
        r[10] = d[13] - d[14] + BIAS;

        r[11] = d[2] - d[3] + BIAS;
        r[12] = d[6] - d[7] + BIAS;
        r[13] = d[10] - d[11] + BIAS;
        r[14] = d[14] - d[15] + BIAS;

        r_min = r[0];
        r_max = r[0];

        r.iter().copied().for_each(|v| {
            if r_min > v {
                r_min = v;
            }

            if r_max < v {
                r_max = v;
            }
        });

        if !(r_min < 0 || r_max > 0x3f) {
            break;
        }
    }

    if r_min == BIAS && r_max == BIAS && optimize_flat_fields {
        // Special case - all pixels have the same value.
        // We encode this in 3 instead of 14 bytes by
        // storing the value 0xfc in the third output byte,
        // which cannot occur in the 14-byte encoding.
        b[0] = (t[0] >> 8) as u8;
        b[1] = t[0] as u8;
        b[2] = 0xfc;

        return 3;
    }

    if exact_max {
        // Adjust t[0] so that the pixel whose value is equal
        // to t_max gets represented as accurately as possible.
        t[0] = t_max - (d[0] << shift) as u16;
    }

    // Pack t[0], shift and r[0] ... r[14] into 14 bytes:
    b[0] = (t[0] >> 8) as u8;
    b[1] = t[0] as u8;

    b[2] = ((shift << 2) | (r[0] >> 4)) as u8;
    b[3] = ((r[0] << 4) | (r[1] >> 2)) as u8;
    b[4] = ((r[1] << 6) | r[2]) as u8;

    b[5] = ((r[3] << 2) | (r[4] >> 4)) as u8;
    b[6] = ((r[4] << 4) | (r[5] >> 2)) as u8;
    b[7] = ((r[5] << 6) | r[6]) as u8;

    b[8] = ((r[7] << 2) | (r[8] >> 4)) as u8;
    b[9] = ((r[8] << 4) | (r[9] >> 2)) as u8;
    b[10] = ((r[9] << 6) | r[10]) as u8;

    b[11] = ((r[11] << 2) | (r[12] >> 4)) as u8;
    b[12] = ((r[12] << 4) | (r[13] >> 2)) as u8;
    b[13] = ((r[13] << 6) | r[14]) as u8;

    return 14;
}

// Tiny macro to simply get block array value as a u32.
macro_rules! b32 {
    ($b:expr, $i:expr) => {
        $b[$i] as u32
    };
}

// 0011 1111
const SIX_BITS: u32 = 0x3f;

// Unpack a 14-byte block into 4 by 4 16-bit pixels.
fn unpack14(b: &[u8], s: &mut [u16; 16]) {
    debug_assert_eq!(b.len(), 14);
    debug_assert_ne!(b[2], 0xfc);

    s[0] = ((b32!(b, 0) << 8) | b32!(b, 1)) as u16;

    let shift = b32!(b, 2) >> 2;
    let bias = 0x20 << shift;

    s[4] = (s[0] as u32 + ((((b32!(b, 2) << 4) | (b32!(b, 3) >> 4)) & SIX_BITS) << shift) - bias) as u16;
    s[8] = (s[4] as u32 + ((((b32!(b, 3) << 2) | (b32!(b, 4) >> 6)) & SIX_BITS) << shift) - bias) as u16;
    s[12] = (s[8] as u32 + ((b32!(b, 4) & SIX_BITS) << shift) - bias) as u16;

    s[1] = (s[0] as u32 + ((b32!(b, 5) >> 2) << shift) - bias) as u16;
    s[5] = (s[4] as u32 + ((((b32!(b, 5) << 4) | (b32!(b, 6) >> 4)) & SIX_BITS) << shift) - bias) as u16;
    s[9] = (s[8] as u32 + ((((b32!(b, 6) << 2) | (b32!(b, 7) >> 6)) & SIX_BITS) << shift) - bias) as u16;
    s[13] = (s[12] as u32 + ((b32!(b, 7) & SIX_BITS) << shift) - bias) as u16;

