exr/meta/attribute.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
//! Contains all meta data attributes.
//! Each layer can have any number of [`Attribute`]s, including custom attributes.
use smallvec::SmallVec;
/// Contains one of all possible attributes.
/// Includes a variant for custom attributes.
#[derive(Debug, Clone, PartialEq)]
pub enum AttributeValue {
/// Channel meta data.
ChannelList(ChannelList),
/// Color space definition.
Chromaticities(Chromaticities),
/// Compression method of this layer.
Compression(Compression),
/// This image is an environment map.
EnvironmentMap(EnvironmentMap),
/// Film roll information.
KeyCode(KeyCode),
/// Order of the bocks in the file.
LineOrder(LineOrder),
/// A 3x3 matrix of floats.
Matrix3x3(Matrix3x3),
/// A 4x4 matrix of floats.
Matrix4x4(Matrix4x4),
/// 8-bit rgba Preview of the image.
Preview(Preview),
/// An integer dividend and divisor.
Rational(Rational),
/// Deep or flat and tiled or scan line.
BlockType(BlockType),
/// List of texts.
TextVector(Vec<Text>),
/// How to tile up the image.
TileDescription(TileDescription),
/// Timepoint and more.
TimeCode(TimeCode),
/// A string of byte-chars.
Text(Text),
/// 64-bit float
F64(f64),
/// 32-bit float
F32(f32),
/// 32-bit signed integer
I32(i32),
/// 2D integer rectangle.
IntegerBounds(IntegerBounds),
/// 2D float rectangle.
FloatRect(FloatRect),
/// 2D integer vector.
IntVec2(Vec2<i32>),
/// 2D float vector.
FloatVec2(Vec2<f32>),
/// 3D integer vector.
IntVec3((i32, i32, i32)),
/// 3D float vector.
FloatVec3((f32, f32, f32)),
/// A custom attribute.
/// Contains the type name of this value.
Custom {
/// The name of the type this attribute is an instance of.
kind: Text,
/// The value, stored in little-endian byte order, of the value.
/// Use the `exr::io::Data` trait to extract binary values from this vector.
bytes: Vec<u8>
},
}
/// A byte array with each byte being a char.
/// This is not UTF an must be constructed from a standard string.
// TODO is this ascii? use a rust ascii crate?
#[derive(Clone, PartialEq, Ord, PartialOrd, Default)] // hash implemented manually
pub struct Text {
bytes: TextBytes,
}
/// Contains time information for this frame within a sequence.
/// Also defined methods to compile this information into a
/// `TV60`, `TV50` or `Film24` bit sequence, packed into `u32`.
///
/// Satisfies the [SMPTE standard 12M-1999](https://en.wikipedia.org/wiki/SMPTE_timecode).
/// For more in-depth information, see [philrees.co.uk/timecode](http://www.philrees.co.uk/articles/timecode.htm).
#[derive(Copy, Debug, Clone, Eq, PartialEq, Hash, Default)]
pub struct TimeCode {
/// Hours 0 - 23 are valid.
pub hours: u8,
/// Minutes 0 - 59 are valid.
pub minutes: u8,
/// Seconds 0 - 59 are valid.
pub seconds: u8,
/// Frame Indices 0 - 29 are valid.
pub frame: u8,
/// Whether this is a drop frame.
pub drop_frame: bool,
/// Whether this is a color frame.
pub color_frame: bool,
/// Field Phase.
pub field_phase: bool,
/// Flags for `TimeCode.binary_groups`.
pub binary_group_flags: [bool; 3],
/// The user-defined control codes.
/// Every entry in this array can use at most 3 bits.
/// This results in a maximum value of 15, including 0, for each `u8`.
pub binary_groups: [u8; 8]
}
/// layer type, specifies block type and deepness.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub enum BlockType {
/// Corresponds to the string value `scanlineimage`.
ScanLine,
/// Corresponds to the string value `tiledimage`.
Tile,
/// Corresponds to the string value `deepscanline`.
DeepScanLine,
/// Corresponds to the string value `deeptile`.
DeepTile,
}
/// The string literals used to represent a `BlockType` in a file.
pub mod block_type_strings {
/// Type attribute text value of flat scan lines
pub const SCAN_LINE: &'static [u8] = b"scanlineimage";
/// Type attribute text value of flat tiles
pub const TILE: &'static [u8] = b"tiledimage";
/// Type attribute text value of deep scan lines
pub const DEEP_SCAN_LINE: &'static [u8] = b"deepscanline";
/// Type attribute text value of deep tiles
pub const DEEP_TILE: &'static [u8] = b"deeptile";
}
pub use crate::compression::Compression;
/// The integer rectangle describing where an layer is placed on the infinite 2D global space.
pub type DataWindow = IntegerBounds;
/// The integer rectangle limiting which part of the infinite 2D global space should be displayed.
pub type DisplayWindow = IntegerBounds;
/// An integer dividend and divisor, together forming a ratio.
pub type Rational = (i32, u32);
/// A float matrix with four rows and four columns.
pub type Matrix4x4 = [f32; 4*4];
/// A float matrix with three rows and three columns.
pub type Matrix3x3 = [f32; 3*3];
/// A rectangular section anywhere in 2D integer space.
/// Valid from minimum coordinate (including) `-1,073,741,822`
/// to maximum coordinate (including) `1,073,741,822`, the value of (`i32::MAX/2 -1`).
#[derive(Clone, Copy, Debug, Eq, PartialEq, Default, Hash)]
pub struct IntegerBounds {
/// The top left corner of this rectangle.
