exr/compression/piz/
huffman.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
//! 16-bit Huffman compression and decompression.
//! Huffman compression and decompression routines written
//!	by Christian Rouet for his PIZ image file format.
// see https://github.com/AcademySoftwareFoundation/openexr/blob/88246d991e0318c043e6f584f7493da08a31f9f8/OpenEXR/IlmImf/ImfHuf.cpp

use crate::math::RoundingMode;
use crate::error::{Error, Result, UnitResult, u64_to_usize, u32_to_usize};
use crate::io::Data;
use std::{
    cmp::Ordering,
    collections::BinaryHeap,
    io::{Cursor, Read, Write},
};
use std::convert::TryFrom;
use smallvec::SmallVec;


pub fn decompress(compressed: &[u8], expected_size: usize) -> Result<Vec<u16>> {
    let mut remaining_compressed = compressed;

    let min_code_index = usize::try_from(u32::read(&mut remaining_compressed)?)?;
    let max_code_index_32 = u32::read(&mut remaining_compressed)?;
    let _table_size = usize::try_from(u32::read(&mut remaining_compressed)?)?; // TODO check this and return Err?
    let bit_count = usize::try_from(u32::read(&mut remaining_compressed)?)?;
    let _skipped = u32::read(&mut remaining_compressed)?; // what is this

    let max_code_index = usize::try_from(max_code_index_32).unwrap();
    if min_code_index >= ENCODING_TABLE_SIZE || max_code_index >= ENCODING_TABLE_SIZE {
        return Err(Error::invalid(INVALID_TABLE_SIZE));
    }

    if RoundingMode::Up.divide(bit_count, 8) > remaining_compressed.len() {
        return Err(Error::invalid(NOT_ENOUGH_DATA));
    }

    let encoding_table = read_encoding_table(&mut remaining_compressed, min_code_index, max_code_index)?;
    if bit_count > 8 * remaining_compressed.len() { return Err(Error::invalid(INVALID_BIT_COUNT)); }

    let decoding_table = build_decoding_table(&encoding_table, min_code_index, max_code_index)?;

    let result = decode_with_tables(
        &encoding_table,
        &decoding_table,
        &remaining_compressed,
        i32::try_from(bit_count)?,
        max_code_index_32,
        expected_size,
    )?;

    Ok(result)
}

pub fn compress(uncompressed: &[u16]) -> Result<Vec<u8>> {
    if uncompressed.is_empty() { return Ok(vec![]); }

    let mut frequencies = count_frequencies(uncompressed);
    let (min_code_index, max_code_index) = build_encoding_table(&mut frequencies);

    let mut result = Cursor::new(Vec::with_capacity(uncompressed.len()));
    u32::write_slice(&mut result, &[0; 5])?; // we come back to these later after we know more about the compressed data

    let table_start = result.position();
    pack_encoding_table(
        &frequencies,
        min_code_index,
        max_code_index,
        &mut result,
    )?;

    let data_start = result.position();
    let bit_count = encode_with_frequencies(
        &frequencies,
        uncompressed,
        max_code_index,
        &mut result
    )?;

    // write meta data after this
    result.set_position(0);
    let table_length = data_start - table_start;

    u32::try_from(min_code_index)?.write(&mut result)?;
    u32::try_from(max_code_index)?.write(&mut result)?;
    u32::try_from(table_length)?.write(&mut result)?;
    u32::try_from(bit_count)?.write(&mut result)?;
    0_u32.write(&mut result)?;

    Ok(result.into_inner())
}


const ENCODE_BITS: u64 = 16; // literal (value) bit length
const DECODE_BITS: u64 = 14; // decoding bit size (>= 8)

const ENCODING_TABLE_SIZE: usize = ((1 << ENCODE_BITS) + 1) as usize;
const DECODING_TABLE_SIZE: usize = (1 << DECODE_BITS) as usize;
const DECODE_MASK: u64 = DECODING_TABLE_SIZE as u64 - 1;

const SHORT_ZEROCODE_RUN: u64 = 59;
const LONG_ZEROCODE_RUN: u64 = 63;
const SHORTEST_LONG_RUN: u64 = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
const LONGEST_LONG_RUN: u64 = 255 + SHORTEST_LONG_RUN;


#[derive(Clone, Debug, Eq, PartialEq)]
enum Code {
    Empty,
    Short(ShortCode),
    Long(SmallVec<[u32; 2]>), // often 2, sometimes 4, rarely 8
}