    s[2] = (s[1] as u32 + ((b32!(b, 8) >> 2) << shift) - bias) as u16;
    s[6] = (s[5] as u32 + ((((b32!(b, 8) << 4) | (b32!(b, 9) >> 4)) & SIX_BITS) << shift)  - bias) as u16;
    s[10] = (s[9] as u32 + ((((b32!(b, 9) << 2) | (b32!(b, 10) >> 6)) & SIX_BITS) << shift) - bias) as u16;
    s[14] = (s[13] as u32 + ((b32!(b, 10) & SIX_BITS) << shift) - bias) as u16;

    s[3] = (s[2] as u32 + ((b32!(b, 11) >> 2) << shift) - bias) as u16;
    s[7] = (s[6] as u32 + ((((b32!(b, 11) << 4) | (b32!(b, 12) >> 4)) & SIX_BITS) << shift) - bias) as u16;
    s[11] = (s[10] as u32 + ((((b32!(b, 12) << 2) | (b32!(b, 13) >> 6)) & SIX_BITS) << shift) - bias) as u16;
    s[15] = (s[14] as u32 + ((b32!(b, 13) & SIX_BITS) << shift) - bias) as u16;

    for i in 0..16 {
        if (s[i] & 0x8000) != 0 {
            s[i] &= 0x7fff;
        } else {
            s[i] = !s[i];
        }
    }
}

// Unpack a 3-byte block `b` into 4 by 4 identical 16-bit pixels in `s` array.
fn unpack3(b: &[u8], s: &mut [u16; 16]) {
    // this assertion panics for fuzzed images.
    // assuming this debug assertion is an overly strict check to catch potential compression errors.
    // disabling because it panics when fuzzed.
    // when commenting out, it simply works (maybe it should return an error instead?).
    // debug_assert_eq!(b[2], 0xfc);

    // Get the 16-bit value from the block.
    let mut value = ((b32!(b, 0) << 8) | b32!(b, 1)) as u16;

    if (value & 0x8000) != 0 {
        value &= 0x7fff;
    } else {
        value = !value;
    }

    s.fill(value); // All pixels have save value.
}

#[derive(Debug)]
struct ChannelData {
    tmp_start_index: usize,
    tmp_end_index: usize,
    resolution: Vec2<usize>,
    y_sampling: usize,
    sample_type: SampleType,
    quantize_linearly: bool,
    samples_per_pixel: usize,
}

// TODO: Unsafe seems to be required to efficiently copy whole slice of u16 ot u8. For now, we use
//   a less efficient, yet safe, implementation.
#[inline]
fn memcpy_u16_to_u8(src: &[u16], mut dst: &mut [u8]) {
    use lebe::prelude::*;
    dst.write_as_native_endian(src).expect("byte copy error");
}

#[inline]
fn memcpy_u8_to_u16(mut src: &[u8], dst: &mut [u16]) {
    use lebe::prelude::*;
    src.read_from_native_endian_into(dst).expect("byte copy error");
}

#[inline]
fn cpy_u8(src: &[u16], src_i: usize, dst: &mut [u8], dst_i: usize, n: usize) {
    memcpy_u16_to_u8(&src[src_i..src_i + n], &mut dst[dst_i..dst_i + 2 * n]);
}

pub fn decompress(
    channels: &ChannelList,
    compressed: ByteVec,
    rectangle: IntegerBounds,
    expected_byte_size: usize,
    _pedantic: bool,
) -> Result<ByteVec> {
    debug_assert_eq!(
        expected_byte_size,
        rectangle.size.area() * channels.bytes_per_pixel,
        "expected byte size does not match header" // TODO compute instead of passing argument?
    );

    debug_assert!(!channels.list.is_empty(), "no channels found");

    if compressed.is_empty() {
        return Ok(Vec::new());
    }

    // Extract channel information needed for decompression.
    let mut channel_data: Vec<ChannelData> = Vec::with_capacity(channels.list.len());
    let mut tmp_read_index = 0;

