exr/image/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
//! Data structures that represent a complete exr image.
//! Contains generic structs that must be nested to obtain a complete image type.
//!
//!
//! For example, an rgba image containing multiple layers
//! can be represented using `Image<Layers<SpecificChannels<MyPixelStorage>>>`.
//! An image containing a single layer with arbitrary channels and no deep data
//! can be represented using `Image<Layer<AnyChannels<FlatSamples>>>`.
//!
//!
//! These and other predefined types are included in this module as
//! 1. `PixelImage`: A single layer, fixed set of arbitrary channels.
//! 1. `PixelLayersImage`: Multiple layers, fixed set of arbitrary channels.
//! 1. `RgbaImage`: A single layer, fixed set of channels: rgb, optional a.
//! 1. `RgbaLayersImage`: Multiple layers, fixed set of channels: rgb, optional a.
//! 1. `FlatImage`: Multiple layers, any channels, no deep data.
//! 1. `AnyImage`: All supported data (multiple layers, arbitrary channels, no deep data yet)
//!
//! You can also use your own types inside an image,
//! for example if you want to use a custom sample storage.
//!
//! This is the high-level interface for the pixels of an image.
//! See `exr::blocks` module for a low-level interface.
pub mod read;
pub mod write;
pub mod crop;
pub mod pixel_vec;
pub mod recursive;
// pub mod channel_groups;
use crate::meta::header::{ImageAttributes, LayerAttributes};
use crate::meta::attribute::{Text, LineOrder};
use half::f16;
use crate::math::{Vec2, RoundingMode};
use crate::compression::Compression;
use smallvec::{SmallVec};
use crate::error::Error;
/// Don't do anything
pub(crate) fn ignore_progress(_progress: f64){}
/// This image type contains all supported exr features and can represent almost any image.
/// It currently does not support deep data yet.
pub type AnyImage = Image<Layers<AnyChannels<Levels<FlatSamples>>>>;
/// This image type contains the most common exr features and can represent almost any plain image.
/// Does not contain resolution levels. Does not support deep data.
pub type FlatImage = Image<Layers<AnyChannels<FlatSamples>>>;
/// This image type contains multiple layers, with each layer containing a user-defined type of pixels.
pub type PixelLayersImage<Storage, Channels> = Image<Layers<SpecificChannels<Storage, Channels>>>;
/// This image type contains a single layer containing a user-defined type of pixels.
pub type PixelImage<Storage, Channels> = Image<Layer<SpecificChannels<Storage, Channels>>>;
/// This image type contains multiple layers, with each layer containing a user-defined type of rgba pixels.
pub type RgbaLayersImage<Storage> = PixelLayersImage<Storage, RgbaChannels>;
/// This image type contains a single layer containing a user-defined type of rgba pixels.
pub type RgbaImage<Storage> = PixelImage<Storage, RgbaChannels>;
/// Contains information about the channels in an rgba image, in the order `(red, green, blue, alpha)`.
/// The alpha channel is not required. May be `None` if the image did not contain an alpha channel.
pub type RgbaChannels = (ChannelDescription, ChannelDescription, ChannelDescription, Option<ChannelDescription>);
/// Contains information about the channels in an rgb image, in the order `(red, green, blue)`.
pub type RgbChannels = (ChannelDescription, ChannelDescription, ChannelDescription);
/// The complete exr image.
/// `Layers` can be either a single `Layer` or `Layers`.
#[derive(Debug, Clone, PartialEq)]
pub struct Image<Layers> {
/// Attributes that apply to the whole image file.
/// These attributes appear in each layer of the file.
/// Excludes technical meta data.
/// Each layer in this image also has its own attributes.
pub attributes: ImageAttributes,
/// The layers contained in the image file.
/// Can be either a single `Layer` or a list of layers.
pub layer_data: Layers,
}
/// A list of layers. `Channels` can be `SpecificChannels` or `AnyChannels`.
pub type Layers<Channels> = SmallVec<[Layer<Channels>; 2]>;
/// A single Layer, including fancy attributes and compression settings.
/// `Channels` can be either `SpecificChannels` or `AnyChannels`
#[derive(Debug, Clone, PartialEq)]
pub struct Layer<Channels> {
/// The actual pixel data. Either `SpecificChannels` or `AnyChannels`
pub channel_data: Channels,
/// Attributes that apply to this layer.
/// May still contain attributes that should be considered global for an image file.
/// Excludes technical meta data: Does not contain data window size, line order, tiling, or compression attributes.
/// The image also has attributes, which do not differ per layer.
pub attributes: LayerAttributes,
/// The pixel resolution of this layer.
/// See `layer.attributes` for more attributes, like for example layer position.
pub size: Vec2<usize>,
/// How the pixels are split up and compressed.
pub encoding: Encoding
}
/// How the pixels are split up and compressed.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Encoding {
/// How the pixel data of all channels in this layer is compressed. May be `Compression::Uncompressed`.
/// See `layer.attributes` for more attributes.
pub compression: Compression,
/// Describes how the pixels of this layer are divided into smaller blocks.
/// Either splits the image into its scan lines or splits the image into tiles of the specified size.
/// A single block can be loaded without processing all bytes of a file.
pub blocks: Blocks,
/// In what order the tiles of this header occur in the file.
/// Does not change any actual image orientation.
/// See `layer.attributes` for more attributes.
pub line_order: LineOrder,
}
/// How the image pixels are split up into separate blocks.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Blocks {
/// The image is divided into scan line blocks.
/// The number of scan lines in a block depends on the compression method.
ScanLines,
/// The image is divided into tile blocks.
/// Also specifies the size of each tile in the image
/// and whether this image contains multiple resolution levels.
///
/// The inner `Vec2` describes the size of each tile.
/// Stays the same number of pixels across all levels.
Tiles (Vec2<usize>)
}
/// A grid of pixels. The pixels are written to your custom pixel storage.
/// `PixelStorage` can be anything, from a flat `Vec<f16>` to `Vec<Vec<AnySample>>`, as desired.
/// In order to write this image to a file, your `PixelStorage` must implement [`GetPixel`].
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct SpecificChannels<Pixels, ChannelsDescription> {
/// A description of the channels in the file, as opposed to the channels in memory.
