exr/compression/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
//! Contains the compression attribute definition
//! and methods to compress and decompress data.
// private modules make non-breaking changes easier
mod zip;
mod rle;
mod piz;
mod pxr24;
mod b44;
use std::convert::TryInto;
use std::mem::size_of;
use half::f16;
use crate::meta::attribute::{IntegerBounds, SampleType, ChannelList};
use crate::error::{Result, Error, usize_to_i32};
use crate::meta::header::Header;
/// A byte vector.
pub type ByteVec = Vec<u8>;
/// A byte slice.
pub type Bytes<'s> = &'s [u8];
/// Specifies which compression method to use.
/// Use uncompressed data for fastest loading and writing speeds.
/// Use RLE compression for fast loading and writing with slight memory savings.
/// Use ZIP compression for slow processing with large memory savings.
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum Compression {
/// Store uncompressed values.
/// Produces large files that can be read and written very quickly.
/// Consider using RLE instead, as it provides some compression with almost equivalent speed.
Uncompressed,
/// Produces slightly smaller files
/// that can still be read and written rather quickly.
/// The compressed file size is usually between 60 and 75 percent of the uncompressed size.
/// Works best for images with large flat areas, such as masks and abstract graphics.
/// This compression method is lossless.
RLE,
/// Uses ZIP compression to compress each line. Slowly produces small images
/// which can be read with moderate speed. This compression method is lossless.
/// Might be slightly faster but larger than `ZIP16´.
ZIP1, // TODO ZIP { individual_lines: bool, compression_level: Option<u8> } // TODO specify zip compression level?
/// Uses ZIP compression to compress blocks of 16 lines. Slowly produces small images
/// which can be read with moderate speed. This compression method is lossless.
/// Might be slightly slower but smaller than `ZIP1´.
ZIP16, // TODO collapse with ZIP1
/// PIZ compression works well for noisy and natural images. Works better with larger tiles.
/// Only supported for flat images, but not for deep data.
/// This compression method is lossless.
// A wavelet transform is applied to the pixel data, and the result is Huffman-
// encoded. This scheme tends to provide the best compression ratio for the types of
// images that are typically processed at Industrial Light & Magic. Files are
// compressed and decompressed at roughly the same speed. For photographic
// images with film grain, the files are reduced to between 35 and 55 percent of their
// uncompressed size.
// PIZ compression works well for scan-line based files, and also for tiled files with
// large tiles, but small tiles do not shrink much. (PIZ-compressed data start with a
// relatively long header; if the input to the compressor is short, adding the header
// tends to offset any size reduction of the input.)
PIZ,
/// Like `ZIP1`, but reduces precision of `f32` images to `f24`.
/// Therefore, this is lossless compression for `f16` and `u32` data, lossy compression for `f32` data.
/// This compression method works well for depth
/// buffers and similar images, where the possible range of values is very large, but
/// where full 32-bit floating-point accuracy is not necessary. Rounding improves
/// compression significantly by eliminating the pixels' 8 least significant bits, which
/// tend to be very noisy, and therefore difficult to compress.
/// This produces really small image files. Only supported for flat images, not for deep data.
// After reducing 32-bit floating-point data to 24 bits by rounding (while leaving 16-bit
// floating-point data unchanged), differences between horizontally adjacent pixels
// are compressed with zlib, similar to ZIP. PXR24 compression preserves image
// channels of type HALF and UINT exactly, but the relative error of FLOAT data
// increases to about ???.
PXR24, // TODO specify zip compression level?
/// This is a lossy compression method for f16 images.
/// It's the predecessor of the `B44A` compression,
/// which has improved compression rates for uniformly colored areas.
/// You should probably use `B44A` instead of the plain `B44`.
///
/// Only supported for flat images, not for deep data.
// lossy 4-by-4 pixel block compression,
// flat fields are compressed more
// Channels of type HALF are split into blocks of four by four pixels or 32 bytes. Each
// block is then packed into 14 bytes, reducing the data to 44 percent of their
// uncompressed size. When B44 compression is applied to RGB images in
// combination with luminance/chroma encoding (see below), the size of the
// compressed pixels is about 22 percent of the size of the original RGB data.
// Channels of type UINT or FLOAT are not compressed.
// Decoding is fast enough to allow real-time playback of B44-compressed OpenEXR
// image sequences on commodity hardware.