    for channel in channels.list.iter() {
        let channel = ChannelData {
            tmp_start_index: tmp_read_index,
            tmp_end_index: tmp_read_index,
            resolution: channel.subsampled_resolution(rectangle.size),
            y_sampling: channel.sampling.y(),
            sample_type: channel.sample_type,
            quantize_linearly: channel.quantize_linearly,
            samples_per_pixel: channel.sampling.area(),
        };

        tmp_read_index += channel.resolution.area()
            * channel.samples_per_pixel
            * channel.sample_type.bytes_per_sample();

        channel_data.push(channel);
    }

    // Temporary buffer is used to decompress B44 datas the way they are stored in the compressed
    // buffer (channel by channel). We interleave the final result later.
    let mut tmp = Vec::with_capacity(expected_byte_size);

    // Index in the compressed buffer.
    let mut in_i = 0usize;

    let mut remaining = compressed.len();

    for channel in &channel_data {

        debug_assert_eq!(remaining, compressed.len()-in_i);

        // Compute information for current channel.
        let sample_count = channel.resolution.area() * channel.samples_per_pixel;
        let byte_count = sample_count * channel.sample_type.bytes_per_sample();

        // Sample types that does not support B44 compression (u32 and f32) are raw copied.
        // In this branch, "compressed" array is actually raw, uncompressed data.
        if channel.sample_type != SampleType::F16 {

            debug_assert_eq!(channel.sample_type.bytes_per_sample(), 4);

            if remaining < byte_count {
                return Err(Error::invalid("not enough data"));
            }

            tmp.extend_from_slice(&compressed[in_i..(in_i + byte_count)]);

            in_i += byte_count;
            remaining -= byte_count;

            continue;
        }

        // HALF channel
        // The rest of the code assume we are manipulating u16 (2 bytes) values.
        debug_assert_eq!(channel.sample_type, SampleType::F16);
        debug_assert_eq!(channel.sample_type.bytes_per_sample(), size_of::<u16>());

        // Increase buffer to get new uncompressed datas.
        tmp.resize(tmp.len() + byte_count, 0);

        let x_sample_count = channel.resolution.x() * channel.samples_per_pixel;
        let y_sample_count = channel.resolution.y() * channel.samples_per_pixel;

        let bytes_per_sample = size_of::<u16>();

        let x_byte_count = x_sample_count * bytes_per_sample;
        let cd_start = channel.tmp_start_index;

        for y in (0..y_sample_count).step_by(BLOCK_SAMPLE_COUNT) {
            // Compute index in output (decompressed) buffer. We have 4 rows, because we will
            // uncompress 4 by 4 data blocks.
            let mut row0 = cd_start + y * x_byte_count;
            let mut row1 = row0 + x_byte_count;
            let mut row2 = row1 + x_byte_count;
            let mut row3 = row2 + x_byte_count;

            // Move in pixel x line, 4 by 4.
            for x in (0..x_sample_count).step_by(BLOCK_SAMPLE_COUNT) {

                // Extract the 4 by 4 block of 16-bit floats from the compressed buffer.
                let mut s = [0u16; 16];

                if remaining < 3 {
                    return Err(Error::invalid("not enough data"));
                }

                // If shift exponent is 63, call unpack14 (ignoring unused bits)
                if compressed[in_i + 2] >= (13 << 2) {
                    if remaining < 3 {
                        return Err(Error::invalid("not enough data"));
                    }

                    unpack3(&compressed[in_i..(in_i + 3)], &mut s);

                    in_i += 3;
                    remaining -= 3;
                } else {
                    if remaining < 14 {
                        return Err(Error::invalid("not enough data"));
                    }

                    unpack14(&compressed[in_i..(in_i + 14)], &mut s);

                    in_i += 14;
                    remaining -= 14;
                }

                if channel.quantize_linearly {
                    convert_to_linear(&mut s);
                }

                // Get resting samples from the line to copy in temp buffer (without going outside channel).
                let x_resting_sample_count = match x + 3 < x_sample_count {
                    true => BLOCK_SAMPLE_COUNT,
                    false => x_sample_count - x,
                };

                debug_assert!(x_resting_sample_count > 0);
                debug_assert!(x_resting_sample_count <= BLOCK_SAMPLE_COUNT);