/// Should always be a tuple containing `ChannelDescription`s, one description for each channel.
pub channels: ChannelsDescription, // TODO this is awkward. can this be not a type parameter please? maybe vec<option<chan_info>> ??
/// Your custom pixel storage
// TODO should also support `Levels<YourStorage>`, where levels are desired!
pub pixels: Pixels, // TODO rename to "pixels"?
}
/// A dynamic list of arbitrary channels.
/// `Samples` can currently only be `FlatSamples` or `Levels<FlatSamples>`.
#[derive(Debug, Clone, PartialEq)]
pub struct AnyChannels<Samples> {
/// This list must be sorted alphabetically, by channel name.
/// Use `AnyChannels::sorted` for automatic sorting.
pub list: SmallVec<[AnyChannel<Samples>; 4]>
}
/// A single arbitrary channel.
/// `Samples` can currently only be `FlatSamples` or `Levels<FlatSamples>`
#[derive(Debug, Clone, PartialEq)]
pub struct AnyChannel<Samples> {
/// One of "R", "G", or "B" most of the time.
pub name: Text,
/// The actual pixel data.
/// Can be `FlatSamples` or `Levels<FlatSamples>`.
pub sample_data: Samples,
/// This attribute only tells lossy compression methods
/// whether this value should be quantized exponentially or linearly.
///
/// Should be `false` for red, green, blue and luma channels, as they are not perceived linearly.
/// Should be `true` for hue, chroma, saturation, and alpha channels.
pub quantize_linearly: bool,
/// How many of the samples are skipped compared to the other channels in this layer.
///
/// Can be used for chroma subsampling for manual lossy data compression.
/// Values other than 1 are allowed only in flat, scan-line based images.
/// If an image is deep or tiled, the sampling rates for all of its channels must be 1.
pub sampling: Vec2<usize>,
}
/// One or multiple resolution levels of the same image.
/// `Samples` can be `FlatSamples`.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Levels<Samples> {
/// A single image without smaller versions of itself.
/// If you only want to handle exclusively this case, use `Samples` directly, and not `Levels<Samples>`.
Singular(Samples),
/// Contains uniformly scaled smaller versions of the original.
Mip
{
/// Whether to round up or down when calculating Mip/Rip levels.
rounding_mode: RoundingMode,
/// The smaller versions of the original.
level_data: LevelMaps<Samples>
},
/// Contains any possible combination of smaller versions of the original.
Rip
{
/// Whether to round up or down when calculating Mip/Rip levels.
rounding_mode: RoundingMode,
/// The smaller versions of the original.
level_data: RipMaps<Samples>
},
}
/// A list of resolution levels. `Samples` can currently only be `FlatSamples`.
// or `DeepAndFlatSamples` (not yet implemented).
pub type LevelMaps<Samples> = Vec<Samples>;
/// In addition to the full resolution image,
/// this layer also contains smaller versions,
/// and each smaller version has further versions with varying aspect ratios.
/// `Samples` can currently only be `FlatSamples`.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct RipMaps<Samples> {
/// A flattened list containing the individual levels
pub map_data: LevelMaps<Samples>,
/// The number of levels that were generated along the x-axis and y-axis.
pub level_count: Vec2<usize>,
}
// TODO deep data
/*#[derive(Clone, PartialEq)]
pub enum DeepAndFlatSamples {
Deep(DeepSamples),
Flat(FlatSamples)
}*/
/// A vector of non-deep values (one value per pixel per channel).
/// Stores row after row in a single vector.
/// The precision of all values is either `f16`, `f32` or `u32`.
///
/// Since this is close to the pixel layout in the byte file,
/// this will most likely be the fastest storage.
/// Using a different storage, for example `SpecificChannels`,
/// will probably be slower.
#[derive(Clone, PartialEq)] // debug is implemented manually
pub enum FlatSamples {
/// A vector of non-deep `f16` values.
F16(Vec<f16>),
/// A vector of non-deep `f32` values.
F32(Vec<f32>),
/// A vector of non-deep `u32` values.
U32(Vec<u32>),
}
/*#[derive(Clone, PartialEq)]
pub enum DeepSamples {
F16(Vec<Vec<f16>>),
F32(Vec<Vec<f32>>),
U32(Vec<Vec<u32>>),
}*/
use crate::block::samples::*;
use crate::meta::attribute::*;
use crate::error::Result;
use crate::block::samples::Sample;
use crate::image::write::channels::*;
use crate::image::write::layers::WritableLayers;
use crate::image::write::samples::{WritableSamples};
use crate::meta::{mip_map_levels, rip_map_levels};
use crate::io::Data;
use crate::image::recursive::{NoneMore, Recursive, IntoRecursive};
use std::marker::PhantomData;
use std::ops::Not;
use crate::image::validate_results::{ValidationOptions};
impl<Channels> Layer<Channels> {
/// Sometimes called "data window"
pub fn absolute_bounds(&self) -> IntegerBounds {
IntegerBounds::new(self.attributes.layer_position, self.size)
}
}
impl<SampleStorage, Channels> SpecificChannels<SampleStorage, Channels> {
/// Create some pixels with channel information.
/// The `Channels` must be a tuple containing either `ChannelDescription` or `Option<ChannelDescription>`.
/// The length of the tuple dictates the number of channels in the sample storage.
pub fn new(channels: Channels, source_samples: SampleStorage) -> Self
where
SampleStorage: GetPixel,
SampleStorage::Pixel: IntoRecursive,
Channels: Sync + Clone + IntoRecursive,
<Channels as IntoRecursive>::Recursive: WritableChannelsDescription<<SampleStorage::Pixel as IntoRecursive>::Recursive>,
{
SpecificChannels { channels, pixels: source_samples }
}
}
/// Convert this type into one of the known sample types.
/// Also specify the preferred native type, which dictates the default sample type in the image.
pub trait IntoSample: IntoNativeSample {
/// The native sample types that this type should be converted to.
const PREFERRED_SAMPLE_TYPE: SampleType;
}
impl IntoSample for f16 { const PREFERRED_SAMPLE_TYPE: SampleType = SampleType::F16; }
impl IntoSample for f32 { const PREFERRED_SAMPLE_TYPE: SampleType = SampleType::F32; }
impl IntoSample for u32 { const PREFERRED_SAMPLE_TYPE: SampleType = SampleType::U32; }
/// Used to construct a `SpecificChannels`.