// The size of a B44-compressed file depends on the number of pixels in the image,
// but not on the data in the pixels. All images with the same resolution and the same
// set of channels have the same size. This can be advantageous for systems that
// support real-time playback of image sequences; the predictable file size makes it
// easier to allocate space on storage media efficiently.
// B44 compression is only supported for flat images.
B44, // TODO B44 { optimize_uniform_areas: bool }
/// This is a lossy compression method for f16 images.
/// All f32 and u32 channels will be stored without compression.
/// All the f16 pixels are divided into 4x4 blocks.
/// Each block is then compressed as a whole.
///
/// The 32 bytes of a block will require only ~14 bytes after compression,
/// independent of the actual pixel contents. With chroma subsampling,
/// a block will be compressed to ~7 bytes.
/// Uniformly colored blocks will be compressed to ~3 bytes.
///
/// The 512 bytes of an f32 block will not be compressed at all.
///
/// Should be fast enough for realtime playback.
/// Only supported for flat images, not for deep data.
B44A, // TODO collapse with B44
/// __This lossy compression is not yet supported by this implementation.__
// lossy DCT based compression, in blocks
// of 32 scanlines. More efficient for partial buffer access.
DWAA(Option<f32>), // TODO does this have a default value? make this non optional? default Compression Level setting is 45.0
/// __This lossy compression is not yet supported by this implementation.__
// lossy DCT based compression, in blocks
// of 256 scanlines. More efficient space
// wise and faster to decode full frames
// than DWAA_COMPRESSION.
DWAB(Option<f32>), // TODO collapse with B44. default Compression Level setting is 45.0
}
impl std::fmt::Display for Compression {
fn fmt(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(formatter, "{} compression", match self {
Compression::Uncompressed => "no",
Compression::RLE => "rle",
Compression::ZIP1 => "zip line",
Compression::ZIP16 => "zip block",
Compression::B44 => "b44",
Compression::B44A => "b44a",
Compression::DWAA(_) => "dwaa",
Compression::DWAB(_) => "dwab",
Compression::PIZ => "piz",
Compression::PXR24 => "pxr24",
})
}
}
impl Compression {
/// Compress the image section of bytes.
pub fn compress_image_section(self, header: &Header, uncompressed_native_endian: ByteVec, pixel_section: IntegerBounds) -> Result<ByteVec> {
let max_tile_size = header.max_block_pixel_size();
assert!(pixel_section.validate(Some(max_tile_size)).is_ok(), "decompress tile coordinate bug");
if header.deep { assert!(self.supports_deep_data()) }
use self::Compression::*;
let compressed_little_endian = match self {
Uncompressed => {
return Ok(convert_current_to_little_endian(
uncompressed_native_endian, &header.channels, pixel_section
))
},
// we need to clone here, because we might have to fallback to the uncompressed data later (when compressed data is larger than raw data)
ZIP16 => zip::compress_bytes(&header.channels, uncompressed_native_endian.clone(), pixel_section),
ZIP1 => zip::compress_bytes(&header.channels, uncompressed_native_endian.clone(), pixel_section),
RLE => rle::compress_bytes(&header.channels, uncompressed_native_endian.clone(), pixel_section),
PIZ => piz::compress(&header.channels, uncompressed_native_endian.clone(), pixel_section),
PXR24 => pxr24::compress(&header.channels, uncompressed_native_endian.clone(), pixel_section),
B44 => b44::compress(&header.channels, uncompressed_native_endian.clone(), pixel_section, false),
B44A => b44::compress(&header.channels, uncompressed_native_endian.clone(), pixel_section, true),
_ => return Err(Error::unsupported(format!("yet unimplemented compression method: {}", self)))
};
let compressed_little_endian = compressed_little_endian.map_err(|_|
Error::invalid(format!("pixels cannot be compressed ({})", self))
)?;
if self == Uncompressed || compressed_little_endian.len() < uncompressed_native_endian.len() {
// only write compressed if it actually is smaller than raw
Ok(compressed_little_endian)
}
else {
// if we do not use compression, manually convert uncompressed data
Ok(convert_current_to_little_endian(uncompressed_native_endian, &header.channels, pixel_section))
}
}
/// Decompress the image section of bytes.