#[derive(Clone, Debug, Eq, PartialEq)]
struct ShortCode {
    value: u32,
    len: u8,
}

impl ShortCode {
    #[inline] fn len(&self) -> u64 { u64::from(self.len) }
}

/// Decode (uncompress) n bits based on encoding & decoding tables:
fn decode_with_tables(
    encoding_table: &[u64],
    decoding_table: &[Code],
    mut input: &[u8],
    input_bit_count: i32,
    run_length_code: u32,
    expected_output_size: usize,
) -> Result<Vec<u16>>
{
    let mut output = Vec::with_capacity(expected_output_size);
    let mut code_bits = 0_u64;
    let mut code_bit_count = 0_u64;

    while input.len() > 0 {
        read_byte(&mut code_bits, &mut code_bit_count, &mut input)?;

        // Access decoding table
        while code_bit_count >= DECODE_BITS {
            let code_index = (code_bits >> (code_bit_count - DECODE_BITS)) & DECODE_MASK;
            let code = &decoding_table[u64_to_usize(code_index)];

            // Get short code
            if let Code::Short(code) = code {
                code_bit_count -= code.len();

                read_code_into_vec(
                    code.value,
                    run_length_code,
                    &mut code_bits,
                    &mut code_bit_count,
                    &mut input,
                    &mut output,
                    expected_output_size,
                )?;
            }
            else if let Code::Long(ref long_codes) = code {
                debug_assert_ne!(long_codes.len(), 0);

                let long_code = long_codes.iter()
                    .filter_map(|&long_code|{
                        let encoded_long_code = encoding_table[u32_to_usize(long_code)];
                        let length = length(encoded_long_code);

                        while code_bit_count < length && input.len() > 0 {
                            let err = read_byte(&mut code_bits, &mut code_bit_count, &mut input);
                            if let Err(err) = err { return Some(Err(err)); }
                        }

                        if code_bit_count >= length {
                            let required_code = (code_bits >> (code_bit_count - length)) & ((1 << length) - 1);

                            if self::code(encoded_long_code) == required_code {
                                code_bit_count -= length;
                                return Some(Ok(long_code));
                            }
                        }

                        None

                    })
                    .next()
                    .ok_or(Error::invalid(INVALID_CODE))?;

                read_code_into_vec(
                    long_code?,
                    run_length_code,
                    &mut code_bits,
                    &mut code_bit_count,
                    &mut input,
                    &mut output,
                    expected_output_size,
                )?;
            }
            else {
                return Err(Error::invalid(INVALID_CODE));
            }
        }
    }

    let count = u64::try_from((8 - input_bit_count) & 7)?;
    code_bits >>= count;

    code_bit_count = code_bit_count.checked_sub(count)
        .ok_or_else(|| Error::invalid("code"))?;

    while code_bit_count > 0 {
        let index = (code_bits << (DECODE_BITS - code_bit_count)) & DECODE_MASK;
        let code = &decoding_table[u64_to_usize(index)];

        if let Code::Short(short_code) = code {
            if short_code.len() > code_bit_count { return Err(Error::invalid("code")) }; // FIXME why does this happen??
            code_bit_count -= short_code.len(); // FIXME may throw "attempted to subtract with overflow"

            read_code_into_vec(
                short_code.value,
                run_length_code,
                &mut code_bits,
                &mut code_bit_count,
                &mut input,
                &mut output,
                expected_output_size,
            )?;
        }
        else {
            return Err(Error::invalid(INVALID_CODE));
        }
    }

    if output.len() != expected_output_size {
        return Err(Error::invalid(NOT_ENOUGH_DATA));
    }

    Ok(output)
}

/// Build a decoding hash table based on the encoding table code:
///	- short codes (<= HUF_DECBITS) are resolved with a single table access;
///	- long code entry allocations are not optimized, because long codes are
///	  unfrequent;
///	- decoding tables are used by hufDecode();
fn build_decoding_table(
    encoding_table: &[u64],
    min_code_index: usize,
    max_code_index: usize,
) -> Result<Vec<Code>>
{
    let mut decoding_table = vec![Code::Empty; DECODING_TABLE_SIZE]; // not an array because of code not being copy

    for (code_index, &encoded_code) in encoding_table[..= max_code_index].iter().enumerate().skip(min_code_index) {
        let code_index = u32::try_from(code_index).unwrap();

        let code = code(encoded_code);
        let length = length(encoded_code);

        if code >> length != 0 {
            return Err(Error::invalid(INVALID_TABLE_ENTRY));
        }

        if length > DECODE_BITS {
            let long_code = &mut decoding_table[u64_to_usize(code >> (length - DECODE_BITS))];

            match long_code {
                Code::Empty => *long_code = Code::Long(smallvec![code_index]),
                Code::Long(lits) => lits.push(code_index),
                _ => { return Err(Error::invalid(INVALID_TABLE_ENTRY)); }
            }
        }
        else if length != 0 {
            let default_value = Code::Short(ShortCode {
                value: code_index,
                len: length as u8,
            });

            let start_index = u64_to_usize(code << (DECODE_BITS - length));
            let count = u64_to_usize(1 << (DECODE_BITS - length));

            for value in &mut decoding_table[start_index .. start_index + count] {
                *value = default_value.clone();
            }
        }
    }