/// Call `with_named_channel` as many times as desired,
/// and then call `with_pixels` to define the colors.
#[derive(Debug)]
pub struct SpecificChannelsBuilder<RecursiveChannels, RecursivePixel> {
channels: RecursiveChannels,
px: PhantomData<RecursivePixel>
}
/// This check can be executed at compile time
/// if the channel names are `&'static str` and the compiler is smart enough.
pub trait CheckDuplicates {
/// Check for duplicate channel names.
fn already_contains(&self, name: &Text) -> bool;
}
impl CheckDuplicates for NoneMore {
fn already_contains(&self, _: &Text) -> bool { false }
}
impl<Inner: CheckDuplicates> CheckDuplicates for Recursive<Inner, ChannelDescription> {
fn already_contains(&self, name: &Text) -> bool {
&self.value.name == name || self.inner.already_contains(name)
}
}
impl SpecificChannels<(),()>
{
/// Start building some specific channels. On the result of this function,
/// call `with_named_channel` as many times as desired,
/// and then call `with_pixels` to define the colors.
pub fn build() -> SpecificChannelsBuilder<NoneMore, NoneMore> {
SpecificChannelsBuilder { channels: NoneMore, px: Default::default() }
}
}
impl<RecursiveChannels: CheckDuplicates, RecursivePixel> SpecificChannelsBuilder<RecursiveChannels, RecursivePixel>
{
/// Add another channel to this image. Does not add the actual pixels,
/// but instead only declares the presence of the channel.
/// Panics if the name contains unsupported characters.
/// Panics if a channel with the same name already exists.
/// Use `Text::new_or_none()` to manually handle these cases.
/// Use `with_channel_details` instead if you want to specify more options than just the name of the channel.
/// The generic parameter can usually be inferred from the closure in `with_pixels`.
pub fn with_channel<Sample: IntoSample>(self, name: impl Into<Text>)
-> SpecificChannelsBuilder<Recursive<RecursiveChannels, ChannelDescription>, Recursive<RecursivePixel, Sample>>
{
self.with_channel_details::<Sample>(ChannelDescription::named(name, Sample::PREFERRED_SAMPLE_TYPE))
}
/// Add another channel to this image. Does not add the actual pixels,
/// but instead only declares the presence of the channel.
/// Use `with_channel` instead if you only want to specify the name of the channel.
/// Panics if a channel with the same name already exists.
/// The generic parameter can usually be inferred from the closure in `with_pixels`.
pub fn with_channel_details<Sample: Into<Sample>>(self, channel: ChannelDescription)
-> SpecificChannelsBuilder<Recursive<RecursiveChannels, ChannelDescription>, Recursive<RecursivePixel, Sample>>
{
// duplicate channel names are checked later, but also check now to make sure there are no problems with the `SpecificChannelsWriter`
assert!(self.channels.already_contains(&channel.name).not(), "channel name `{}` is duplicate", channel.name);
SpecificChannelsBuilder {
channels: Recursive::new(self.channels, channel),
px: PhantomData::default()
}
}
/// Specify the actual pixel contents of the image.
/// You can pass a closure that returns a color for each pixel (`Fn(Vec2<usize>) -> Pixel`),
/// or you can pass your own image if it implements `GetPixel`.
/// The pixel type must be a tuple with the correct number of entries, depending on the number of channels.
/// The tuple entries can be either `f16`, `f32`, `u32` or `Sample`.
/// Use `with_pixel_fn` instead of this function, to get extra type safety for your pixel closure.
pub fn with_pixels<Pixels>(self, get_pixel: Pixels) -> SpecificChannels<Pixels, RecursiveChannels>
where Pixels: GetPixel, <Pixels as GetPixel>::Pixel: IntoRecursive<Recursive=RecursivePixel>,
{
SpecificChannels {
channels: self.channels,
pixels: get_pixel
}
}
/// Specify the contents of the image.
/// The pixel type must be a tuple with the correct number of entries, depending on the number of channels.
/// The tuple entries can be either `f16`, `f32`, `u32` or `Sample`.
/// Use `with_pixels` instead of this function, if you want to pass an object that is not a closure.
///
/// Usually, the compiler can infer the type of the pixel (for example, `f16,f32,f32`) from the closure.
/// If that's not possible, you can specify the type of the channels
/// when declaring the channel (for example, `with_named_channel::<f32>("R")`).
pub fn with_pixel_fn<Pixel, Pixels>(self, get_pixel: Pixels) -> SpecificChannels<Pixels, RecursiveChannels>
where Pixels: Sync + Fn(Vec2<usize>) -> Pixel, Pixel: IntoRecursive<Recursive=RecursivePixel>,
{
SpecificChannels {
channels: self.channels,
pixels: get_pixel
}
}
}
impl<SampleStorage> SpecificChannels<
SampleStorage, (ChannelDescription, ChannelDescription, ChannelDescription, ChannelDescription)
>
{
/// Create an image with red, green, blue, and alpha channels.
/// You can pass a closure that returns a color for each pixel (`Fn(Vec2<usize>) -> (R,G,B,A)`),
/// or you can pass your own image if it implements `GetPixel<Pixel=(R,G,B,A)>`.
/// Each of `R`, `G`, `B` and `A` can be either `f16`, `f32`, `u32`, or `Sample`.
pub fn rgba<R, G, B, A>(source_samples: SampleStorage) -> Self
where R: IntoSample, G: IntoSample,
B: IntoSample, A: IntoSample,
SampleStorage: GetPixel<Pixel=(R, G, B, A)>
{
SpecificChannels {
channels: (
ChannelDescription::named("R", R::PREFERRED_SAMPLE_TYPE),
ChannelDescription::named("G", G::PREFERRED_SAMPLE_TYPE),
ChannelDescription::named("B", B::PREFERRED_SAMPLE_TYPE),
ChannelDescription::named("A", A::PREFERRED_SAMPLE_TYPE),
),
pixels: source_samples
}
}
}
impl<SampleStorage> SpecificChannels<
SampleStorage, (ChannelDescription, ChannelDescription, ChannelDescription)
>
{
/// Create an image with red, green, and blue channels.