/// The `Box2I32` includes this pixel if the size is not zero.
pub position: Vec2<i32>,
/// How many pixels to include in this `Box2I32`.
/// Extends to the right and downwards.
/// Does not include the actual boundary, just like `Vec::len()`.
pub size: Vec2<usize>,
}
/// A rectangular section anywhere in 2D float space.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct FloatRect {
/// The top left corner location of the rectangle (inclusive)
pub min: Vec2<f32>,
/// The bottom right corner location of the rectangle (inclusive)
pub max: Vec2<f32>
}
/// A List of channels. Channels must be sorted alphabetically.
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub struct ChannelList {
/// The channels in this list.
pub list: SmallVec<[ChannelDescription; 5]>,
/// The number of bytes that one pixel in this image needs.
// FIXME this needs to account for subsampling anywhere?
pub bytes_per_pixel: usize, // FIXME only makes sense for flat images!
/// The sample type of all channels, if all channels have the same type.
pub uniform_sample_type: Option<SampleType>,
}
/// A single channel in an layer.
/// Does not contain the actual pixel data,
/// but instead merely describes it.
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub struct ChannelDescription {
/// One of "R", "G", or "B" most of the time.
pub name: Text,
/// U32, F16 or F32.
pub sample_type: SampleType,
/// This attribute only tells lossy compression methods
/// whether this value should be quantized exponentially or linearly.
///
/// Should be `false` for red, green, or blue channels.
/// Should be `true` for hue, chroma, saturation, or alpha channels.
pub quantize_linearly: bool,
/// How many of the samples are skipped compared to the other channels in this layer.
///
/// Can be used for chroma subsampling for manual lossy data compression.
/// Values other than 1 are allowed only in flat, scan-line based images.
/// If an image is deep or tiled, x and y sampling rates for all of its channels must be 1.
pub sampling: Vec2<usize>,
}
/// The type of samples in this channel.
#[derive(Clone, Debug, Eq, PartialEq, Copy, Hash)]
pub enum SampleType {
/// This channel contains 32-bit unsigned int values.
U32,
/// This channel contains 16-bit float values.
F16,
/// This channel contains 32-bit float values.
F32,
}
/// The color space of the pixels.
///
/// If a file doesn't have a chromaticities attribute, display software
/// should assume that the file's primaries and the white point match `Rec. ITU-R BT.709-3`.
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct Chromaticities {
/// "Red" location on the CIE XY chromaticity diagram.
pub red: Vec2<f32>,
/// "Green" location on the CIE XY chromaticity diagram.
pub green: Vec2<f32>,
/// "Blue" location on the CIE XY chromaticity diagram.
pub blue: Vec2<f32>,
/// "White" location on the CIE XY chromaticity diagram.
pub white: Vec2<f32>
}
/// If this attribute is present, it describes
/// how this texture should be projected onto an environment.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub enum EnvironmentMap {
/// This image is an environment map projected like a world map.
LatitudeLongitude,
/// This image contains the six sides of a cube.
Cube,
}
/// Uniquely identifies a motion picture film frame.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub struct KeyCode {
/// Identifies a film manufacturer.
pub film_manufacturer_code: i32,
/// Identifies a film type.
pub film_type: i32,
/// Specifies the film roll prefix.
pub film_roll_prefix: i32,
/// Specifies the film count.
pub count: i32,
/// Specifies the perforation offset.
pub perforation_offset: i32,
/// Specifies the perforation count of each single frame.
pub perforations_per_frame: i32,
/// Specifies the perforation count of each single film.
pub perforations_per_count: i32,
}
/// In what order the `Block`s of pixel data appear in a file.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub enum LineOrder {
/// The blocks in the file are ordered in descending rows from left to right.
/// When compressing in parallel, this option requires potentially large amounts of memory.
/// In that case, use `LineOrder::Unspecified` for best performance.
Increasing,
/// The blocks in the file are ordered in ascending rows from right to left.
/// When compressing in parallel, this option requires potentially large amounts of memory.
/// In that case, use `LineOrder::Unspecified` for best performance.
Decreasing,
/// The blocks are not ordered in a specific way inside the file.
/// In multi-core file writing, this option offers the best performance.
Unspecified,
}
/// A small `rgba` image of `i8` values that approximates the real exr image.
// TODO is this linear?
#[derive(Clone, Eq, PartialEq)]
pub struct Preview {
/// The dimensions of the preview image.
pub size: Vec2<usize>,
/// An array with a length of 4 × width × height.
/// The pixels are stored in `LineOrder::Increasing`.
/// Each pixel consists of the four `u8` values red, green, blue, alpha.
pub pixel_data: Vec<i8>,
}
/// Describes how the layer is divided into tiles.
/// Specifies the size of each tile in the image
/// and whether this image contains multiple resolution levels.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub struct TileDescription {
/// The size of each tile.
/// Stays the same number of pixels across all levels.
pub tile_size: Vec2<usize>,
/// Whether to also store smaller versions of the image.
pub level_mode: LevelMode,
/// Whether to round up or down when calculating Mip/Rip levels.
pub rounding_mode: RoundingMode,
}
/// Whether to also store increasingly smaller versions of the original image.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub enum LevelMode {
/// Only a single level.
Singular,
/// Levels with a similar aspect ratio.
MipMap,
/// Levels with all possible aspect ratios.
RipMap,
}
/// The raw bytes that make up a string in an exr file.
/// Each `u8` is a single char.