                // Copy rows (without going outside channel).
                if y + 3 < y_sample_count {
                    cpy_u8(&s, 0, &mut tmp, row0, x_resting_sample_count);
                    cpy_u8(&s, 4, &mut tmp, row1, x_resting_sample_count);
                    cpy_u8(&s, 8, &mut tmp, row2, x_resting_sample_count);
                    cpy_u8(&s, 12, &mut tmp, row3, x_resting_sample_count);
                } else {
                    debug_assert!(y < y_sample_count);

                    cpy_u8(&s, 0, &mut tmp, row0, x_resting_sample_count);

                    if y + 1 < y_sample_count {
                        cpy_u8(&s, 4, &mut tmp, row1, x_resting_sample_count);
                    }

                    if y + 2 < y_sample_count {
                        cpy_u8(&s, 8, &mut tmp, row2, x_resting_sample_count);
                    }
                }

                // Update row's array index to 4 next pixels.
                row0 += BLOCK_X_BYTE_COUNT;
                row1 += BLOCK_X_BYTE_COUNT;
                row2 += BLOCK_X_BYTE_COUNT;
                row3 += BLOCK_X_BYTE_COUNT;
            }
        }
    }

    debug_assert_eq!(tmp.len(), expected_byte_size);

    // Interleave uncompressed channel data.
    let mut out = Vec::with_capacity(expected_byte_size);

    for y in rectangle.position.y()..rectangle.end().y() {
        for channel in &mut channel_data {
            if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 {
                continue;
            }

            // Find data location in temporary buffer.
            let x_sample_count = channel.resolution.x() * channel.samples_per_pixel;
            let bytes_per_line = x_sample_count * channel.sample_type.bytes_per_sample();
            let next_tmp_end_index = channel.tmp_end_index + bytes_per_line;
            let channel_bytes = &tmp[channel.tmp_end_index..next_tmp_end_index];

            channel.tmp_end_index = next_tmp_end_index;

            // TODO do not convert endianness for f16-only images
            //      see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
            // We can support uncompressed data in the machine's native format
            // if all image channels are of type HALF, and if the Xdr and the
            // native representations of a half have the same size.

            if channel.sample_type == SampleType::F16 {
                // TODO simplify this and make it memcpy on little endian systems
                // https://github.com/AcademySoftwareFoundation/openexr/blob/a03aca31fa1ce85d3f28627dbb3e5ded9494724a/src/lib/OpenEXR/ImfB44Compressor.cpp#L943
                for mut f16_bytes in channel_bytes.chunks(std::mem::size_of::<f16>()) {
                    let native_endian_f16_bits = u16::read_from_little_endian(&mut f16_bytes).expect("memory read failed");
                    out.write_as_native_endian(&native_endian_f16_bits).expect("memory write failed");
                }
            }
            else {
                u8::write_slice(&mut out, channel_bytes)
                    .expect("write to in-memory failed");
            }
        }
    }

    for index in 1..channel_data.len() {
        debug_assert_eq!(
            channel_data[index - 1].tmp_end_index,
            channel_data[index].tmp_start_index
        );
    }

    debug_assert_eq!(out.len(), expected_byte_size);

    // TODO do not convert endianness for f16-only images
    //      see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
    Ok(super::convert_little_endian_to_current(out, channels, rectangle))
}

pub fn compress(
    channels: &ChannelList,
    uncompressed: ByteVec,
    rectangle: IntegerBounds,
    optimize_flat_fields: bool,
) -> Result<ByteVec> {
    if uncompressed.is_empty() {
        return Ok(Vec::new());
    }