/// You can pass a closure that returns a color for each pixel (`Fn(Vec2<usize>) -> (R,G,B)`),
/// or you can pass your own image if it implements `GetPixel<Pixel=(R,G,B)>`.
/// Each of `R`, `G` and `B` can be either `f16`, `f32`, `u32`, or `Sample`.
pub fn rgb<R, G, B>(source_samples: SampleStorage) -> Self
where R: IntoSample, G: IntoSample, B: IntoSample,
SampleStorage: GetPixel<Pixel=(R, G, B)>
{
SpecificChannels {
channels: (
ChannelDescription::named("R", R::PREFERRED_SAMPLE_TYPE),
ChannelDescription::named("G", G::PREFERRED_SAMPLE_TYPE),
ChannelDescription::named("B", B::PREFERRED_SAMPLE_TYPE),
),
pixels: source_samples
}
}
}
/// A list of samples representing a single pixel.
/// Does not heap allocate for images with 8 or fewer channels.
pub type FlatSamplesPixel = SmallVec<[Sample; 8]>;
// TODO also deep samples?
impl Layer<AnyChannels<FlatSamples>> {
/// Use `samples_at` if you can borrow from this layer
pub fn sample_vec_at(&self, position: Vec2<usize>) -> FlatSamplesPixel {
self.samples_at(position).collect()
}
/// Lookup all channels of a single pixel in the image
pub fn samples_at(&self, position: Vec2<usize>) -> FlatSampleIterator<'_> {
FlatSampleIterator {
layer: self,
channel_index: 0,
position
}
}
}
/// Iterate over all channels of a single pixel in the image
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct FlatSampleIterator<'s> {
layer: &'s Layer<AnyChannels<FlatSamples>>,
channel_index: usize,
position: Vec2<usize>,
}
impl Iterator for FlatSampleIterator<'_> {
type Item = Sample;
fn next(&mut self) -> Option<Self::Item> {
if self.channel_index < self.layer.channel_data.list.len() {
let channel = &self.layer.channel_data.list[self.channel_index];
let sample = channel.sample_data.value_by_flat_index(self.position.flat_index_for_size(self.layer.size));
self.channel_index += 1;
Some(sample)
}
else { None }
}
fn nth(&mut self, pos: usize) -> Option<Self::Item> {
self.channel_index += pos;
self.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
let remaining = self.layer.channel_data.list.len().saturating_sub(self.channel_index);
(remaining, Some(remaining))
}
}
impl ExactSizeIterator for FlatSampleIterator<'_> {}
impl<SampleData> AnyChannels<SampleData>{
/// A new list of arbitrary channels. Sorts the list to make it alphabetically stable.
pub fn sort(mut list: SmallVec<[AnyChannel<SampleData>; 4]>) -> Self {
list.sort_unstable_by_key(|channel| channel.name.clone()); // TODO no clone?
Self { list }
}
}
// FIXME check content size of layer somewhere??? before writing?
impl<LevelSamples> Levels<LevelSamples> {
/// Get a resolution level by index, sorted by size, decreasing.
pub fn get_level(&self, level: Vec2<usize>) -> Result<&LevelSamples> {
match self {
Levels::Singular(block) => {
debug_assert_eq!(level, Vec2(0,0), "singular image cannot write leveled blocks bug");
Ok(block)
},
Levels::Mip { level_data, .. } => {
debug_assert_eq!(level.x(), level.y(), "mip map levels must be equal on x and y bug");
level_data.get(level.x()).ok_or(Error::invalid("block mip level index"))
},
Levels::Rip { level_data, .. } => {
level_data.get_by_level(level).ok_or(Error::invalid("block rip level index"))
}
}
}
/// Get a resolution level by index, sorted by size, decreasing.
// TODO storage order for RIP maps?
pub fn get_level_mut(&mut self, level: Vec2<usize>) -> Result<&mut LevelSamples> {
match self {
Levels::Singular(ref mut block) => {
debug_assert_eq!(level, Vec2(0,0), "singular image cannot write leveled blocks bug");
Ok(block)
},
Levels::Mip { level_data, .. } => {
debug_assert_eq!(level.x(), level.y(), "mip map levels must be equal on x and y bug");
level_data.get_mut(level.x()).ok_or(Error::invalid("block mip level index"))
},
Levels::Rip { level_data, .. } => {
level_data.get_by_level_mut(level).ok_or(Error::invalid("block rip level index"))
}
}
}
/// Get a slice of all resolution levels, sorted by size, decreasing.
pub fn levels_as_slice(&self) -> &[LevelSamples] {
match self {
Levels::Singular(data) => std::slice::from_ref(data),
Levels::Mip { level_data, .. } => level_data,
Levels::Rip { level_data, .. } => &level_data.map_data,
}
}
/// Get a mutable slice of all resolution levels, sorted by size, decreasing.
pub fn levels_as_slice_mut(&mut self) -> &mut [LevelSamples] {
match self {
Levels::Singular(data) => std::slice::from_mut(data),
Levels::Mip { level_data, .. } => level_data,
Levels::Rip { level_data, .. } => &mut level_data.map_data,
}
}
// TODO simplify working with levels in general! like level_size_by_index and such
/*pub fn levels_with_size(&self, rounding: RoundingMode, max_resolution: Vec2<usize>) -> Vec<(Vec2<usize>, &S)> {
match self {
Levels::Singular(ref data) => vec![ (max_resolution, data) ],
Levels::Mip(ref maps) => mip_map_levels(rounding, max_resolution).map(|(_index, size)| size).zip(maps).collect(),
Levels::Rip(ref rip_maps) => rip_map_levels(rounding, max_resolution).map(|(_index, size)| size).zip(&rip_maps.map_data).collect(),
}
}*/
/// Whether this stores multiple resolution levels.
pub fn level_mode(&self) -> LevelMode {
match self {
Levels::Singular(_) => LevelMode::Singular,
Levels::Mip { .. } => LevelMode::MipMap,
Levels::Rip { .. } => LevelMode::RipMap,
}
}
}
impl<Samples> RipMaps<Samples> {
/// Flatten the 2D level index to a one dimensional index.
pub fn get_level_index(&self, level: Vec2<usize>) -> usize {
level.flat_index_for_size(self.level_count)
}
/// Return a level by level index. Level `0` has the largest resolution.
pub fn get_by_level(&self, level: Vec2<usize>) -> Option<&Samples> {
self.map_data.get(self.get_level_index(level))
}
/// Return a mutable level reference by level index. Level `0` has the largest resolution.
pub fn get_by_level_mut(&mut self, level: Vec2<usize>) -> Option<&mut Samples> {
let index = self.get_level_index(level);
self.map_data.get_mut(index)
}
}
impl FlatSamples {
/// The number of samples in the image. Should be the width times the height.