    Ok(decoding_table)
}

/// Run-length-decompresses all zero runs from the packed table to the encoding table
fn read_encoding_table(
    packed: &mut impl Read,
    min_code_index: usize,
    max_code_index: usize,
) -> Result<Vec<u64>>
{
    let mut code_bits = 0_u64;
    let mut code_bit_count = 0_u64;

    // TODO push() into encoding table instead of index stuff?
    let mut encoding_table = vec![0_u64; ENCODING_TABLE_SIZE];
    let mut code_index = min_code_index;
    while code_index <= max_code_index {
        let code_len = read_bits(6, &mut code_bits, &mut code_bit_count, packed)?;
        encoding_table[code_index] = code_len;

        if code_len == LONG_ZEROCODE_RUN {
            let zerun_bits = read_bits(8, &mut code_bits, &mut code_bit_count, packed)?;
            let zerun = usize::try_from(zerun_bits + SHORTEST_LONG_RUN).unwrap();

            if code_index + zerun > max_code_index + 1 {
                return Err(Error::invalid(TABLE_TOO_LONG));
            }

            for value in &mut encoding_table[code_index..code_index + zerun] {
                *value = 0;
            }

            code_index += zerun;
        }
        else if code_len >= SHORT_ZEROCODE_RUN {
            let duplication_count = usize::try_from(code_len - SHORT_ZEROCODE_RUN + 2).unwrap();
            if code_index + duplication_count > max_code_index + 1 {
                return Err(Error::invalid(TABLE_TOO_LONG));
            }

            for value in &mut encoding_table[code_index .. code_index + duplication_count] {
                *value = 0;
            }

            code_index += duplication_count;
        }
        else {
            code_index += 1;
        }
    }

    build_canonical_table(&mut encoding_table);
    Ok(encoding_table)
}

// TODO Use BitStreamReader for all the bit reads?!
#[inline]
fn read_bits(
    count: u64,
    code_bits: &mut u64,
    code_bit_count: &mut u64,
    input: &mut impl Read,
) -> Result<u64>
{
    while *code_bit_count < count {
        read_byte(code_bits, code_bit_count, input)?;
    }

    *code_bit_count -= count;
    Ok((*code_bits >> *code_bit_count) & ((1 << count) - 1))
}

#[inline]
fn read_byte(code_bits: &mut u64, bit_count: &mut u64, input: &mut impl Read) -> UnitResult {
    *code_bits = (*code_bits << 8) | u8::read(input)? as u64;
    *bit_count += 8;
    Ok(())
}

#[inline]
fn read_code_into_vec(
    code: u32,
    run_length_code: u32,
    code_bits: &mut u64,
    code_bit_count: &mut u64,
    read: &mut impl Read,
    out: &mut Vec<u16>,
    max_len: usize,
) -> UnitResult
{
    if code == run_length_code { // code may be too large for u16
        if *code_bit_count < 8 {
            read_byte(code_bits, code_bit_count, read)?;
        }

        *code_bit_count -= 8;

        let code_repetitions = usize::from((*code_bits >> *code_bit_count) as u8);

        if out.len() + code_repetitions > max_len {
            return Err(Error::invalid(TOO_MUCH_DATA));
        }
        else if out.is_empty() {
            return Err(Error::invalid(NOT_ENOUGH_DATA));
        }

        let repeated_code = *out.last().unwrap();
        out.extend(std::iter::repeat(repeated_code).take(code_repetitions));
    }
    else if out.len() < max_len { // implies that code is not larger than u16???
        out.push(u16::try_from(code)?);
    }
    else {
        return Err(Error::invalid(TOO_MUCH_DATA));
    }

    Ok(())
}

fn count_frequencies(data: &[u16]) -> Vec<u64> {
    let mut frequencies = vec![0_u64; ENCODING_TABLE_SIZE];

    for value in data {
        frequencies[*value as usize] += 1;
    }

    frequencies
}

fn write_bits(
    count: u64,
    bits: u64,
    code_bits: &mut u64,
    code_bit_count: &mut u64,
    mut out: impl Write,
) -> UnitResult
{
    *code_bits = (*code_bits << count) | bits;
    *code_bit_count += count;

    while *code_bit_count >= 8 {
        *code_bit_count -= 8;
        out.write(&[
            (*code_bits >> *code_bit_count) as u8 // TODO make sure never or always wraps?
        ])?;
    }

    Ok(())
}

fn write_code(scode: u64, code_bits: &mut u64, code_bit_count: &mut u64, mut out: impl Write) -> UnitResult {
    write_bits(length(scode), code(scode), code_bits, code_bit_count, &mut out)
}