pub fn decompress_image_section(self, header: &Header, compressed: ByteVec, pixel_section: IntegerBounds, pedantic: bool) -> Result<ByteVec> {
let max_tile_size = header.max_block_pixel_size();
assert!(pixel_section.validate(Some(max_tile_size)).is_ok(), "decompress tile coordinate bug");
if header.deep { assert!(self.supports_deep_data()) }
let expected_byte_size = pixel_section.size.area() * header.channels.bytes_per_pixel; // FIXME this needs to account for subsampling anywhere
// note: always true where self == Uncompressed
if compressed.len() == expected_byte_size {
// the compressed data was larger than the raw data, so the small raw data has been written
Ok(convert_little_endian_to_current(compressed, &header.channels, pixel_section))
}
else {
use self::Compression::*;
let bytes = match self {
Uncompressed => Ok(convert_little_endian_to_current(compressed, &header.channels, pixel_section)),
ZIP16 => zip::decompress_bytes(&header.channels, compressed, pixel_section, expected_byte_size, pedantic),
ZIP1 => zip::decompress_bytes(&header.channels, compressed, pixel_section, expected_byte_size, pedantic),
RLE => rle::decompress_bytes(&header.channels, compressed, pixel_section, expected_byte_size, pedantic),
PIZ => piz::decompress(&header.channels, compressed, pixel_section, expected_byte_size, pedantic),
PXR24 => pxr24::decompress(&header.channels, compressed, pixel_section, expected_byte_size, pedantic),
B44 | B44A => b44::decompress(&header.channels, compressed, pixel_section, expected_byte_size, pedantic),
_ => return Err(Error::unsupported(format!("yet unimplemented compression method: {}", self)))
};
// map all errors to compression errors
let bytes = bytes
.map_err(|decompression_error| match decompression_error {
Error::NotSupported(message) =>
Error::unsupported(format!("yet unimplemented compression special case ({})", message)),
error => Error::invalid(format!(
"compressed {:?} data ({})",
self, error.to_string()
)),
})?;
if bytes.len() != expected_byte_size {
Err(Error::invalid("decompressed data"))
}
else { Ok(bytes) }
}
}
/// For scan line images and deep scan line images, one or more scan lines may be
/// stored together as a scan line block. The number of scan lines per block
/// depends on how the pixel data are compressed.
pub fn scan_lines_per_block(self) -> usize {
use self::Compression::*;
match self {
Uncompressed | RLE | ZIP1 => 1,
ZIP16 | PXR24 => 16,
PIZ | B44 | B44A | DWAA(_) => 32,
DWAB(_) => 256,
}
}
/// Deep data can only be compressed using RLE or ZIP compression.
pub fn supports_deep_data(self) -> bool {
use self::Compression::*;
match self {
Uncompressed | RLE | ZIP1 => true,
_ => false,
}
}
/// Most compression methods will reconstruct the exact pixel bytes,
/// but some might throw away unimportant data for specific types of samples.
pub fn is_lossless_for(self, sample_type: SampleType) -> bool {
use self::Compression::*;
match self {
PXR24 => sample_type != SampleType::F32, // pxr reduces f32 to f24
B44 | B44A => sample_type != SampleType::F16, // b44 only compresses f16 values, others are left uncompressed
Uncompressed | RLE | ZIP1 | ZIP16 | PIZ => true,
DWAB(_) | DWAA(_) => false,
}
}
/// Most compression methods will reconstruct the exact pixel bytes,
/// but some might throw away unimportant data in some cases.
pub fn may_loose_data(self) -> bool {
use self::Compression::*;
match self {
Uncompressed | RLE | ZIP1 | ZIP16 | PIZ => false,
PXR24 | B44 | B44A | DWAB(_) | DWAA(_) => true,
}
}
/// Most compression methods will reconstruct the exact pixel bytes,
/// but some might replace NaN with zeroes.
pub fn supports_nan(self) -> bool {
use self::Compression::*;
match self {
B44 | B44A | DWAB(_) | DWAA(_) => false, // TODO dwa might support it?