/// Might vary when subsampling is used.
pub fn len(&self) -> usize {
match self {
FlatSamples::F16(vec) => vec.len(),
FlatSamples::F32(vec) => vec.len(),
FlatSamples::U32(vec) => vec.len(),
}
}
/// Views all samples in this storage as f32.
/// Matches the underlying sample type again for every sample,
/// match yourself if performance is critical! Does not allocate.
pub fn values_as_f32<'s>(&'s self) -> impl 's + Iterator<Item = f32> {
self.values().map(|sample| sample.to_f32())
}
/// All samples in this storage as iterator.
/// Matches the underlying sample type again for every sample,
/// match yourself if performance is critical! Does not allocate.
pub fn values<'s>(&'s self) -> impl 's + Iterator<Item = Sample> {
(0..self.len()).map(move |index| self.value_by_flat_index(index))
}
/// Lookup a single value, by flat index.
/// The flat index can be obtained using `Vec2::flatten_for_width`
/// which computes the index in a flattened array of pixel rows.
pub fn value_by_flat_index(&self, index: usize) -> Sample {
match self {
FlatSamples::F16(vec) => Sample::F16(vec[index]),
FlatSamples::F32(vec) => Sample::F32(vec[index]),
FlatSamples::U32(vec) => Sample::U32(vec[index]),
}
}
}
impl<'s, ChannelData:'s> Layer<ChannelData> {
/// Create a layer with the specified size, attributes, encoding and channels.
/// The channels can be either `SpecificChannels` or `AnyChannels`.
pub fn new(
dimensions: impl Into<Vec2<usize>>,
attributes: LayerAttributes,
encoding: Encoding,
channels: ChannelData
) -> Self
where ChannelData: WritableChannels<'s>
{
Layer { channel_data: channels, attributes, size: dimensions.into(), encoding }
}
// TODO test pls wtf
/// Panics for images with Scanline encoding.
pub fn levels_with_resolution<'l, L>(&self, levels: &'l Levels<L>) -> Box<dyn 'l + Iterator<Item=(&'l L, Vec2<usize>)>> {
match levels {
Levels::Singular(level) => Box::new(std::iter::once((level, self.size))),
Levels::Mip { rounding_mode, level_data } => Box::new(level_data.iter().zip(
mip_map_levels(*rounding_mode, self.size)
.map(|(_index, size)| size)
)),
Levels::Rip { rounding_mode, level_data } => Box::new(level_data.map_data.iter().zip(
rip_map_levels(*rounding_mode, self.size)
.map(|(_index, size)| size)
)),
}
}
}
impl Encoding {
/// No compression. Massive space requirements.
/// Fast, because it minimizes data shuffling and reallocation.
pub const UNCOMPRESSED: Encoding = Encoding {
compression: Compression::Uncompressed,
blocks: Blocks::ScanLines, // longest lines, faster memcpy
line_order: LineOrder::Increasing // presumably fastest?
};
/// Run-length encoding with tiles of 64x64 pixels. This is the recommended default encoding.
/// Almost as fast as uncompressed data, but optimizes single-colored areas such as mattes and masks.
pub const FAST_LOSSLESS: Encoding = Encoding {
compression: Compression::RLE,
blocks: Blocks::Tiles(Vec2(64, 64)), // optimize for RLE compression
line_order: LineOrder::Unspecified
};
/// ZIP compression with blocks of 16 lines. Slow, but produces small files without visible artefacts.
pub const SMALL_LOSSLESS: Encoding = Encoding {
compression: Compression::ZIP16,
blocks: Blocks::ScanLines, // largest possible, but also with high probability of parallel workers
line_order: LineOrder::Increasing
};
/// PIZ compression with tiles of 256x256 pixels. Small images, not too slow.
pub const SMALL_FAST_LOSSLESS: Encoding = Encoding {
compression: Compression::PIZ,
blocks: Blocks::Tiles(Vec2(256, 256)),
line_order: LineOrder::Unspecified
};
}
impl Default for Encoding {
fn default() -> Self { Encoding::FAST_LOSSLESS }
}
impl<'s, LayerData: 's> Image<LayerData> where LayerData: WritableLayers<'s> {
/// Create an image with one or multiple layers. The layer can be a `Layer`, or `Layers` small vector, or `Vec<Layer>` or `&[Layer]`.
pub fn new(image_attributes: ImageAttributes, layer_data: LayerData) -> Self {
Image { attributes: image_attributes, layer_data }
}
}
// explorable constructor alias
impl<'s, Channels: 's> Image<Layers<Channels>> where Channels: WritableChannels<'s> {
/// Create an image with multiple layers. The layer can be a `Vec<Layer>` or `Layers` (a small vector).
pub fn from_layers(image_attributes: ImageAttributes, layer_data: impl Into<Layers<Channels>>) -> Self {
Self::new(image_attributes, layer_data.into())
}
}
impl<'s, ChannelData:'s> Image<Layer<ChannelData>> where ChannelData: WritableChannels<'s> {
/// Uses the display position and size to the channel position and size of the layer.
pub fn from_layer(layer: Layer<ChannelData>) -> Self {
let bounds = IntegerBounds::new(layer.attributes.layer_position, layer.size);
Self::new(ImageAttributes::new(bounds), layer)
}
/// Uses empty attributes.
pub fn from_encoded_channels(size: impl Into<Vec2<usize>>, encoding: Encoding, channels: ChannelData) -> Self {
// layer name is not required for single-layer images
Self::from_layer(Layer::new(size, LayerAttributes::default(), encoding, channels))
}
/// Uses empty attributes and fast compression.
pub fn from_channels(size: impl Into<Vec2<usize>>, channels: ChannelData) -> Self {
Self::from_encoded_channels(size, Encoding::default(), channels)
}
}
impl Image<NoneMore> {
/// Create an empty image, to be filled with layers later on. Add at least one layer to obtain a valid image.