// will mostly be "R", "G", "B" or "deepscanlineimage"
pub type TextBytes = SmallVec<[u8; 24]>;
/// A byte slice, interpreted as text
pub type TextSlice = [u8];
use crate::io::*;
use crate::meta::{sequence_end};
use crate::error::*;
use crate::math::{RoundingMode, Vec2};
use half::f16;
use std::convert::{TryFrom};
use std::borrow::Borrow;
use std::hash::{Hash, Hasher};
use bit_field::BitField;
fn invalid_type() -> Error {
Error::invalid("attribute type mismatch")
}
impl Text {
/// Create a `Text` from an `str` reference.
/// Returns `None` if this string contains unsupported chars.
pub fn new_or_none(string: impl AsRef<str>) -> Option<Self> {
let vec : Option<TextBytes> = string.as_ref().chars()
.map(|character| u8::try_from(character as u64).ok())
.collect();
vec.map(Self::from_bytes_unchecked)
}
/// Create a `Text` from an `str` reference.
/// Panics if this string contains unsupported chars.
pub fn new_or_panic(string: impl AsRef<str>) -> Self {
Self::new_or_none(string).expect("exr::Text contains unsupported characters")
}
/// Create a `Text` from a slice of bytes,
/// without checking any of the bytes.
pub fn from_slice_unchecked(text: &TextSlice) -> Self {
Self::from_bytes_unchecked(SmallVec::from_slice(text))
}
/// Create a `Text` from the specified bytes object,
/// without checking any of the bytes.
pub fn from_bytes_unchecked(bytes: TextBytes) -> Self {
Text { bytes }
}
/// The internal ASCII bytes this text is made of.
pub fn as_slice(&self) -> &TextSlice {
self.bytes.as_slice()
}
/// Check whether this string is valid, adjusting `long_names` if required.
/// If `long_names` is not provided, text length will be entirely unchecked.
pub fn validate(&self, null_terminated: bool, long_names: Option<&mut bool>) -> UnitResult {
Self::validate_bytes(self.as_slice(), null_terminated, long_names)
}
/// Check whether some bytes are valid, adjusting `long_names` if required.
/// If `long_names` is not provided, text length will be entirely unchecked.
pub fn validate_bytes(text: &TextSlice, null_terminated: bool, long_names: Option<&mut bool>) -> UnitResult {
if null_terminated && text.is_empty() {
return Err(Error::invalid("text must not be empty"));
}
if let Some(long) = long_names {
if text.len() >= 256 { return Err(Error::invalid("text must not be longer than 255")); }
if text.len() >= 32 { *long = true; }
}
Ok(())
}
/// The byte count this string would occupy if it were encoded as a null-terminated string.
pub fn null_terminated_byte_size(&self) -> usize {
self.bytes.len() + sequence_end::byte_size()
}
/// The byte count this string would occupy if it were encoded as a size-prefixed string.
pub fn i32_sized_byte_size(&self) -> usize {
self.bytes.len() + i32::BYTE_SIZE
}
/// Write the length of a string and then the contents with that length.
pub fn write_i32_sized<W: Write>(&self, write: &mut W) -> UnitResult {
debug_assert!(self.validate( false, None).is_ok(), "text size bug");
i32::write(usize_to_i32(self.bytes.len()), write)?;
Self::write_unsized_bytes(self.bytes.as_slice(), write)
}
/// Without validation, write this instance to the byte stream.
fn write_unsized_bytes<W: Write>(bytes: &[u8], write: &mut W) -> UnitResult {
u8::write_slice(write, bytes)?;
Ok(())
}
/// Read the length of a string and then the contents with that length.
pub fn read_i32_sized<R: Read>(read: &mut R, max_size: usize) -> Result<Self> {
let size = i32_to_usize(i32::read(read)?, "vector size")?;
Ok(Text::from_bytes_unchecked(SmallVec::from_vec(u8::read_vec(read, size, 1024, Some(max_size), "text attribute length")?)))
}
/// Read the contents with that length.
pub fn read_sized<R: Read>(read: &mut R, size: usize) -> Result<Self> {
const SMALL_SIZE: usize = 24;
// for small strings, read into small vec without heap allocation
if size <= SMALL_SIZE {
let mut buffer = [0_u8; SMALL_SIZE];
let data = &mut buffer[..size];
read.read_exact(data)?;
Ok(Text::from_bytes_unchecked(SmallVec::from_slice(data)))
}
// for large strings, read a dynamic vec of arbitrary size
else {
Ok(Text::from_bytes_unchecked(SmallVec::from_vec(u8::read_vec(read, size, 1024, None, "text attribute length")?)))
}
}
/// Write the string contents and a null-terminator.
pub fn write_null_terminated<W: Write>(&self, write: &mut W) -> UnitResult {
Self::write_null_terminated_bytes(self.as_slice(), write)
}
/// Write the string contents and a null-terminator.
fn write_null_terminated_bytes<W: Write>(bytes: &[u8], write: &mut W) -> UnitResult {
debug_assert!(!bytes.is_empty(), "text is empty bug"); // required to avoid mixup with "sequece_end"
Text::write_unsized_bytes(bytes, write)?;
sequence_end::write(write)?;
Ok(())
}
/// Read a string until the null-terminator is found. Then skips the null-terminator.
pub fn read_null_terminated<R: Read>(read: &mut R, max_len: usize) -> Result<Self> {
let mut bytes = smallvec![ u8::read(read)? ]; // null-terminated strings are always at least 1 byte
loop {
match u8::read(read)? {
0 => break,
non_terminator => bytes.push(non_terminator),
}
if bytes.len() > max_len {
return Err(Error::invalid("text too long"))
}
}
Ok(Text { bytes })
}
/// Allows any text length since it is only used for attribute values,
/// but not attribute names, attribute type names, or channel names.