    // TODO do not convert endianness for f16-only images
    //      see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
    let uncompressed = super::convert_current_to_little_endian(uncompressed, channels, rectangle);
    let uncompressed = uncompressed.as_slice(); // TODO no alloc

    let mut channel_data = Vec::new();

    let mut tmp_end_index = 0;
    for channel in &channels.list {
        let number_samples = channel.subsampled_resolution(rectangle.size);

        let sample_count = channel.subsampled_resolution(rectangle.size).area();
        let byte_count = sample_count * channel.sample_type.bytes_per_sample();

        let channel = ChannelData {
            tmp_start_index: tmp_end_index,
            tmp_end_index,
            y_sampling: channel.sampling.y(),
            resolution: number_samples,
            sample_type: channel.sample_type,
            quantize_linearly: channel.quantize_linearly,
            samples_per_pixel: channel.sampling.area(),
        };

        tmp_end_index += byte_count;
        channel_data.push(channel);
    }

    let mut tmp = vec![0_u8; uncompressed.len()];

    debug_assert_eq!(tmp_end_index, tmp.len());

    let mut remaining_uncompressed_bytes = uncompressed;

    for y in rectangle.position.y()..rectangle.end().y() {
        for channel in &mut channel_data {
            if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 {
                continue;
            }

            let x_sample_count = channel.resolution.x() * channel.samples_per_pixel;
            let bytes_per_line = x_sample_count * channel.sample_type.bytes_per_sample();
            let next_tmp_end_index = channel.tmp_end_index + bytes_per_line;
            let target = &mut tmp[channel.tmp_end_index..next_tmp_end_index];

            channel.tmp_end_index = next_tmp_end_index;

            // TODO do not convert endianness for f16-only images
            //      see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
            // We can support uncompressed data in the machine's native format
            // if all image channels are of type HALF, and if the Xdr and the
            // native representations of a half have the same size.

            if channel.sample_type == SampleType::F16 {

                // TODO simplify this and make it memcpy on little endian systems
                // https://github.com/AcademySoftwareFoundation/openexr/blob/a03aca31fa1ce85d3f28627dbb3e5ded9494724a/src/lib/OpenEXR/ImfB44Compressor.cpp#L640

                for mut out_f16_bytes in target.chunks_mut(2) {
                    let native_endian_f16_bits = u16::read_from_native_endian(&mut remaining_uncompressed_bytes).expect("memory read failed");
                    out_f16_bytes.write_as_little_endian(&native_endian_f16_bits).expect("memory write failed");
                }
            }
            else {
                u8::read_slice(&mut remaining_uncompressed_bytes, target)
                    .expect("in-memory read failed");
            }
        }
    }

    // Generate a whole buffer that we will crop to proper size once compression is done.
    let mut b44_compressed = vec![0; std::cmp::max(2048, uncompressed.len())];
    let mut b44_end = 0; // Buffer byte index for storing next compressed values.

    for channel in &channel_data {
        // U32 and F32 channels are raw copied.
        if channel.sample_type != SampleType::F16 {

            debug_assert_eq!(channel.sample_type.bytes_per_sample(), 4);

            // Raw byte copy.
            let slice = &tmp[channel.tmp_start_index..channel.tmp_end_index];
            slice.iter().copied().for_each(|b| {
                b44_compressed[b44_end] = b;
                b44_end += 1;
            });

            continue;
        }

        // HALF channel
        debug_assert_eq!(channel.sample_type, SampleType::F16);
        debug_assert_eq!(channel.sample_type.bytes_per_sample(), size_of::<u16>());

        let x_sample_count = channel.resolution.x() * channel.samples_per_pixel;
        let y_sample_count = channel.resolution.y() * channel.samples_per_pixel;

        let x_byte_count = x_sample_count * size_of::<u16>();
        let cd_start = channel.tmp_start_index;

        for y in (0..y_sample_count).step_by(BLOCK_SAMPLE_COUNT) {
            //
            // Copy the next 4x4 pixel block into array s.
            // If the width, cd.nx, or the height, cd.ny, of
            // the pixel data in _tmpBuffer is not divisible
            // by 4, then pad the data by repeating the
            // rightmost column and the bottom row.
            //