/// Call `with_layer(another_layer)` for each layer you want to add to this image.
pub fn empty(attributes: ImageAttributes) -> Self { Self { attributes, layer_data: NoneMore } }
}
impl<'s, InnerLayers: 's> Image<InnerLayers> where
InnerLayers: WritableLayers<'s>,
{
/// Add another layer to this image. The layer type does
/// not have to equal the existing layers in this image.
pub fn with_layer<NewChannels>(self, layer: Layer<NewChannels>)
-> Image<Recursive<InnerLayers, Layer<NewChannels>>>
where NewChannels: 's + WritableChannels<'s>
{
Image {
attributes: self.attributes,
layer_data: Recursive::new(self.layer_data, layer)
}
}
}
impl<'s, SampleData: 's> AnyChannel<SampleData> {
/// Create a new channel without subsampling.
///
/// Automatically flags this channel for specialized compression
/// if the name is "R", "G", "B", "Y", or "L",
/// as they typically encode values that are perceived non-linearly.
/// Construct the value yourself using `AnyChannel { .. }`, if you want to control this flag.
pub fn new(name: impl Into<Text>, sample_data: SampleData) -> Self where SampleData: WritableSamples<'s> {
let name: Text = name.into();
AnyChannel {
quantize_linearly: ChannelDescription::guess_quantization_linearity(&name),
name, sample_data,
sampling: Vec2(1, 1),
}
}
/*/// This is the same as `AnyChannel::new()`, but additionally ensures that the closure type is correct.
pub fn from_closure<V>(name: Text, sample_data: S) -> Self
where S: Sync + Fn(Vec2<usize>) -> V, V: InferSampleType + Data
{
Self::new(name, sample_data)
}*/
}
impl std::fmt::Debug for FlatSamples {
fn fmt(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if self.len() <= 6 {
match self {
FlatSamples::F16(vec) => vec.fmt(formatter),
FlatSamples::F32(vec) => vec.fmt(formatter),
FlatSamples::U32(vec) => vec.fmt(formatter),
}
}
else {
match self {
FlatSamples::F16(vec) => write!(formatter, "[f16; {}]", vec.len()),
FlatSamples::F32(vec) => write!(formatter, "[f32; {}]", vec.len()),
FlatSamples::U32(vec) => write!(formatter, "[u32; {}]", vec.len()),
}
}
}
}
/// Compare the result of a round trip test with the original method.
/// Supports lossy compression methods.
// #[cfg(test)] TODO do not ship this code
pub mod validate_results {
use crate::prelude::*;
use smallvec::Array;
use crate::prelude::recursive::*;
use crate::image::write::samples::WritableSamples;
use std::ops::Not;
use crate::block::samples::IntoNativeSample;
/// Compare two objects, but with a few special quirks.
/// Intended mainly for unit testing.
pub trait ValidateResult {
/// Compare self with the other. Panics if not equal.
///
/// Exceptional behaviour:
/// This does not work the other way around! This method is not symmetrical!
/// Returns whether the result is correct for this image.
/// For lossy compression methods, uses approximate equality.
/// Intended for unit testing.
///
/// Warning: If you use `SpecificChannels`, the comparison might be inaccurate
/// for images with mixed compression methods. This is to be used with `AnyChannels` mainly.
fn assert_equals_result(&self, result: &Self) {
self.validate_result(result, ValidationOptions::default(), || String::new()).unwrap();
}
/// Compare self with the other.
/// Exceptional behaviour:
/// - Any two NaN values are considered equal, regardless of bit representation.
/// - If a `lossy` is specified, any two values that differ only by a small amount will be considered equal.
/// - If `nan_to_zero` is true, and __self is NaN/Infinite and the other value is zero, they are considered equal__
/// (because some compression methods replace nan with zero)
///
/// This does not work the other way around! This method is not symmetrical!
fn validate_result(
&self, lossy_result: &Self,
options: ValidationOptions,
// this is a lazy string, because constructing a string is only necessary in the case of an error,
// but eats up memory and allocation time every time. this was measured.
context: impl Fn() -> String
) -> ValidationResult;
}
/// Whether to do accurate or approximate comparison.
#[derive(Default, Debug, Eq, PartialEq, Hash, Copy, Clone)]
pub struct ValidationOptions {
allow_lossy: bool,
nan_converted_to_zero: bool,
}
/// If invalid, contains the error message.
pub type ValidationResult = std::result::Result<(), String>;
impl<C> ValidateResult for Image<C> where C: ValidateResult {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
if self.attributes != other.attributes { Err(location() + "| image > attributes") }
else { self.layer_data.validate_result(&other.layer_data, options, || location() + "| image > layer data") }
}
}
impl<S> ValidateResult for Layer<AnyChannels<S>>
where AnyChannel<S>: ValidateResult, S: for<'a> WritableSamples<'a>
{
fn validate_result(&self, other: &Self, _overridden: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
let location = || format!("{} (layer `{:?}`)", location(), self.attributes.layer_name);
if self.attributes != other.attributes { Err(location() + " > attributes") }
else if self.encoding != other.encoding { Err(location() + " > encoding") }
else if self.size != other.size { Err(location() + " > size") }
else if self.channel_data.list.len() != other.channel_data.list.len() { Err(location() + " > channel count") }
else {
for (own_chan, other_chan) in self.channel_data.list.iter().zip(other.channel_data.list.iter()) {
own_chan.validate_result(
other_chan,
ValidationOptions {
// no tolerance for lossless channels
allow_lossy: other.encoding.compression
.is_lossless_for(other_chan.sample_data.sample_type()).not(),
// consider nan and zero equal if the compression method does not support nan
nan_converted_to_zero: other.encoding.compression.supports_nan().not()
},
|| format!("{} > channel `{}`", location(), own_chan.name)
)?;
}
Ok(())
}
}
}
impl<Px, Desc> ValidateResult for Layer<SpecificChannels<Px, Desc>>
where SpecificChannels<Px, Desc>: ValidateResult
{
/// This does an approximate comparison for all channels,
/// even if some channels can be compressed without loss.