_ => true
}
}
}
// see https://github.com/AcademySoftwareFoundation/openexr/blob/6a9f8af6e89547bcd370ae3cec2b12849eee0b54/OpenEXR/IlmImf/ImfMisc.cpp#L1456-L1541
#[allow(unused)] // allows the extra parameters to be unused
fn convert_current_to_little_endian(mut bytes: ByteVec, channels: &ChannelList, rectangle: IntegerBounds) -> ByteVec {
#[cfg(target = "big_endian")]
reverse_block_endianness(&mut byte_vec, channels, rectangle);
bytes
}
#[allow(unused)] // allows the extra parameters to be unused
fn convert_little_endian_to_current(mut bytes: ByteVec, channels: &ChannelList, rectangle: IntegerBounds) -> ByteVec {
#[cfg(target = "big_endian")]
reverse_block_endianness(&mut bytes, channels, rectangle);
bytes
}
#[allow(unused)] // unused when on little endian system
fn reverse_block_endianness(bytes: &mut [u8], channels: &ChannelList, rectangle: IntegerBounds){
let mut remaining_bytes: &mut [u8] = bytes;
for y in rectangle.position.y() .. rectangle.end().y() {
for channel in &channels.list {
let line_is_subsampled = mod_p(y, usize_to_i32(channel.sampling.y())) != 0;
if line_is_subsampled { continue; }
let sample_count = rectangle.size.width() / channel.sampling.x();
match channel.sample_type {
SampleType::F16 => remaining_bytes = chomp_convert_n::<f16>(reverse_2_bytes, remaining_bytes, sample_count),
SampleType::F32 => remaining_bytes = chomp_convert_n::<f32>(reverse_4_bytes, remaining_bytes, sample_count),
SampleType::U32 => remaining_bytes = chomp_convert_n::<u32>(reverse_4_bytes, remaining_bytes, sample_count),
}
}
}
#[inline]
fn chomp_convert_n<T>(convert_single_value: fn(&mut[u8]), mut bytes: &mut [u8], count: usize) -> &mut [u8] {
let type_size = size_of::<T>();
let (line_bytes, rest) = bytes.split_at_mut(count * type_size);
let value_byte_chunks = line_bytes.chunks_exact_mut(type_size);
for value_bytes in value_byte_chunks {
convert_single_value(value_bytes);
}
rest
}
debug_assert!(remaining_bytes.is_empty(), "not all bytes were converted to little endian");
}
#[inline]
fn reverse_2_bytes(bytes: &mut [u8]){
// this code seems like it could be optimized easily by the compiler
let two_bytes: [u8; 2] = bytes.try_into().expect("invalid byte count");
bytes.copy_from_slice(&[two_bytes[1], two_bytes[0]]);
}
#[inline]
fn reverse_4_bytes(bytes: &mut [u8]){
let four_bytes: [u8; 4] = bytes.try_into().expect("invalid byte count");
bytes.copy_from_slice(&[four_bytes[3], four_bytes[2], four_bytes[1], four_bytes[0]]);
}
#[inline]
fn div_p (x: i32, y: i32) -> i32 {
if x >= 0 {
if y >= 0 { x / y }
else { -(x / -y) }
}
else {
if y >= 0 { -((y-1-x) / y) }
else { (-y-1-x) / -y }
}
}
#[inline]
fn mod_p(x: i32, y: i32) -> i32 {
x - y * div_p(x, y)
}
/// A collection of functions used to prepare data for compression.
mod optimize_bytes {
/// Integrate over all differences to the previous value in order to reconstruct sample values.
pub fn differences_to_samples(buffer: &mut [u8]) {
// The naive implementation is very simple:
//
// for index in 1..buffer.len() {
// buffer[index] = (buffer[index - 1] as i32 + buffer[index] as i32 - 128) as u8;
// }
//
// But we process elements in pairs to take advantage of instruction-level parallelism.
// When computations within a pair do not depend on each other, they can be processed in parallel.
// Since this function is responsible for a very large chunk of execution time,
// this tweak alone improves decoding performance of RLE images by 20%.
if let Some(first) = buffer.get(0) {
let mut previous = *first as i16;
for chunk in &mut buffer[1..].chunks_exact_mut(2) {
// no bounds checks here due to indices and chunk size being constant
let diff0 = chunk[0] as i16;
let diff1 = chunk[1] as i16;
// these two computations do not depend on each other, unlike in the naive version,
// so they can be executed by the CPU in parallel via instruction-level parallelism
let sample0 = (previous + diff0 - 128) as u8;
let sample1 = (previous + diff0 + diff1 - 128 * 2) as u8;
chunk[0] = sample0;
chunk[1] = sample1;
previous = sample1 as i16;
}
// handle the remaining element at the end not processed by the loop over pairs, if present
for elem in &mut buffer[1..].chunks_exact_mut(2).into_remainder().iter_mut() {
let sample = (previous + *elem as i16 - 128) as u8;
*elem = sample;
previous = sample as i16;
}
}
}
/// Derive over all values in order to produce differences to the previous value.
pub fn samples_to_differences(buffer: &mut [u8]){
// naive version:
// for index in (1..buffer.len()).rev() {
// buffer[index] = (buffer[index] as i32 - buffer[index - 1] as i32 + 128) as u8;
// }
//
// But we process elements in batches to take advantage of autovectorization.