#[inline(always)]
fn send_code(
    scode: u64,
    run_count: u64,
    run_code: u64,
    code_bits: &mut u64,
    code_bit_count: &mut u64,
    mut out: impl Write,
) -> UnitResult
{
    // Output a run of runCount instances of the symbol sCount.
    // Output the symbols explicitly, or if that is shorter, output
    // the sCode symbol once followed by a runCode symbol and runCount
    // expressed as an 8-bit number.
    if length(scode) + length(run_code) + 8 < length(scode) * run_count {
        write_code(scode, code_bits, code_bit_count, &mut out)?;
        write_code(run_code, code_bits, code_bit_count, &mut out)?;
        write_bits(8, run_count, code_bits, code_bit_count, &mut out)?;
    }
    else {
        for _ in 0 ..= run_count {
            write_code(scode, code_bits, code_bit_count, &mut out)?;
        }
    }

    Ok(())
}

fn encode_with_frequencies(
    frequencies: &[u64],
    uncompressed: &[u16],
    run_length_code: usize,
    mut out: &mut Cursor<Vec<u8>>,
) -> Result<u64>
{
    let mut code_bits = 0;
    let mut code_bit_count = 0;

    let mut run_start_value = uncompressed[0];
    let mut run_length = 0;

    let start_position = out.position();

    // Loop on input values
    for &current_value in &uncompressed[1..] {
        // Count same values or send code
        if run_start_value == current_value && run_length < 255 {
            run_length += 1;
        }
        else {
            send_code(
                frequencies[run_start_value as usize],
                run_length,
                frequencies[run_length_code],
                &mut code_bits,
                &mut code_bit_count,
                &mut out,
            )?;

            run_length = 0;
        }

        run_start_value = current_value;
    }

    // Send remaining code
    send_code(
        frequencies[run_start_value as usize],
        run_length,
        frequencies[run_length_code],
        &mut code_bits,
        &mut code_bit_count,
        &mut out,
    )?;

    let data_length = out.position() - start_position; // we shouldn't count the last byte write

    if code_bit_count != 0 {
        out.write(&[
            (code_bits << (8 - code_bit_count) & 0xff) as u8
        ])?;
    }

    Ok(data_length * 8 + code_bit_count)
}

///
/// Pack an encoding table:
///	- only code lengths, not actual codes, are stored
///	- runs of zeroes are compressed as follows:
///
///	  unpacked		packed
///	  --------------------------------
///	  1 zero		0	(6 bits)
///	  2 zeroes		59
///	  3 zeroes		60
///	  4 zeroes		61
///	  5 zeroes		62
///	  n zeroes (6 or more)	63 n-6	(6 + 8 bits)
///
fn pack_encoding_table(
    frequencies: &[u64],
    min_index: usize,
    max_index: usize,
    mut out: &mut Cursor<Vec<u8>>,
) -> UnitResult
{
    let mut code_bits = 0_u64;
    let mut code_bit_count = 0_u64;

    let mut frequency_index = min_index;
    while frequency_index <= max_index { // TODO slice iteration?
        let code_length = length(frequencies[frequency_index]);

        if code_length == 0 {
            let mut zero_run = 1;

            while frequency_index < max_index && zero_run < LONGEST_LONG_RUN {
                if length(frequencies[frequency_index + 1]) > 0 {
                    break;
                }

                frequency_index += 1;
                zero_run += 1;
            }

            if zero_run >= 2 {
                if zero_run >= SHORTEST_LONG_RUN {
                    write_bits(6, LONG_ZEROCODE_RUN, &mut code_bits, &mut code_bit_count, &mut out)?;
                    write_bits(8, zero_run - SHORTEST_LONG_RUN, &mut code_bits, &mut code_bit_count, &mut out)?;
                }
                else {
                    write_bits(6, SHORT_ZEROCODE_RUN + zero_run - 2, &mut code_bits, &mut code_bit_count, &mut out)?;
                }

                frequency_index += 1; // we must increment or else this may go very wrong
                continue;
            }
        }

        write_bits(6, code_length, &mut code_bits, &mut code_bit_count, &mut out)?;
        frequency_index += 1;
    }

    if code_bit_count > 0 {
        out.write(&[
            (code_bits << (8 - code_bit_count)) as u8
        ])?;
    }