fn validate_result(&self, other: &Self, _overridden: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
let location = || format!("{} (layer `{:?}`)", location(), self.attributes.layer_name);
// TODO dedup with above
if self.attributes != other.attributes { Err(location() + " > attributes") }
else if self.encoding != other.encoding { Err(location() + " > encoding") }
else if self.size != other.size { Err(location() + " > size") }
else {
let options = ValidationOptions {
// no tolerance for lossless channels
// pxr only looses data for f32 values, B44 only for f16, not other any other types
allow_lossy: other.encoding.compression.may_loose_data(),// TODO check specific channels sample types
// consider nan and zero equal if the compression method does not support nan
nan_converted_to_zero: other.encoding.compression.supports_nan().not()
};
self.channel_data.validate_result(&other.channel_data, options, || location() + " > channel_data")?;
Ok(())
}
}
}
impl<S> ValidateResult for AnyChannels<S> where S: ValidateResult {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
self.list.validate_result(&other.list, options, location)
}
}
impl<S> ValidateResult for AnyChannel<S> where S: ValidateResult {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
if self.name != other.name { Err(location() + " > name") }
else if self.quantize_linearly != other.quantize_linearly { Err(location() + " > quantize_linearly") }
else if self.sampling != other.sampling { Err(location() + " > sampling") }
else {
self.sample_data.validate_result(&other.sample_data, options, || location() + " > sample_data")
}
}
}
impl<Pxs, Chans> ValidateResult for SpecificChannels<Pxs, Chans> where Pxs: ValidateResult, Chans: Eq {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
if self.channels != other.channels { Err(location() + " > specific channels") }
else { self.pixels.validate_result(&other.pixels, options, || location() + " > specific pixels") }
}
}
impl<S> ValidateResult for Levels<S> where S: ValidateResult {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
self.levels_as_slice().validate_result(&other.levels_as_slice(), options, || location() + " > levels")
}
}
impl ValidateResult for FlatSamples {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
use FlatSamples::*;
match (self, other) {
(F16(values), F16(other_values)) => values.as_slice().validate_result(&other_values.as_slice(), options, ||location() + " > f16 samples"),
(F32(values), F32(other_values)) => values.as_slice().validate_result(&other_values.as_slice(), options, ||location() + " > f32 samples"),
(U32(values), U32(other_values)) => values.as_slice().validate_result(&other_values.as_slice(), options, ||location() + " > u32 samples"),
(own, other) => Err(format!("{}: samples type mismatch. expected {:?}, found {:?}", location(), own.sample_type(), other.sample_type()))
}
}
}
impl<T> ValidateResult for &[T] where T: ValidateResult {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
if self.len() != other.len() { Err(location() + " count") }
else {
for (index, (slf, other)) in self.iter().zip(other.iter()).enumerate() {
slf.validate_result(other, options, ||format!("{} element [{}] of {}", location(), index, self.len()))?;
}
Ok(())
}
}
}
impl<A: Array> ValidateResult for SmallVec<A> where A::Item: ValidateResult {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
self.as_slice().validate_result(&other.as_slice(), options, location)
}
}
impl<A> ValidateResult for Vec<A> where A: ValidateResult {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
self.as_slice().validate_result(&other.as_slice(), options, location)
}
}
impl<A,B,C,D> ValidateResult for (A, B, C, D) where A: Clone+ ValidateResult, B: Clone+ ValidateResult, C: Clone+ ValidateResult, D: Clone+ ValidateResult {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
self.clone().into_recursive().validate_result(&other.clone().into_recursive(), options, location)
}
}
impl<A,B,C> ValidateResult for (A, B, C) where A: Clone+ ValidateResult, B: Clone+ ValidateResult, C: Clone+ ValidateResult {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
self.clone().into_recursive().validate_result(&other.clone().into_recursive(), options, location)
}
}
// // (low priority because it is only used in the tests)
/*TODO
impl<Tuple> SimilarToLossy for Tuple where
Tuple: Clone + IntoRecursive,
<Tuple as IntoRecursive>::Recursive: SimilarToLossy,
{
fn similar_to_lossy(&self, other: &Self, max_difference: f32) -> bool {
self.clone().into_recursive().similar_to_lossy(&other.clone().into_recursive(), max_difference)
} // TODO no clone?
}*/
// implement for recursive types
impl ValidateResult for NoneMore {
fn validate_result(&self, _: &Self, _: ValidationOptions, _: impl Fn()->String) -> ValidationResult { Ok(()) }
}
impl<Inner, T> ValidateResult for Recursive<Inner, T> where Inner: ValidateResult, T: ValidateResult {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
self.value.validate_result(&other.value, options, &location).and_then(|()|
self.inner.validate_result(&other.inner, options, &location)
)
}
}
impl<S> ValidateResult for Option<S> where S: ValidateResult {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
match (self, other) {
(None, None) => Ok(()),
(Some(value), Some(other)) => value.validate_result(other, options, location),
_ => Err(location() + ": option mismatch")
}
}
}
impl ValidateResult for f32 {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
if self == other || (self.is_nan() && other.is_nan()) || (options.nan_converted_to_zero && !self.is_normal() && *other == 0.0) {
return Ok(());
}
if options.allow_lossy {
let epsilon = 0.06;
let max_difference = 0.1;
let adaptive_threshold = epsilon * (self.abs() + other.abs());
let tolerance = adaptive_threshold.max(max_difference);
let difference = (self - other).abs();
return if difference <= tolerance { Ok(()) }
else { Err(format!("{}: expected ~{}, found {} (adaptive tolerance {})", location(), self, other, tolerance)) };
}
Err(format!("{}: expected exactly {}, found {}", location(), self, other))
}
}
impl ValidateResult for f16 {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
if self.to_bits() == other.to_bits() { Ok(()) } else {
self.to_f32().validate_result(&other.to_f32(), options, location)
}
}
}
impl ValidateResult for u32 {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
if self == other { Ok(()) } else { // todo to float conversion resulting in nan/infinity?