fn read_vec_of_i32_sized(
read: &mut PeekRead<impl Read>,
total_byte_size: usize
) -> Result<Vec<Text>>
{
let mut result = Vec::with_capacity(2);
// length of the text-vector can be inferred from attribute size
let mut processed_bytes = 0;
while processed_bytes < total_byte_size {
let text = Text::read_i32_sized(read, total_byte_size)?;
processed_bytes += ::std::mem::size_of::<i32>(); // size i32 of the text
processed_bytes += text.bytes.len();
result.push(text);
}
// the expected byte size did not match the actual text byte size
if processed_bytes != total_byte_size {
return Err(Error::invalid("text array byte size"))
}
Ok(result)
}
/// Allows any text length since it is only used for attribute values,
/// but not attribute names, attribute type names, or channel names.
fn write_vec_of_i32_sized_texts<W: Write>(write: &mut W, texts: &[Text]) -> UnitResult {
// length of the text-vector can be inferred from attribute size
for text in texts {
text.write_i32_sized(write)?;
}
Ok(())
}
/// The underlying bytes that represent this text.
pub fn bytes(&self) -> &[u8] {
self.bytes.as_slice()
}
/// Iterate over the individual chars in this text, similar to `String::chars()`.
/// Does not do any heap-allocation but borrows from this instance instead.
pub fn chars(&self) -> impl '_ + Iterator<Item = char> {
self.bytes.iter().map(|&byte| byte as char)
}
/// Compare this `exr::Text` with a plain `&str`.
pub fn eq(&self, string: &str) -> bool {
string.chars().eq(self.chars())
}
/// Compare this `exr::Text` with a plain `&str` ignoring capitalization.
pub fn eq_case_insensitive(&self, string: &str) -> bool {
// this is technically not working for a "turkish i", but those cannot be encoded in exr files anyways
let self_chars = self.chars().map(|char| char.to_ascii_lowercase());
let string_chars = string.chars().flat_map(|ch| ch.to_lowercase());
string_chars.eq(self_chars)
}
}
impl PartialEq<str> for Text {
fn eq(&self, other: &str) -> bool {
self.eq(other)
}
}
impl PartialEq<Text> for str {
fn eq(&self, other: &Text) -> bool {
other.eq(self)
}
}
impl Eq for Text {}
impl Borrow<TextSlice> for Text {
fn borrow(&self) -> &TextSlice {
self.as_slice()
}
}
// forwarding implementation. guarantees `text.borrow().hash() == text.hash()` (required for Borrow)
impl Hash for Text {
fn hash<H: Hasher>(&self, state: &mut H) {
self.bytes.hash(state)
}
}
impl Into<String> for Text {
fn into(self) -> String {
self.to_string()
}
}
impl<'s> From<&'s str> for Text {
/// Panics if the string contains an unsupported character
fn from(str: &'s str) -> Self {
Self::new_or_panic(str)
}
}
/* TODO (currently conflicts with From<&str>)
impl<'s> TryFrom<&'s str> for Text {
type Error = String;
fn try_from(value: &'s str) -> std::result::Result<Self, Self::Error> {
Text::new_or_none(value)
.ok_or_else(|| format!(
"exr::Text does not support all characters in the string `{}`",
value
))
}
}*/
impl ::std::fmt::Debug for Text {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
write!(f, "exr::Text(\"{}\")", self)
}
}
// automatically implements to_string for us
impl ::std::fmt::Display for Text {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
use std::fmt::Write;
for &byte in self.bytes.iter() {
f.write_char(byte as char)?;
}
Ok(())
}
}
impl ChannelList {
/// Does not validate channel order.
pub fn new(channels: SmallVec<[ChannelDescription; 5]>) -> Self {
let uniform_sample_type = {
if let Some(first) = channels.first() {
let has_uniform_types = channels.iter().skip(1)
.all(|chan| chan.sample_type == first.sample_type);
if has_uniform_types { Some(first.sample_type) } else { None }
}
else { None }
};
ChannelList {
bytes_per_pixel: channels.iter().map(|channel| channel.sample_type.bytes_per_sample()).sum(),
list: channels, uniform_sample_type,
}
}
/// Iterate over the channels, and adds to each channel the byte offset of the channels sample type.
/// Assumes the internal channel list is properly sorted.
pub fn channels_with_byte_offset(&self) -> impl Iterator<Item=(usize, &ChannelDescription)> {
self.list.iter().scan(0, |byte_position, channel|{
let previous_position = *byte_position;
*byte_position += channel.sample_type.bytes_per_sample();
Some((previous_position, channel))
})
}
/// Return the index of the channel with the exact name, case sensitive, or none.
/// Potentially uses less than linear time.
pub fn find_index_of_channel(&self, exact_name: &Text) -> Option<usize> {
self.list.binary_search_by_key(&exact_name.bytes(), |chan| chan.name.bytes()).ok()
}
// TODO use this in compression methods
/*pub fn pixel_section_indices(&self, bounds: IntegerBounds) -> impl '_ + Iterator<Item=(&Channel, usize, usize)> {
(bounds.position.y() .. bounds.end().y()).flat_map(|y| {
self.list
.filter(|channel| mod_p(y, usize_to_i32(channel.sampling.1)) == 0)
.flat_map(|channel|{
(bounds.position.x() .. bounds.end().x())
.filter(|x| mod_p(*x, usize_to_i32(channel.sampling.0)) == 0)
.map(|x| (channel, x, y))
})
})
}*/
}
impl BlockType {
/// The corresponding attribute type name literal
const TYPE_NAME: &'static [u8] = type_names::TEXT;
/// Return a `BlockType` object from the specified attribute text value.