    Ok(())
}

/// Build a "canonical" Huffman code table:
///	- for each (uncompressed) symbol, code contains the length
///	  of the corresponding code (in the compressed data)
///	- canonical codes are computed and stored in code
///	- the rules for constructing canonical codes are as follows:
///	  * shorter codes (if filled with zeroes to the right)
///	    have a numerically higher value than longer codes
///	  * for codes with the same length, numerical values
///	    increase with numerical symbol values
///	- because the canonical code table can be constructed from
///	  symbol lengths alone, the code table can be transmitted
///	  without sending the actual code values
///	- see http://www.compressconsult.com/huffman/
fn build_canonical_table(code_table: &mut [u64]) {
    debug_assert_eq!(code_table.len(), ENCODING_TABLE_SIZE);

    let mut count_per_code = [0_u64; 59];

    for &code in code_table.iter() {
        count_per_code[u64_to_usize(code)] += 1;
    }

    // For each i from 58 through 1, compute the
    // numerically lowest code with length i, and
    // store that code in n[i].
    {
        let mut code = 0_u64; // TODO use foldr?
        for count in &mut count_per_code.iter_mut().rev() {
            let next_code = (code + *count) >> 1;
            *count = code;
            code = next_code;
        }
    }

    // code[i] contains the length, l, of the
    // code for symbol i.  Assign the next available
    // code of length l to the symbol and store both
    // l and the code in code[i]. // TODO iter + filter ?
    for symbol_length in code_table.iter_mut() {
        let current_length = *symbol_length;
        let code_index = u64_to_usize(current_length);
        if current_length > 0 {
            *symbol_length = current_length | (count_per_code[code_index] << 6);
            count_per_code[code_index] += 1;
        }
    }
}


/// Compute Huffman codes (based on frq input) and store them in frq:
///	- code structure is : [63:lsb - 6:msb] | [5-0: bit length];
///	- max code length is 58 bits;
///	- codes outside the range [im-iM] have a null length (unused values);
///	- original frequencies are destroyed;
///	- encoding tables are used by hufEncode() and hufBuildDecTable();
///
/// NB: The following code "(*a == *b) && (a > b))" was added to ensure
///     elements in the heap with the same value are sorted by index.
///     This is to ensure, the STL make_heap()/pop_heap()/push_heap() methods
///     produced a resultant sorted heap that is identical across OSes.
fn build_encoding_table(
    frequencies: &mut [u64], // input frequencies, output encoding table
) -> (usize, usize) // return frequency max min range
{
    debug_assert_eq!(frequencies.len(), ENCODING_TABLE_SIZE);

    /// Frequency with position, used for MinHeap.
    #[derive(Eq, PartialEq, Copy, Clone)]
    struct HeapFrequency {
        position: usize,
        frequency: u64,
    }

    impl Ord for HeapFrequency {
        fn cmp(&self, other: &Self) -> Ordering {
            other.frequency.cmp(&self.frequency)
                .then_with(|| other.position.cmp(&self.position))
        }
    }

    impl PartialOrd for HeapFrequency {
        fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(self.cmp(other)) }
    }

    // This function assumes that when it is called, array frq
    // indicates the frequency of all possible symbols in the data
    // that are to be Huffman-encoded.  (frq[i] contains the number
    // of occurrences of symbol i in the data.)
    //
    // The loop below does three things:
    //
    // 1) Finds the minimum and maximum indices that point
    //    to non-zero entries in frq:
    //
    //     frq[im] != 0, and frq[i] == 0 for all i < im
    //     frq[iM] != 0, and frq[i] == 0 for all i > iM
    //
    // 2) Fills array fHeap with pointers to all non-zero
    //    entries in frq.
    //
    // 3) Initializes array hlink such that hlink[i] == i
    //    for all array entries.

    // We need to use vec here or we overflow the stack.
    let mut links = vec![0_usize; ENCODING_TABLE_SIZE];
    let mut frequency_heap = vec![0_usize; ENCODING_TABLE_SIZE];

    // This is a good solution since we don't have usize::MAX items (no panics or UB),
    // and since this is short-circuit, it stops at the first in order non zero element.
    let min_frequency_index = frequencies.iter().position(|f| *f != 0).unwrap_or(0);

    let mut max_frequency_index = 0;
    let mut frequency_count = 0;

    // assert bounds check to optimize away bounds check in loops
    assert!(links.len() >= ENCODING_TABLE_SIZE);
    assert!(frequencies.len() >= ENCODING_TABLE_SIZE);

    for index in min_frequency_index..ENCODING_TABLE_SIZE {
        links[index] = index; // TODO for x in links.iter().enumerate()

        if frequencies[index] != 0 {
            frequency_heap[frequency_count] = index;
            max_frequency_index = index;
            frequency_count += 1;
        }
    }


    // Add a pseudo-symbol, with a frequency count of 1, to frq;
    // adjust the fHeap and hlink array accordingly.  Function
    // hufEncode() uses the pseudo-symbol for run-length encoding.

    max_frequency_index += 1;
    frequencies[max_frequency_index] = 1;
    frequency_heap[frequency_count] = max_frequency_index;
    frequency_count += 1;