            // Compute row index in temp buffer.
            let mut row0 = cd_start + y * x_byte_count;
            let mut row1 = row0 + x_byte_count;
            let mut row2 = row1 + x_byte_count;
            let mut row3 = row2 + x_byte_count;

            if y + 3 >= y_sample_count {
                if y + 1 >= y_sample_count {
                    row1 = row0;
                }

                if y + 2 >= y_sample_count {
                    row2 = row1;
                }

                row3 = row2;
            }

            for x in (0..x_sample_count).step_by(BLOCK_SAMPLE_COUNT) {
                let mut s = [0u16; 16];

                if x + 3 >= x_sample_count {
                    let n = x_sample_count - x;

                    for i in 0..BLOCK_SAMPLE_COUNT {
                        let j = min(i, n - 1) * 2;

                        // TODO: Make [u8; 2] to u16 fast.
                        s[i + 0] = u16::from_ne_bytes([tmp[row0 + j], tmp[row0 + j + 1]]);
                        s[i + 4] = u16::from_ne_bytes([tmp[row1 + j], tmp[row1 + j + 1]]);
                        s[i + 8] = u16::from_ne_bytes([tmp[row2 + j], tmp[row2 + j + 1]]);
                        s[i + 12] = u16::from_ne_bytes([tmp[row3 + j], tmp[row3 + j + 1]]);
                    }
                } else {
                    memcpy_u8_to_u16(&tmp[row0..(row0 + BLOCK_X_BYTE_COUNT)], &mut s[0..4]);
                    memcpy_u8_to_u16(&tmp[row1..(row1 + BLOCK_X_BYTE_COUNT)], &mut s[4..8]);
                    memcpy_u8_to_u16(&tmp[row2..(row2 + BLOCK_X_BYTE_COUNT)], &mut s[8..12]);
                    memcpy_u8_to_u16(&tmp[row3..(row3 + BLOCK_X_BYTE_COUNT)], &mut s[12..16]);
                }

                // Move to next block.
                row0 += BLOCK_X_BYTE_COUNT;
                row1 += BLOCK_X_BYTE_COUNT;
                row2 += BLOCK_X_BYTE_COUNT;
                row3 += BLOCK_X_BYTE_COUNT;

                // Compress the contents of array `s` and append the results to the output buffer.
                if channel.quantize_linearly {
                    convert_from_linear(&mut s);
                }

                b44_end += pack(
                    s,
                    &mut b44_compressed[b44_end..(b44_end + 14)],
                    optimize_flat_fields,
                    !channel.quantize_linearly,
                );
            }
        }
    }

    b44_compressed.resize(b44_end, 0);

    Ok(b44_compressed)
}

#[cfg(test)]
mod test {
    use crate::compression::b44;
    use crate::compression::b44::{convert_from_linear, convert_to_linear};
    use crate::compression::ByteVec;
    use crate::image::validate_results::ValidateResult;
    use crate::meta::attribute::ChannelList;
    use crate::prelude::f16;
    use crate::prelude::*;

    #[test]
    fn test_convert_from_to_linear() {
        // Create two identical arrays with random floats.
        let mut s1 = [0u16; 16];

        for i in 0..16 {
            s1[i] = f16::from_f32(rand::random::<f32>()).to_bits();
        }

        let s2 = s1.clone();

        // Apply two reversible conversion.
        convert_from_linear(&mut s1);
        convert_to_linear(&mut s1);

        // And check.
        for (u1, u2) in s1.iter().zip(&s2) {
            let f1 = f16::from_bits(*u1).to_f64();
            let f2 = f16::from_bits(*u2).to_f64();
            assert!((f1 - f2).abs() < 0.01);
        }
    }

    fn test_roundtrip_noise_with(
        channels: ChannelList,
        rectangle: IntegerBounds,
    ) -> (ByteVec, ByteVec, ByteVec) {
        let byte_count = channels
            .list
            .iter()
            .map(|c| {
                c.subsampled_resolution(rectangle.size).area() * c.sample_type.bytes_per_sample()
            })
            .sum();

        assert!(byte_count > 0);

        let pixel_bytes: ByteVec = (0..byte_count).map(|_| rand::random()).collect();

        assert_eq!(pixel_bytes.len(), byte_count);

        let compressed = b44::compress(&channels, pixel_bytes.clone(), rectangle, true).unwrap();

        let decompressed =
            b44::decompress(&channels, compressed.clone(), rectangle, pixel_bytes.len(), true).unwrap();

        assert_eq!(decompressed.len(), pixel_bytes.len());