pub fn parse(text: Text) -> Result<Self> {
match text.as_slice() {
block_type_strings::SCAN_LINE => Ok(BlockType::ScanLine),
block_type_strings::TILE => Ok(BlockType::Tile),
block_type_strings::DEEP_SCAN_LINE => Ok(BlockType::DeepScanLine),
block_type_strings::DEEP_TILE => Ok(BlockType::DeepTile),
_ => Err(Error::invalid("block type attribute value")),
}
}
/// Without validation, write this instance to the byte stream.
pub fn write(&self, write: &mut impl Write) -> UnitResult {
u8::write_slice(write, self.to_text_bytes())?;
Ok(())
}
/// Returns the raw attribute text value this type is represented by in a file.
pub fn to_text_bytes(&self) -> &[u8] {
match self {
BlockType::ScanLine => block_type_strings::SCAN_LINE,
BlockType::Tile => block_type_strings::TILE,
BlockType::DeepScanLine => block_type_strings::DEEP_SCAN_LINE,
BlockType::DeepTile => block_type_strings::DEEP_TILE,
}
}
/// Number of bytes this would consume in an exr file.
pub fn byte_size(&self) -> usize {
self.to_text_bytes().len()
}
}
impl IntegerBounds {
/// Create a box with no size located at (0,0).
pub fn zero() -> Self {
Self::from_dimensions(Vec2(0, 0))
}
/// Create a box with a size starting at zero.
pub fn from_dimensions(size: impl Into<Vec2<usize>>) -> Self {
Self::new(Vec2(0,0), size)
}
/// Create a box with a size and an origin point.
pub fn new(start: impl Into<Vec2<i32>>, size: impl Into<Vec2<usize>>) -> Self {
Self { position: start.into(), size: size.into() }
}
/// Returns the top-right coordinate of the rectangle.
/// The row and column described by this vector are not included in the rectangle,
/// just like `Vec::len()`.
pub fn end(self) -> Vec2<i32> {
self.position + self.size.to_i32() // larger than max int32 is panic
}
/// Returns the maximum coordinate that a value in this rectangle may have.
pub fn max(self) -> Vec2<i32> {
self.end() - Vec2(1,1)
}
/// Validate this instance.
pub fn validate(&self, max_size: Option<Vec2<usize>>) -> UnitResult {
if let Some(max_size) = max_size {
if self.size.width() > max_size.width() || self.size.height() > max_size.height() {
return Err(Error::invalid("window attribute dimension value"));
}
}
let min_i64 = Vec2(self.position.x() as i64, self.position.y() as i64);
let max_i64 = Vec2(
self.position.x() as i64 + self.size.width() as i64,
self.position.y() as i64 + self.size.height() as i64,
);
Self::validate_min_max_u64(min_i64, max_i64)
}
fn validate_min_max_u64(min: Vec2<i64>, max: Vec2<i64>) -> UnitResult {
let max_box_size_as_i64 = (i32::MAX / 2) as i64; // as defined in the original c++ library
if max.x() >= max_box_size_as_i64
|| max.y() >= max_box_size_as_i64
|| min.x() <= -max_box_size_as_i64
|| min.y() <= -max_box_size_as_i64
{
return Err(Error::invalid("window size exceeding integer maximum"));
}
Ok(())
}
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
4 * i32::BYTE_SIZE
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
let Vec2(x_min, y_min) = self.position;
let Vec2(x_max, y_max) = self.max();
x_min.write(write)?;
y_min.write(write)?;
x_max.write(write)?;
y_max.write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
let x_min = i32::read(read)?;
let y_min = i32::read(read)?;
let x_max = i32::read(read)?;
let y_max = i32::read(read)?;
let min = Vec2(x_min.min(x_max), y_min.min(y_max));
let max = Vec2(x_min.max(x_max), y_min.max(y_max));
// prevent addition overflow
Self::validate_min_max_u64(
Vec2(min.x() as i64, min.y() as i64),
Vec2(max.x() as i64, max.y() as i64),
)?;
// add one to max because the max inclusive, but the size is not
let size = Vec2(max.x() + 1 - min.x(), max.y() + 1 - min.y());
let size = size.to_usize("box coordinates")?;
Ok(IntegerBounds { position: min, size })
}
/// Create a new rectangle which is offset by the specified origin.
pub fn with_origin(self, origin: Vec2<i32>) -> Self { // TODO rename to "move" or "translate"?
IntegerBounds { position: self.position + origin, .. self }
}
/// Returns whether the specified rectangle is equal to or inside this rectangle.
pub fn contains(self, subset: Self) -> bool {
subset.position.x() >= self.position.x()
&& subset.position.y() >= self.position.y()
&& subset.end().x() <= self.end().x()
&& subset.end().y() <= self.end().y()
}
}
impl FloatRect {
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
4 * f32::BYTE_SIZE
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
self.min.x().write(write)?;
self.min.y().write(write)?;
self.max.x().write(write)?;
self.max.y().write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
let x_min = f32::read(read)?;
let y_min = f32::read(read)?;
let x_max = f32::read(read)?;
let y_max = f32::read(read)?;
Ok(FloatRect {
min: Vec2(x_min, y_min),
max: Vec2(x_max, y_max)
})
}
}
impl SampleType {
/// How many bytes a single sample takes up.
pub fn bytes_per_sample(&self) -> usize {
match self {
SampleType::F16 => f16::BYTE_SIZE,
SampleType::F32 => f32::BYTE_SIZE,
SampleType::U32 => u32::BYTE_SIZE,
}
}
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
i32::BYTE_SIZE
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
match *self {
SampleType::U32 => 0_i32,
SampleType::F16 => 1_i32,
SampleType::F32 => 2_i32,
}.write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
// there's definitely going to be more than 255 different pixel types in the future
Ok(match i32::read(read)? {
0 => SampleType::U32,
1 => SampleType::F16,
2 => SampleType::F32,
_ => return Err(Error::invalid("pixel type attribute value")),
})
}
}
impl ChannelDescription {
/// Choose whether to compress samples linearly or not, based on the channel name.