// If the target platform has no vector instructions (e.g. 32-bit ARM without `-C target-cpu=native`)
// this will instead take advantage of instruction-level parallelism.
if let Some(first) = buffer.get(0) {
let mut previous = *first as i16;
// Chunk size is 16 because we process bytes (8 bits),
// and 8*16 = 128 bits is the size of a typical SIMD register.
// Even WASM has 128-bit SIMD registers.
for chunk in &mut buffer[1..].chunks_exact_mut(16) {
// no bounds checks here due to indices and chunk size being constant
let sample0 = chunk[0] as i16;
let sample1 = chunk[1] as i16;
let sample2 = chunk[2] as i16;
let sample3 = chunk[3] as i16;
let sample4 = chunk[4] as i16;
let sample5 = chunk[5] as i16;
let sample6 = chunk[6] as i16;
let sample7 = chunk[7] as i16;
let sample8 = chunk[8] as i16;
let sample9 = chunk[9] as i16;
let sample10 = chunk[10] as i16;
let sample11 = chunk[11] as i16;
let sample12 = chunk[12] as i16;
let sample13 = chunk[13] as i16;
let sample14 = chunk[14] as i16;
let sample15 = chunk[15] as i16;
// Unlike in decoding, computations in here are truly independent from each other,
// which enables the compiler to vectorize this loop.
// Even if the target platform has no vector instructions,
// so using more parallelism doesn't imply doing more work,
// and we're not really limited in how wide we can go.
chunk[0] = (sample0 - previous + 128) as u8;
chunk[1] = (sample1 - sample0 + 128) as u8;
chunk[2] = (sample2 - sample1 + 128) as u8;
chunk[3] = (sample3 - sample2 + 128) as u8;
chunk[4] = (sample4 - sample3 + 128) as u8;
chunk[5] = (sample5 - sample4 + 128) as u8;
chunk[6] = (sample6 - sample5 + 128) as u8;
chunk[7] = (sample7 - sample6 + 128) as u8;
chunk[8] = (sample8 - sample7 + 128) as u8;
chunk[9] = (sample9 - sample8 + 128) as u8;
chunk[10] = (sample10 - sample9 + 128) as u8;
chunk[11] = (sample11 - sample10 + 128) as u8;
chunk[12] = (sample12 - sample11 + 128) as u8;
chunk[13] = (sample13 - sample12 + 128) as u8;
chunk[14] = (sample14 - sample13 + 128) as u8;
chunk[15] = (sample15 - sample14 + 128) as u8;
previous = sample15;
}
// Handle the remaining element at the end not processed by the loop over batches, if present
// This is what the iterator-based version of this function would look like without vectorization
for elem in &mut buffer[1..].chunks_exact_mut(16).into_remainder().iter_mut() {
let diff = (*elem as i16 - previous + 128) as u8;
previous = *elem as i16;
*elem = diff;
}
}
}
use std::cell::Cell;
thread_local! {
// A buffer for reusing between invocations of interleaving and deinterleaving.
// Allocating memory is cheap, but zeroing or otherwise initializing it is not.
// Doing it hundreds of times (once per block) would be expensive.
// This optimization brings down the time spent in interleaving from 15% to 5%.
static SCRATCH_SPACE: Cell<Vec<u8>> = Cell::new(Vec::new());
}
fn with_reused_buffer<F>(length: usize, mut func: F) where F: FnMut(&mut [u8]) {
SCRATCH_SPACE.with(|scratch_space| {
// reuse a buffer if we've already initialized one
let mut buffer = scratch_space.take();
if buffer.len() < length {
// Efficiently create a zeroed Vec by requesting zeroed memory from the OS.
// This is slightly faster than a `memcpy()` plus `memset()` that would happen otherwise,
// but is not a big deal either way since it's not a hot codepath.
buffer = vec![0u8; length];
}
// call the function
func(&mut buffer[..length]);
// save the internal buffer for reuse
scratch_space.set(buffer);
});
}
/// Interleave the bytes such that the second half of the array is every other byte.
pub fn interleave_byte_blocks(separated: &mut [u8]) {
with_reused_buffer(separated.len(), |interleaved| {
// Split the two halves that we are going to interleave.
let (first_half, second_half) = separated.split_at((separated.len() + 1) / 2);
// The first half can be 1 byte longer than the second if the length of the input is odd,
// but the loop below only processes numbers in pairs.