    // Build an array, scode, such that scode[i] contains the number
    // of bits assigned to symbol i.  Conceptually this is done by
    // constructing a tree whose leaves are the symbols with non-zero
    // frequency:
    //
    //     Make a heap that contains all symbols with a non-zero frequency,
    //     with the least frequent symbol on top.
    //
    //     Repeat until only one symbol is left on the heap:
    //
    //         Take the two least frequent symbols off the top of the heap.
    //         Create a new node that has first two nodes as children, and
    //         whose frequency is the sum of the frequencies of the first
    //         two nodes.  Put the new node back into the heap.
    //
    // The last node left on the heap is the root of the tree.  For each
    // leaf node, the distance between the root and the leaf is the length
    // of the code for the corresponding symbol.
    //
    // The loop below doesn't actually build the tree; instead we compute
    // the distances of the leaves from the root on the fly.  When a new
    // node is added to the heap, then that node's descendants are linked
    // into a single linear list that starts at the new node, and the code
    // lengths of the descendants (that is, their distance from the root
    // of the tree) are incremented by one.
    let mut heap = BinaryHeap::with_capacity(frequency_count);
    for index in frequency_heap.drain(..frequency_count) {
        heap.push(HeapFrequency { position: index, frequency: frequencies[index] });
    }

    let mut s_code = vec![0_u64; ENCODING_TABLE_SIZE];

    while frequency_count > 1 {
        // Find the indices, mm and m, of the two smallest non-zero frq
        // values in fHeap, add the smallest frq to the second-smallest
        // frq, and remove the smallest frq value from fHeap.
        let (high_position, low_position) = {
            let smallest_frequency = heap.pop().expect("heap empty bug");
            frequency_count -= 1;

            let mut second_smallest_frequency = heap.peek_mut().expect("heap empty bug");
            second_smallest_frequency.frequency += smallest_frequency.frequency;

            (second_smallest_frequency.position, smallest_frequency.position)
        };

        // The entries in scode are linked into lists with the
        // entries in hlink serving as "next" pointers and with
        // the end of a list marked by hlink[j] == j.
        //
        // Traverse the lists that start at scode[m] and scode[mm].
        // For each element visited, increment the length of the
        // corresponding code by one bit. (If we visit scode[j]
        // during the traversal, then the code for symbol j becomes
        // one bit longer.)
        //
        // Merge the lists that start at scode[m] and scode[mm]
        // into a single list that starts at scode[m].

        // Add a bit to all codes in the first list.
        let mut index = high_position; // TODO fold()
        loop {
            s_code[index] += 1;
            debug_assert!(s_code[index] <= 58);

            // merge the two lists
            if links[index] == index {
                links[index] = low_position;
                break;
            }

            index = links[index];
        }

        // Add a bit to all codes in the second list
        let mut index = low_position; // TODO fold()
        loop {
            s_code[index] += 1;
            debug_assert!(s_code[index] <= 58);

            if links[index] == index {
                break;
            }

            index = links[index];
        }
    }

    // Build a canonical Huffman code table, replacing the code
    // lengths in scode with (code, code length) pairs.  Copy the
    // code table from scode into frq.
    build_canonical_table(&mut s_code);
    frequencies.copy_from_slice(&s_code);

    (min_frequency_index, max_frequency_index)
}


#[inline] fn length(code: u64) -> u64 { code & 63 }
#[inline] fn code(code: u64) -> u64 { code >> 6 }

const INVALID_BIT_COUNT: &'static str = "invalid number of bits";
const INVALID_TABLE_ENTRY: &'static str = "invalid code table entry";
const NOT_ENOUGH_DATA: &'static str = "decoded data are shorter than expected";
const INVALID_TABLE_SIZE: &'static str = "unexpected end of code table data";
const TABLE_TOO_LONG: &'static str = "code table is longer than expected";
const INVALID_CODE: &'static str = "invalid code";
const TOO_MUCH_DATA: &'static str = "decoded data are longer than expected";


#[cfg(test)]
mod test {
    use super::*;
    use rand::{Rng, SeedableRng};

    const UNCOMPRESSED_ARRAY: [u16; 100] = [
        3852, 2432, 33635, 49381, 10100, 15095, 62693, 63738, 62359, 5013, 7715, 59875, 28182,
        34449, 19983, 20399, 63407, 29486, 4877, 26738, 44815, 14042, 46091, 48228, 25682, 35412,
        7582, 65069, 6632, 54124, 13798, 27503, 52154, 61961, 30474, 46880, 39097, 15754, 52897,
        42371, 54053, 14178, 48276, 34591, 42602, 32126, 42062, 31474, 16274, 55991, 2882, 17039,
        56389, 20835, 57057, 54081, 3414, 33957, 52584, 10222, 25139, 40002, 44980, 1602, 48021,
        19703, 6562, 61777, 41582, 201, 31253, 51790, 15888, 40921, 3627, 12184, 16036, 26349,
        3159, 29002, 14535, 50632, 18118, 33583, 18878, 59470, 32835, 9347, 16991, 21303, 26263,
        8312, 14017, 41777, 43240, 3500, 60250, 52437, 45715, 61520,
    ];