/// Luminance-based channels will be compressed differently than linear data such as alpha.
pub fn guess_quantization_linearity(name: &Text) -> bool {
!(
name.eq_case_insensitive("R") || name.eq_case_insensitive("G") ||
name.eq_case_insensitive("B") || name.eq_case_insensitive("L") ||
name.eq_case_insensitive("Y") || name.eq_case_insensitive("X") ||
name.eq_case_insensitive("Z")
)
}
/// Create a new channel with the specified properties and a sampling rate of (1,1).
/// Automatically chooses the linearity for compression based on the channel name.
pub fn named(name: impl Into<Text>, sample_type: SampleType) -> Self {
let name = name.into();
let linearity = Self::guess_quantization_linearity(&name);
Self::new(name, sample_type, linearity)
}
/*pub fn from_name<T: Into<Sample> + Default>(name: impl Into<Text>) -> Self {
Self::named(name, T::default().into().sample_type())
}*/
/// Create a new channel with the specified properties and a sampling rate of (1,1).
pub fn new(name: impl Into<Text>, sample_type: SampleType, quantize_linearly: bool) -> Self {
Self { name: name.into(), sample_type, quantize_linearly, sampling: Vec2(1, 1) }
}
/// The count of pixels this channel contains, respecting subsampling.
// FIXME this must be used everywhere
pub fn subsampled_pixels(&self, dimensions: Vec2<usize>) -> usize {
self.subsampled_resolution(dimensions).area()
}
/// The resolution pf this channel, respecting subsampling.
pub fn subsampled_resolution(&self, dimensions: Vec2<usize>) -> Vec2<usize> {
dimensions / self.sampling
}
/// Number of bytes this would consume in an exr file.
pub fn byte_size(&self) -> usize {
self.name.null_terminated_byte_size()
+ SampleType::byte_size()
+ 1 // is_linear
+ 3 // reserved bytes
+ 2 * u32::BYTE_SIZE // sampling x, y
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
Text::write_null_terminated(&self.name, write)?;
self.sample_type.write(write)?;
match self.quantize_linearly {
false => 0_u8,
true => 1_u8,
}.write(write)?;
i8::write_slice(write, &[0_i8, 0_i8, 0_i8])?;
i32::write(usize_to_i32(self.sampling.x()), write)?;
i32::write(usize_to_i32(self.sampling.y()), write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
let name = Text::read_null_terminated(read, 256)?;
let sample_type = SampleType::read(read)?;
let is_linear = match u8::read(read)? {
1 => true,
0 => false,
_ => return Err(Error::invalid("channel linearity attribute value")),
};
let mut reserved = [0_i8; 3];
i8::read_slice(read, &mut reserved)?;
let x_sampling = i32_to_usize(i32::read(read)?, "x channel sampling")?;
let y_sampling = i32_to_usize(i32::read(read)?, "y channel sampling")?;
Ok(ChannelDescription {
name, sample_type,
quantize_linearly: is_linear,
sampling: Vec2(x_sampling, y_sampling),
})
}
/// Validate this instance.
pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult {
self.name.validate(true, None)?; // TODO spec says this does not affect `requirements.long_names` but is that true?
if self.sampling.x() == 0 || self.sampling.y() == 0 {
return Err(Error::invalid("zero sampling factor"));
}
if strict && !allow_sampling && self.sampling != Vec2(1,1) {
return Err(Error::invalid("subsampling is only allowed in flat scan line images"));
}
if data_window.position.x() % self.sampling.x() as i32 != 0 || data_window.position.y() % self.sampling.y() as i32 != 0 {
return Err(Error::invalid("channel sampling factor not dividing data window position"));
}
if data_window.size.x() % self.sampling.x() != 0 || data_window.size.y() % self.sampling.y() != 0 {
return Err(Error::invalid("channel sampling factor not dividing data window size"));
}
if self.sampling != Vec2(1,1) {
// TODO this must only be implemented in the crate::image module and child modules,
// should not be too difficult
return Err(Error::unsupported("channel subsampling not supported yet"));
}
Ok(())
}
}
impl ChannelList {
/// Number of bytes this would consume in an exr file.
pub fn byte_size(&self) -> usize {
self.list.iter().map(ChannelDescription::byte_size).sum::<usize>() + sequence_end::byte_size()
}
/// Without validation, write this instance to the byte stream.