        (pixel_bytes, compressed, decompressed)
    }

    #[test]
    fn roundtrip_noise_f16() {
        let channel = ChannelDescription {
            sample_type: SampleType::F16,
            name: Default::default(),
            quantize_linearly: false,
            sampling: Vec2(1, 1),
        };

        // Two similar channels.
        let channels = ChannelList::new(smallvec![channel.clone(), channel]);

        let rectangle = IntegerBounds {
            position: Vec2(-30, 100),
            size: Vec2(322, 731),
        };

        let (pixel_bytes, compressed, decompressed) =
            test_roundtrip_noise_with(channels, rectangle);

        // On my tests, B44 give a size of 44.08% the original data (this assert implies enough
        // pixels to be relevant).
        assert_eq!(pixel_bytes.len(), 941528);
        assert_eq!(compressed.len(), 415044);
        assert_eq!(decompressed.len(), 941528);
    }

    #[test]
    fn roundtrip_noise_f16_tiny() {
        let channel = ChannelDescription {
            sample_type: SampleType::F16,
            name: Default::default(),
            quantize_linearly: false,
            sampling: Vec2(1, 1),
        };

        // Two similar channels.
        let channels = ChannelList::new(smallvec![channel.clone(), channel]);

        let rectangle = IntegerBounds {
            position: Vec2(0, 0),
            size: Vec2(3, 2),
        };

        let (pixel_bytes, compressed, decompressed) =
            test_roundtrip_noise_with(channels, rectangle);

        // B44 being 4 by 4 block, compression is less efficient for tiny images.
        assert_eq!(pixel_bytes.len(), 24);
        assert_eq!(compressed.len(), 28);
        assert_eq!(decompressed.len(), 24);
    }

    #[test]
    fn roundtrip_noise_f32() {
        let channel = ChannelDescription {
            sample_type: SampleType::F32,
            name: Default::default(),
            quantize_linearly: false,
            sampling: Vec2(1, 1),
        };

        // Two similar channels.
        let channels = ChannelList::new(smallvec![channel.clone(), channel]);

        let rectangle = IntegerBounds {
            position: Vec2(-30, 100),
            size: Vec2(322, 731),
        };

        let (pixel_bytes, compressed, decompressed) =
            test_roundtrip_noise_with(channels, rectangle);

        assert_eq!(pixel_bytes.len(), 1883056);
        assert_eq!(compressed.len(), 1883056);
        assert_eq!(decompressed.len(), 1883056);
        assert_eq!(pixel_bytes, decompressed);
    }

    #[test]
    fn roundtrip_noise_f32_tiny() {
        let channel = ChannelDescription {
            sample_type: SampleType::F32,
            name: Default::default(),
            quantize_linearly: false,
            sampling: Vec2(1, 1),
        };

        // Two similar channels.
        let channels = ChannelList::new(smallvec![channel.clone(), channel]);

        let rectangle = IntegerBounds {
            position: Vec2(0, 0),
            size: Vec2(3, 2),
        };

        let (pixel_bytes, compressed, decompressed) =
            test_roundtrip_noise_with(channels, rectangle);

        assert_eq!(pixel_bytes.len(), 48);
        assert_eq!(compressed.len(), 48);
        assert_eq!(decompressed.len(), 48);
        assert_eq!(pixel_bytes, decompressed);
    }

    #[test]
    fn roundtrip_noise_u32() {
        let channel = ChannelDescription {
            sample_type: SampleType::U32,
            name: Default::default(),
            quantize_linearly: false,
            sampling: Vec2(1, 1),
        };