    const UNCOMPRESSED_ARRAY_SPECIAL: [u16; 100] = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28182,
        0, 65534, 0, 65534, 0, 65534, 0, 65534, 0, 0, 0, 0, 0,
        0, 0, 0, 54124, 13798, 27503, 52154, 61961, 30474, 46880, 39097, 15754, 52897,
        42371, 54053, 14178, 48276, 34591, 42602, 32126, 42062, 31474, 16274, 55991, 2882, 17039,
        56389, 20835, 57057, 54081, 3414, 33957, 52584, 10222, 25139, 40002, 44980, 1602, 48021,
        19703, 6562, 61777, 41582, 201, 31253, 51790, 15888, 40921, 3627, 12184, 16036, 26349,
        3159, 29002, 14535, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        65534, 65534, 65534, 65534, 65534, 65534, 65534, 65534, 65534,
    ];

    const COMPRESSED_ARRAY: [u8; 703] = [
        0xc9, 0x0, 0x0, 0x0, 0x2e, 0xfe, 0x0, 0x0, 0x56, 0x2, 0x0, 0x0, 0xa2, 0x2, 0x0, 0x0, 0x0,
        0x0, 0x0, 0x0, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xd6, 0x47,
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x28, 0x1f, 0xff, 0xff, 0xed, 0x87, 0xff, 0xff, 0xf0,
        0x91, 0xff, 0xf8, 0x1f, 0xf4, 0xf1, 0xff, 0x78, 0x1f, 0xfd, 0xa1, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xfa, 0xc7, 0xfe, 0x4, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xed, 0x1f, 0xf3, 0xf1, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe8, 0x7, 0xfd, 0xf8,
        0x7f, 0xff, 0xff, 0xff, 0xfd, 0x10, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x51, 0xff,
        0xff, 0xff, 0xff, 0xfe, 0x1, 0xff, 0x73, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x0, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xfc, 0xa4, 0x7f, 0xf5, 0x7, 0xfc, 0x48, 0x7f, 0xe0, 0x47, 0xff, 0xff,
        0xf5, 0x91, 0xff, 0xff, 0xff, 0xff, 0xf1, 0xf1, 0xff, 0xff, 0xff, 0xff, 0xf8, 0x21, 0xff,
        0x7f, 0x1f, 0xf8, 0xd1, 0xff, 0xe7, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xbc, 0x1f, 0xf2, 0x91,
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x1c, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xe7,
        0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, 0x8c, 0x7f, 0xff, 0xff, 0xc, 0x1f, 0xff, 0xff,
        0xe5, 0x7, 0xff, 0xff, 0xfa, 0x81, 0xff, 0xff, 0xff, 0x20, 0x7f, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xbc, 0x7f, 0xff, 0xff, 0xff, 0xfc, 0x38, 0x7f, 0xff,
        0xff, 0xff, 0xfc, 0xd0, 0x7f, 0xd3, 0xc7, 0xff, 0xff, 0xf7, 0x91, 0xff, 0xff, 0xff, 0xff,
        0xfe, 0xc1, 0xff, 0xff, 0xff, 0xff, 0xf9, 0x61, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc7,
        0x87, 0xff, 0xff, 0xfd, 0x81, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf1, 0x87, 0xff, 0xff,
        0xff, 0xff, 0xfe, 0x87, 0xff, 0x58, 0x7f, 0xff, 0xff, 0xff, 0xfd, 0xec, 0x7f, 0xff, 0xff,
        0xff, 0xfe, 0xd0, 0x7f, 0xff, 0xff, 0xff, 0xff, 0x6c, 0x7f, 0xcb, 0x47, 0xff, 0xff, 0xf3,
        0x61, 0xff, 0xff, 0xff, 0x80, 0x7f, 0xe1, 0xc7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f,
        0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x18, 0x1f, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xfd, 0xcc, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf8, 0x11, 0xff, 0xff,
        0xff, 0xff, 0xf8, 0x41, 0xff, 0xbc, 0x1f, 0xff, 0xff, 0xc4, 0x47, 0xff, 0xff, 0xf2, 0x91,
        0xff, 0xe0, 0x1f, 0xff, 0xff, 0xff, 0xff, 0x6d, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xff, 0xff, 0x2, 0x1f, 0xf9, 0xe1, 0xff, 0xff, 0xff, 0xff, 0xfc, 0xe1,
        0xff, 0xff, 0xfd, 0xb0, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe1, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xff, 0x5a, 0x1f, 0xfc, 0x81, 0xbf, 0x29, 0x1b, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xf3, 0x61, 0xbf, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc8, 0x1b,
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf6, 0xb1, 0xbf, 0xff, 0xfd, 0x80, 0x6f, 0xff,
        0xff, 0xf, 0x1b, 0xf8, 0xc1, 0xbf, 0xff, 0xfc, 0xb4, 0x6f, 0xff, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xda, 0x46, 0xfc, 0x54, 0x6f, 0xc9, 0x6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x21, 0x1b, 0xff, 0xff, 0xe0, 0x86, 0xff, 0xff,
        0xff, 0xff, 0xe2, 0xc6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0x91, 0xbf, 0xff, 0xfe, 0x24, 0x6f, 0xff, 0xff, 0x6b,
        0x1b, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfd, 0xb1, 0xbf, 0xfa, 0x1b, 0xfb, 0x11,
        0xbf, 0xff, 0xfe, 0x8, 0x6f, 0xff, 0xff, 0x42, 0x1b, 0xff, 0xff, 0xff, 0xff, 0xb9, 0x1b,
        0xff, 0xff, 0xcf, 0xc6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf1, 0x31,
        0x86, 0x10, 0x9, 0xb4, 0xe4, 0x4c, 0xf7, 0xef, 0x42, 0x87, 0x6a, 0xb5, 0xc2, 0x34, 0x9e,
        0x2f, 0x12, 0xae, 0x21, 0x68, 0xf2, 0xa8, 0x74, 0x37, 0xe1, 0x98, 0x14, 0x59, 0x57, 0x2c,
        0x24, 0x3b, 0x35, 0x6c, 0x1b, 0x8b, 0xcc, 0xe6, 0x13, 0x38, 0xc, 0x8e, 0xe2, 0xc, 0xfe,
        0x49, 0x73, 0xbc, 0x2b, 0x7b, 0x9, 0x27, 0x79, 0x14, 0xc, 0x94, 0x42, 0xf8, 0x7c, 0x1,
        0x8d, 0x26, 0xde, 0x87, 0x26, 0x71, 0x50, 0x45, 0xc6, 0x28, 0x40, 0xd5, 0xe, 0x8d, 0x8,
        0x1e, 0x4c, 0xa4, 0x79, 0x57, 0xf0, 0xc3, 0x6d, 0x5c, 0x6d, 0xc0,
    ];