/// Assumes channels are sorted alphabetically and all values are validated.
pub fn write(&self, write: &mut impl Write) -> UnitResult {
for channel in &self.list {
channel.write(write)?;
}
sequence_end::write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read(read: &mut PeekRead<impl Read>) -> Result<Self> {
let mut channels = SmallVec::new();
while !sequence_end::has_come(read)? {
channels.push(ChannelDescription::read(read)?);
}
Ok(ChannelList::new(channels))
}
/// Check if channels are valid and sorted.
pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult {
let mut iter = self.list.iter().map(|chan| chan.validate(allow_sampling, data_window, strict).map(|_| &chan.name));
let mut previous = iter.next().ok_or(Error::invalid("at least one channel is required"))??;
for result in iter {
let value = result?;
if strict && previous == value { return Err(Error::invalid("channel names are not unique")); }
else if previous > value { return Err(Error::invalid("channel names are not sorted alphabetically")); }
else { previous = value; }
}
Ok(())
}
}
fn u8_to_decimal32(binary: u8) -> u32 {
let units = binary as u32 % 10;
let tens = (binary as u32 / 10) % 10;
units | (tens << 4)
}
// assumes value fits into u8
fn u8_from_decimal32(coded: u32) -> u8 {
((coded & 0x0f) + 10 * ((coded >> 4) & 0x0f)) as u8
}
// https://github.com/AcademySoftwareFoundation/openexr/blob/master/src/lib/OpenEXR/ImfTimeCode.cpp
impl TimeCode {
/// Number of bytes this would consume in an exr file.
pub const BYTE_SIZE: usize = 2 * u32::BYTE_SIZE;
/// Returns an error if this time code is considered invalid.
pub fn validate(&self, strict: bool) -> UnitResult {
if strict {
if self.frame > 29 { Err(Error::invalid("time code frame larger than 29")) }
else if self.seconds > 59 { Err(Error::invalid("time code seconds larger than 59")) }
else if self.minutes > 59 { Err(Error::invalid("time code minutes larger than 59")) }
else if self.hours > 23 { Err(Error::invalid("time code hours larger than 23")) }
else if self.binary_groups.iter().any(|&group| group > 15) {
Err(Error::invalid("time code binary group value too large for 3 bits"))
}
else { Ok(()) }
}
else { Ok(()) }
}
/// Pack the SMPTE time code into a u32 value, according to TV60 packing.
/// This is the encoding which is used within a binary exr file.
pub fn pack_time_as_tv60_u32(&self) -> Result<u32> {
// validate strictly to prevent set_bit panic! below
self.validate(true)?;
Ok(*0_u32
.set_bits(0..6, u8_to_decimal32(self.frame))
.set_bit(6, self.drop_frame)
.set_bit(7, self.color_frame)
.set_bits(8..15, u8_to_decimal32(self.seconds))
.set_bit(15, self.field_phase)
.set_bits(16..23, u8_to_decimal32(self.minutes))
.set_bit(23, self.binary_group_flags[0])
.set_bits(24..30, u8_to_decimal32(self.hours))
.set_bit(30, self.binary_group_flags[1])
.set_bit(31, self.binary_group_flags[2])
)
}
/// Unpack a time code from one TV60 encoded u32 value and the encoded user data.
/// This is the encoding which is used within a binary exr file.
pub fn from_tv60_time(tv60_time: u32, user_data: u32) -> Self {
Self {
frame: u8_from_decimal32(tv60_time.get_bits(0..6)), // cast cannot fail, as these are less than 8 bits
drop_frame: tv60_time.get_bit(6),
color_frame: tv60_time.get_bit(7),
seconds: u8_from_decimal32(tv60_time.get_bits(8..15)), // cast cannot fail, as these are less than 8 bits
field_phase: tv60_time.get_bit(15),
minutes: u8_from_decimal32(tv60_time.get_bits(16..23)), // cast cannot fail, as these are less than 8 bits
hours: u8_from_decimal32(tv60_time.get_bits(24..30)), // cast cannot fail, as these are less than 8 bits
binary_group_flags: [
tv60_time.get_bit(23),
tv60_time.get_bit(30),
tv60_time.get_bit(31),
],
binary_groups: Self::unpack_user_data_from_u32(user_data)
}
}
/// Pack the SMPTE time code into a u32 value, according to TV50 packing.
/// This encoding does not support the `drop_frame` flag, it will be lost.
pub fn pack_time_as_tv50_u32(&self) -> Result<u32> {
Ok(*self.pack_time_as_tv60_u32()?
// swap some fields by replacing some bits in the packed u32
.set_bit(6, false)
.set_bit(15, self.binary_group_flags[0])
.set_bit(30, self.binary_group_flags[1])
.set_bit(23, self.binary_group_flags[2])
.set_bit(31, self.field_phase)
)
}
/// Unpack a time code from one TV50 encoded u32 value and the encoded user data.
/// This encoding does not support the `drop_frame` flag, it will always be false.
pub fn from_tv50_time(tv50_time: u32, user_data: u32) -> Self {
Self {
drop_frame: false, // do not use bit [6]
// swap some fields:
field_phase: tv50_time.get_bit(31),
binary_group_flags: [
tv50_time.get_bit(15),
tv50_time.get_bit(30),
tv50_time.get_bit(23),
],
.. Self::from_tv60_time(tv50_time, user_data)
}
}
/// Pack the SMPTE time code into a u32 value, according to FILM24 packing.
/// This encoding does not support the `drop_frame` and `color_frame` flags, they will be lost.
pub fn pack_time_as_film24_u32(&self) -> Result<u32> {
Ok(*self.pack_time_as_tv60_u32()?
.set_bit(6, false)
.set_bit(7, false)
)
}
/// Unpack a time code from one TV60 encoded u32 value and the encoded user data.
/// This encoding does not support the `drop_frame` and `color_frame` flags, they will always be `false`.
pub fn from_film24_time(film24_time: u32, user_data: u32) -> Self {
Self {
drop_frame: false, // bit [6]
color_frame: false, // bit [7]
.. Self::from_tv60_time(film24_time, user_data)
}
}
// in rust, group index starts at zero, not at one.
fn user_data_bit_indices(group_index: usize) -> std::ops::Range<usize> {
let min_bit = 4 * group_index;
min_bit .. min_bit + 4 // +4, not +3, as `Range` is exclusive
}
/// Pack the user data `u8` array into one u32.