        // Two similar channels.
        let channels = ChannelList::new(smallvec![channel.clone(), channel]);

        let rectangle = IntegerBounds {
            position: Vec2(-30, 100),
            size: Vec2(322, 731),
        };

        let (pixel_bytes, compressed, decompressed) =
            test_roundtrip_noise_with(channels, rectangle);

        assert_eq!(pixel_bytes.len(), 1883056);
        assert_eq!(compressed.len(), 1883056);
        assert_eq!(decompressed.len(), 1883056);
        assert_eq!(pixel_bytes, decompressed);
    }

    #[test]
    fn roundtrip_noise_u32_tiny() {
        let channel = ChannelDescription {
            sample_type: SampleType::U32,
            name: Default::default(),
            quantize_linearly: false,
            sampling: Vec2(1, 1),
        };

        // Two similar channels.
        let channels = ChannelList::new(smallvec![channel.clone(), channel]);

        let rectangle = IntegerBounds {
            position: Vec2(0, 0),
            size: Vec2(3, 2),
        };

        let (pixel_bytes, compressed, decompressed) =
            test_roundtrip_noise_with(channels, rectangle);

        assert_eq!(pixel_bytes.len(), 48);
        assert_eq!(compressed.len(), 48);
        assert_eq!(decompressed.len(), 48);
        assert_eq!(pixel_bytes, decompressed);
    }

    #[test]
    fn roundtrip_noise_mix_f32_f16_u32() {
        let channels = ChannelList::new(smallvec![
            ChannelDescription {
                sample_type: SampleType::F32,
                name: Default::default(),
                quantize_linearly: false,
                sampling: Vec2(1, 1),
            },
            ChannelDescription {
                sample_type: SampleType::F16,
                name: Default::default(),
                quantize_linearly: false,
                sampling: Vec2(1, 1),
            },
            ChannelDescription {
                sample_type: SampleType::U32,
                name: Default::default(),
                quantize_linearly: false,
                sampling: Vec2(1, 1),
            }
        ]);

        let rectangle = IntegerBounds {
            position: Vec2(-30, 100),
            size: Vec2(322, 731),
        };

        let (pixel_bytes, compressed, decompressed) =
            test_roundtrip_noise_with(channels, rectangle);

        assert_eq!(pixel_bytes.len(), 2353820);
        assert_eq!(compressed.len(), 2090578);
        assert_eq!(decompressed.len(), 2353820);
    }

    #[test]
    fn roundtrip_noise_mix_f32_f16_u32_tiny() {
        let channels = ChannelList::new(smallvec![
            ChannelDescription {
                sample_type: SampleType::F32,
                name: Default::default(),
                quantize_linearly: false,
                sampling: Vec2(1, 1),
            },
            ChannelDescription {
                sample_type: SampleType::F16,
                name: Default::default(),
                quantize_linearly: false,
                sampling: Vec2(1, 1),
            },
            ChannelDescription {
                sample_type: SampleType::U32,
                name: Default::default(),
                quantize_linearly: false,
                sampling: Vec2(1, 1),
            }
        ]);

        let rectangle = IntegerBounds {
            position: Vec2(0, 0),
            size: Vec2(3, 2),
        };

        let (pixel_bytes, compressed, decompressed) =
            test_roundtrip_noise_with(channels, rectangle);

        assert_eq!(pixel_bytes.len(), 60);
        assert_eq!(compressed.len(), 62);
        assert_eq!(decompressed.len(), 60);
    }

    #[test]
    fn border_on_multiview() {
        // This test is hard to reproduce, so we use the direct image.
        let path = "tests/images/valid/openexr/MultiView/Adjuster.exr";

        let read_image = read()
            .no_deep_data()
            .all_resolution_levels()
            .all_channels()
            .all_layers()
            .all_attributes()
            .non_parallel();

        let image = read_image.clone().from_file(path).unwrap();

        let mut tmp_bytes = Vec::new();
        image
            .write()
            .non_parallel()
            .to_buffered(std::io::Cursor::new(&mut tmp_bytes))
            .unwrap();

        let image2 = read_image
            .from_buffered(std::io::Cursor::new(tmp_bytes))
            .unwrap();

        image.assert_equals_result(&image2);
    }
}