self.to_f32().validate_result(&other.to_f32(), options, location)
}
}
}
impl ValidateResult for Sample {
fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
use Sample::*;
match (self, other) {
(F16(a), F16(b)) => a.validate_result(b, options, ||location() + " (f16)"),
(F32(a), F32(b)) => a.validate_result(b, options, ||location() + " (f32)"),
(U32(a), U32(b)) => a.validate_result(b, options, ||location() + " (u32)"),
(_,_) => Err(location() + ": sample type mismatch")
}
}
}
#[cfg(test)]
mod test_value_result {
use std::f32::consts::*;
use std::io::Cursor;
use crate::image::pixel_vec::PixelVec;
use crate::image::validate_results::{ValidateResult, ValidationOptions};
use crate::meta::attribute::LineOrder::Increasing;
use crate::image::{FlatSamples};
fn expect_valid<T>(original: &T, result: &T, allow_lossy: bool, nan_converted_to_zero: bool) where T: ValidateResult {
original.validate_result(
result,
ValidationOptions { allow_lossy, nan_converted_to_zero },
|| String::new()
).unwrap();
}
fn expect_invalid<T>(original: &T, result: &T, allow_lossy: bool, nan_converted_to_zero: bool) where T: ValidateResult {
assert!(original.validate_result(
result,
ValidationOptions { allow_lossy, nan_converted_to_zero },
|| String::new()
).is_err());
}
#[test]
fn test_f32(){
let original:&[f32] = &[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, -20.4, f32::NAN];
let lossy:&[f32] = &[0.0, 0.2, 0.2, 0.3, 0.4, 0.5, -20.5, f32::NAN];
expect_valid(&original, &original, true, true);
expect_valid(&original, &original, true, false);
expect_valid(&original, &original, false, true);
expect_valid(&original, &original, false, false);
expect_invalid(&original, &lossy, false, false);
expect_valid(&original, &lossy, true, false);
expect_invalid(&original, &&original[..original.len()-2], true, true);
// test relative comparison with some large values
expect_valid(&1_000_f32, &1_001_f32, true, false);
expect_invalid(&1_000_f32, &1_200_f32, true, false);
expect_valid(&10_000_f32, &10_100_f32, true, false);
expect_invalid(&10_000_f32, &12_000_f32, true, false);
expect_valid(&33_120_f32, &30_120_f32, true, false);
expect_invalid(&33_120_f32, &20_120_f32, true, false);
}
#[test]
fn test_nan(){
let original:&[f32] = &[ 0.0, f32::NAN, f32::NAN ];
let lossy:&[f32] = &[ 0.0, f32::NAN, 0.0 ];
expect_valid(&original, &lossy, true, true);
expect_invalid(&lossy, &original, true, true);
expect_valid(&lossy, &lossy, true, true);
expect_valid(&lossy, &lossy, false, true);
}
#[test]
fn test_error(){
fn print_error<T: ValidateResult>(original: &T, lossy: &T, allow_lossy: bool){
let message = original
.validate_result(
&lossy,
ValidationOptions { allow_lossy, .. Default::default() },
|| String::new() // type_name::<T>().to_string()
)
.unwrap_err();
println!("message: {}", message);
}
let original:&[f32] = &[ 0.0, f32::NAN, f32::NAN ];
let lossy:&[f32] = &[ 0.0, f32::NAN, 0.0 ];
print_error(&original, &lossy, false);
print_error(&2.0, &1.0, true);
print_error(&2.0, &1.0, false);
print_error(&FlatSamples::F32(vec![0.1,0.1]), &FlatSamples::F32(vec![0.1,0.2]), false);
print_error(&FlatSamples::U32(vec![0,0]), &FlatSamples::F32(vec![0.1,0.2]), false);
{
let image = crate::prelude::read_all_data_from_file("tests/images/valid/openexr/MultiResolution/Kapaa.exr").unwrap();
let mut mutated = image.clone();
let samples = mutated.layer_data.first_mut().unwrap()
.channel_data.list.first_mut().unwrap().sample_data.levels_as_slice_mut().first_mut().unwrap();
match samples {
FlatSamples::F16(vals) => vals[100] = vals[1],
FlatSamples::F32(vals) => vals[100] = vals[1],
FlatSamples::U32(vals) => vals[100] = vals[1],
}
print_error(&image, &mutated, false);
}
// TODO check out more nested behaviour!
}
#[test]
fn test_uncompressed(){
use crate::prelude::*;
let original_pixels: [(f32,f32,f32); 4] = [
(0.0, -1.1, PI),
(0.0, -1.1, TAU),
(0.0, -1.1, f32::EPSILON),
(f32::NAN, 10000.1, -1024.009),
];
let mut file_bytes = Vec::new();
let original_image = Image::from_encoded_channels(
(2,2),
Encoding {
compression: Compression::Uncompressed,
line_order: Increasing, // FIXME unspecified may be optimized to increasing, which destroys test eq
.. Encoding::default()
},
SpecificChannels::rgb(PixelVec::new(Vec2(2,2), original_pixels.to_vec()))
);
original_image.write().to_buffered(Cursor::new(&mut file_bytes)).unwrap();
let lossy_image = read().no_deep_data().largest_resolution_level()
.rgb_channels(PixelVec::<(f32,f32,f32)>::constructor, PixelVec::set_pixel)
.first_valid_layer().all_attributes().from_buffered(Cursor::new(&file_bytes)).unwrap();
original_image.assert_equals_result(&original_image);
lossy_image.assert_equals_result(&lossy_image);
original_image.assert_equals_result(&lossy_image);
lossy_image.assert_equals_result(&original_image);
}
#[test]
fn test_compiles(){
use crate::prelude::*;
fn accepts_validatable_value(_: &impl ValidateResult){}
let object: Levels<FlatSamples> = Levels::Singular(FlatSamples::F32(Vec::default()));
accepts_validatable_value(&object);
let object: AnyChannels<Levels<FlatSamples>> = AnyChannels::sort(SmallVec::default());
accepts_validatable_value(&object);
let layer: Layer<AnyChannels<Levels<FlatSamples>>> = Layer::new((0,0), Default::default(), Default::default(), object);
accepts_validatable_value(&layer);
let layers: Layers<AnyChannels<Levels<FlatSamples>>> = Default::default();
accepts_validatable_value(&layers);
let object: Image<Layer<AnyChannels<Levels<FlatSamples>>>> = Image::from_layer(layer);
object.assert_equals_result(&object);
}
}
}