exr/
math.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

// calculations inspired by
// https://github.com/AcademySoftwareFoundation/openexr/blob/master/OpenEXR/IlmImf/ImfTiledMisc.cpp

//! Simple math utilities.

use std::convert::TryFrom;
use crate::error::{i32_to_usize};
use crate::error::Result;
use std::ops::{Add, Sub, Div, Mul};
use std::fmt::Debug;

/// Simple two-dimensional vector of any numerical type.
/// Supports only few mathematical operations
/// as this is used mainly as data struct.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, Default)]
pub struct Vec2<T> (pub T, pub T);

impl<T> Vec2<T> {

    /// Returns the vector with the maximum of either coordinates.
    pub fn max(self, other: Self) -> Self where T: Ord {
        Vec2(self.0.max(other.0), self.1.max(other.1))
    }

    /// Returns the vector with the minimum of either coordinates.
    pub fn min(self, other: Self) -> Self where T: Ord {
        Vec2(self.0.min(other.0), self.1.min(other.1))
    }

    /// Try to convert all components of this vector to a new type,
    /// yielding either a vector of that new type, or an error.
    pub fn try_from<S>(value: Vec2<S>) -> std::result::Result<Self, T::Error> where T: TryFrom<S> {
        let x = T::try_from(value.0)?;
        let y = T::try_from(value.1)?;
        Ok(Vec2(x, y))
    }



    /// Seeing this vector as a dimension or size (width and height),
    /// this returns the area that this dimensions contains (`width * height`).
    #[inline] pub fn area(self) -> T where T: std::ops::Mul<T, Output = T> {
        self.0 * self.1
    }

    /// The first component of this 2D vector.
    #[inline] pub fn x(self) -> T { self.0 }

    /// The second component of this 2D vector.
    #[inline] pub fn y(self) -> T { self.1 }

    /// The first component of this 2D vector.
    #[inline] pub fn width(self) -> T { self.0 }

    /// The second component of this 2D vector.
    #[inline] pub fn height(self) -> T { self.1 }

    // TODO use this!
    /// Convert this two-dimensional coordinate to an index suited for one-dimensional flattened image arrays.
    /// Works for images that store the pixels row by row, one after another, in a single array.
    /// In debug mode, panics for an index out of bounds.
    #[inline] pub fn flat_index_for_size(self, resolution: Vec2<T>) -> T
        where T: Copy + Debug + Ord + Mul<Output=T> + Add<Output=T>
    {
        debug_assert!(
            self.x() < resolution.width() && self.y() < resolution.height(),
            "Vec2 index {:?} is invalid for resolution {:?}", self, resolution
        );

        let Vec2(x, y) = self;
        y * resolution.width() + x
    }
}



impl Vec2<i32> {

    /// Try to convert to [`Vec2<usize>`], returning an error on negative numbers.
    pub fn to_usize(self, error_message: &'static str) -> Result<Vec2<usize>> {
        let x = i32_to_usize(self.0, error_message)?;
        let y = i32_to_usize(self.1, error_message)?;
        Ok(Vec2(x, y))
    }

}

impl Vec2<usize> {

    /// Panics for too large values
    pub fn to_i32(self) -> Vec2<i32> {
        let x = i32::try_from(self.0).expect("vector x coordinate too large");
        let y = i32::try_from(self.1).expect("vector y coordinate too large");
        Vec2(x, y)
    }

}


impl<T: std::ops::Add<T>> std::ops::Add<Vec2<T>> for Vec2<T> {
    type Output = Vec2<T::Output>;
    fn add(self, other: Vec2<T>) -> Self::Output {
        Vec2(self.0 + other.0, self.1 + other.1)
    }
}

impl<T: std::ops::Sub<T>> std::ops::Sub<Vec2<T>> for Vec2<T> {
    type Output = Vec2<T::Output>;
    fn sub(self, other: Vec2<T>) -> Self::Output {
        Vec2(self.0 - other.0, self.1 - other.1)
    }
}

impl<T: std::ops::Div<T>> std::ops::Div<Vec2<T>> for Vec2<T> {
    type Output = Vec2<T::Output>;
    fn div(self, other: Vec2<T>) -> Self::Output {
        Vec2(self.0 / other.0, self.1 / other.1)
    }
}

impl<T: std::ops::Mul<T>> std::ops::Mul<Vec2<T>> for Vec2<T> {
    type Output = Vec2<T::Output>;
    fn mul(self, other: Vec2<T>) -> Self::Output {
        Vec2(self.0 * other.0, self.1 * other.1)
    }
}

impl<T> std::ops::Neg for Vec2<T> where T: std::ops::Neg<Output=T> {
    type Output = Vec2<T>;
    fn neg(self) -> Self::Output { Vec2(-self.0, -self.1) }
}

impl<T> From<(T, T)> for Vec2<T> {
    fn from((x, y): (T, T)) -> Self { Vec2(x, y) }
}

impl<T> From<Vec2<T>> for (T, T) {
    fn from(vec2: Vec2<T>) -> Self { (vec2.0, vec2.1) }
}

/// Computes `floor(log(x)/log(2))`. Returns 0 where argument is 0.
// TODO does rust std not provide this?
pub(crate) fn floor_log_2(mut number: u32) -> u32 {
    let mut log = 0;

    // TODO check if this unrolls properly?
    while number > 1 {
        log += 1;
        number >>= 1;
    }

    log
}


/// Computes `ceil(log(x)/log(2))`. Returns 0 where argument is 0.
// taken from https://github.com/openexr/openexr/blob/master/OpenEXR/IlmImf/ImfTiledMisc.cpp
// TODO does rust std not provide this?
pub(crate) fn ceil_log_2(mut number: u32) -> u32 {
    let mut log = 0;
    let mut round_up = 0;

    // TODO check if this unrolls properly
    while number > 1 {
        if number & 1 != 0 {
            round_up = 1;
        }

        log +=  1;
        number >>= 1;
    }

    log + round_up
}


/// Round up or down in specific calculations.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub enum RoundingMode {

    /// Round down.
    Down,

    /// Round up.
    Up,
}

impl RoundingMode {
    pub(crate) fn log2(self, number: u32) -> u32 {
        match self {
            RoundingMode::Down => self::floor_log_2(number),
            RoundingMode::Up => self::ceil_log_2(number),
        }
    }

    /// Only works for positive numbers.
    pub(crate) fn divide<T>(self, dividend: T, divisor: T) -> T
        where T: Copy + Add<Output = T> + Sub<Output = T> + Div<Output = T> + From<u8> + std::cmp::PartialOrd
    {
        assert!(
            dividend >= T::from(0) && divisor >= T::from(1),
            "division with rounding up only works for positive numbers"
        );

        match self {
            RoundingMode::Up => (dividend + divisor - T::from(1_u8)) / divisor, // only works for positive numbers
            RoundingMode::Down => dividend / divisor,
        }
    }
}

// TODO log2 tests