    fn fill(rng: &mut impl Rng, size: usize) -> Vec<u16> {
        if rng.gen_bool(0.2) {
            let value = if rng.gen_bool(0.5) { 0 } else { u16::MAX };
            return vec![ value; size ];
        }

        let mut data = vec![0_u16; size];

        data.iter_mut().for_each(|v| {
            *v = rng.gen_range(0_u16 .. u16::MAX);
        });

        data
    }

    /// Test using both input and output from a custom ILM OpenEXR test.
    #[test]
    fn compression_comparation() {
        let raw = compress(&UNCOMPRESSED_ARRAY).unwrap();
        assert_eq!(raw, COMPRESSED_ARRAY.to_vec());
    }

    #[test]
    fn round_trip() {
        let mut random = rand::rngs::StdRng::from_seed(SEED);
        let raw = fill(&mut random, u16::MAX as usize);

        let compressed = compress(&raw).unwrap();
        let uncompressed = decompress(&compressed, raw.len()).unwrap();

        assert_eq!(uncompressed, raw);
    }

    #[test]
    fn repetitions_special() {
        let raw = UNCOMPRESSED_ARRAY_SPECIAL;

        let compressed = compress(&raw).unwrap();
        let uncompressed = decompress(&compressed, raw.len()).unwrap();

        assert_eq!(uncompressed, raw.to_vec());
    }

    #[test]
    fn round_trip100() {
        let mut random = rand::rngs::StdRng::from_seed(SEED);

        for size_multiplier in 1..10 {
            let raw = fill(&mut random, size_multiplier * 50_000);

            let compressed = compress(&raw).unwrap();
            let uncompressed = decompress(&compressed, raw.len()).unwrap();

            assert_eq!(uncompressed, raw);
        }
    }

    #[test]
    fn test_zeroes(){
        let uncompressed: &[u16] = &[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ];

        let compressed = compress(uncompressed).unwrap();
        let decompressed = decompress(&compressed, uncompressed.len()).unwrap();

        assert_eq!(uncompressed, decompressed.as_slice());
    }

    const SEED: [u8; 32] = [
        12,155,32,34,112,109,98,54,
        12,255,32,34,112,109,98,55,
        12,155,32,34,12,109,98,54,
        12,35,32,34,112,109,48,54,
    ];
}