// To handle it, preserve the last element of the first slice, to be handled after the loop.
let first_half_last = first_half.last();
// Truncate the first half to match the lenght of the second one; more optimizer-friendly
let first_half_iter = &first_half[..second_half.len()];
// Main loop that performs the interleaving
for ((first, second), interleaved) in first_half_iter.iter().zip(second_half.iter())
.zip(interleaved.chunks_exact_mut(2)) {
// The length of each chunk is known to be 2 at compile time,
// and each index is also a constant.
// This allows the compiler to remove the bounds checks.
interleaved[0] = *first;
interleaved[1] = *second;
}
// If the length of the slice was odd, restore the last element of the first half that we saved
if interleaved.len() % 2 == 1 {
if let Some(value) = first_half_last {
// we can unwrap() here because we just checked that the lenght is non-zero:
// `% 2 == 1` will fail for zero
*interleaved.last_mut().unwrap() = *value;
}
}
// write out the results
separated.copy_from_slice(&interleaved);
});
}
/// Separate the bytes such that the second half contains every other byte.
/// This performs deinterleaving - the inverse of interleaving.
pub fn separate_bytes_fragments(source: &mut [u8]) {
with_reused_buffer(source.len(), |separated| {
// Split the two halves that we are going to interleave.
let (first_half, second_half) = separated.split_at_mut((source.len() + 1) / 2);
// The first half can be 1 byte longer than the second if the length of the input is odd,
// but the loop below only processes numbers in pairs.
// To handle it, preserve the last element of the input, to be handled after the loop.
let last = source.last();
let first_half_iter = &mut first_half[..second_half.len()];
// Main loop that performs the deinterleaving
for ((first, second), interleaved) in first_half_iter.iter_mut().zip(second_half.iter_mut())
.zip(source.chunks_exact(2)) {
// The length of each chunk is known to be 2 at compile time,
// and each index is also a constant.
// This allows the compiler to remove the bounds checks.
*first = interleaved[0];
*second = interleaved[1];
}
// If the length of the slice was odd, restore the last element of the input that we saved
if source.len() % 2 == 1 {
if let Some(value) = last {
// we can unwrap() here because we just checked that the lenght is non-zero:
// `% 2 == 1` will fail for zero
*first_half.last_mut().unwrap() = *value;
}
}
// write out the results
source.copy_from_slice(&separated);
});
}
#[cfg(test)]
pub mod test {
#[test]
fn roundtrip_interleave(){
let source = vec![ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
let mut modified = source.clone();
super::separate_bytes_fragments(&mut modified);
super::interleave_byte_blocks(&mut modified);
assert_eq!(source, modified);
}
#[test]
fn roundtrip_derive(){
let source = vec![ 0, 1, 2, 7, 4, 5, 6, 7, 13, 9, 10 ];
let mut modified = source.clone();
super::samples_to_differences(&mut modified);
super::differences_to_samples(&mut modified);
assert_eq!(source, modified);
}
}
}
#[cfg(test)]
pub mod test {
use super::*;
use crate::meta::attribute::ChannelDescription;
use crate::block::samples::IntoNativeSample;
#[test]
fn roundtrip_endianness_mixed_channels(){
let a32 = ChannelDescription::new("A", SampleType::F32, true);
let y16 = ChannelDescription::new("Y", SampleType::F16, true);
let channels = ChannelList::new(smallvec![ a32, y16 ]);
let data = vec![
23582740683_f32.to_ne_bytes().as_slice(),
35827420683_f32.to_ne_bytes().as_slice(),
27406832358_f32.to_f16().to_ne_bytes().as_slice(),
74062358283_f32.to_f16().to_ne_bytes().as_slice(),
52582740683_f32.to_ne_bytes().as_slice(),
45827420683_f32.to_ne_bytes().as_slice(),
15406832358_f32.to_f16().to_ne_bytes().as_slice(),
65062358283_f32.to_f16().to_ne_bytes().as_slice(),
].into_iter().flatten().map(|x| *x).collect();
roundtrip_convert_endianness(
data, &channels,
IntegerBounds::from_dimensions((2, 2))
);
}
fn roundtrip_convert_endianness(
current_endian: ByteVec, channels: &ChannelList, rectangle: IntegerBounds
){
let little_endian = convert_current_to_little_endian(
current_endian.clone(), channels, rectangle
);
let current_endian_decoded = convert_little_endian_to_current(
little_endian.clone(), channels, rectangle
);
assert_eq!(current_endian, current_endian_decoded, "endianness conversion failed");
}
}