/// User data values are clamped to the valid range (maximum value is 4).
pub fn pack_user_data_as_u32(&self) -> u32 {
let packed = self.binary_groups.iter().enumerate().fold(0_u32, |mut packed, (group_index, group_value)|
*packed.set_bits(Self::user_data_bit_indices(group_index), *group_value.min(&15) as u32)
);
debug_assert_eq!(Self::unpack_user_data_from_u32(packed), self.binary_groups, "round trip user data encoding");
packed
}
// Unpack the encoded u32 user data to an array of bytes, each byte having a value from 0 to 4.
fn unpack_user_data_from_u32(user_data: u32) -> [u8; 8] {
(0..8).map(|group_index| user_data.get_bits(Self::user_data_bit_indices(group_index)) as u8)
.collect::<SmallVec<[u8;8]>>().into_inner().expect("array index bug")
}
/// Write this time code to the byte stream, encoded as TV60 integers.
/// Returns an `Error::Invalid` if the fields are out of the allowed range.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
self.pack_time_as_tv60_u32()?.write(write)?; // will validate
self.pack_user_data_as_u32().write(write)?;
Ok(())
}
/// Read the time code, without validating, extracting from TV60 integers.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
let time_and_flags = u32::read(read)?;
let user_data = u32::read(read)?;
Ok(Self::from_tv60_time(time_and_flags, user_data))
}
}
impl Chromaticities {
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
8 * f32::BYTE_SIZE
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
self.red.x().write(write)?;
self.red.y().write(write)?;
self.green.x().write(write)?;
self.green.y().write(write)?;
self.blue.x().write(write)?;
self.blue.y().write(write)?;
self.white.x().write(write)?;
self.white.y().write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
Ok(Chromaticities {
red: Vec2(f32::read(read)?, f32::read(read)?),
green: Vec2(f32::read(read)?, f32::read(read)?),
blue: Vec2(f32::read(read)?, f32::read(read)?),
white: Vec2(f32::read(read)?, f32::read(read)?),
})
}
}
impl Compression {
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize { u8::BYTE_SIZE }
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(self, write: &mut W) -> UnitResult {
use self::Compression::*;
match self {
Uncompressed => 0_u8,
RLE => 1_u8,
ZIP1 => 2_u8,
ZIP16 => 3_u8,
PIZ => 4_u8,
PXR24 => 5_u8,
B44 => 6_u8,
B44A => 7_u8,
DWAA(_) => 8_u8,
DWAB(_) => 9_u8,
}.write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
use self::Compression::*;
Ok(match u8::read(read)? {
0 => Uncompressed,
1 => RLE,
2 => ZIP1,
3 => ZIP16,
4 => PIZ,
5 => PXR24,
6 => B44,
7 => B44A,
8 => DWAA(None),
9 => DWAB(None),
_ => return Err(Error::unsupported("unknown compression method")),
})
}
}
impl EnvironmentMap {
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
u8::BYTE_SIZE
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(self, write: &mut W) -> UnitResult {
use self::EnvironmentMap::*;
match self {
LatitudeLongitude => 0_u8,
Cube => 1_u8
}.write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
use self::EnvironmentMap::*;
Ok(match u8::read(read)? {
0 => LatitudeLongitude,
1 => Cube,
_ => return Err(Error::invalid("environment map attribute value")),
})
}
}
impl KeyCode {
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
6 * i32::BYTE_SIZE
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
self.film_manufacturer_code.write(write)?;
self.film_type.write(write)?;
self.film_roll_prefix.write(write)?;
self.count.write(write)?;
self.perforation_offset.write(write)?;
self.perforations_per_count.write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
Ok(KeyCode {
film_manufacturer_code: i32::read(read)?,
film_type: i32::read(read)?,
film_roll_prefix: i32::read(read)?,
count: i32::read(read)?,
perforation_offset: i32::read(read)?,
perforations_per_frame: i32::read(read)?,
perforations_per_count: i32::read(read)?,
})
}
}
impl LineOrder {
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
u8::BYTE_SIZE
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(self, write: &mut W) -> UnitResult {
use self::LineOrder::*;
match self {
Increasing => 0_u8,
Decreasing => 1_u8,
Unspecified => 2_u8,
}.write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
use self::LineOrder::*;
Ok(match u8::read(read)? {
0 => Increasing,
1 => Decreasing,
2 => Unspecified,
_ => return Err(Error::invalid("line order attribute value")),
})
}
}
impl Preview {
/// Number of bytes this would consume in an exr file.
pub fn byte_size(&self) -> usize {
2 * u32::BYTE_SIZE + self.pixel_data.len()
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
u32::write(self.size.width() as u32, write)?;
u32::write(self.size.height() as u32, write)?;
i8::write_slice(write, &self.pixel_data)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
let width = u32::read(read)? as usize;
let height = u32::read(read)? as usize;
if let Some(pixel_count) = width.checked_mul(height) {
// Multiply by the number of bytes per pixel.
if let Some(byte_count) = pixel_count.checked_mul(4) {
let pixel_data = i8::read_vec(
read,
byte_count,
1024 * 1024 * 4,
None,
"preview attribute pixel count",
)?;
let preview = Preview {
size: Vec2(width, height),
pixel_data,
};
return Ok(preview);
}
}
return Err(Error::invalid(
format!("Overflow while calculating preview image Attribute size \
(width: {}, height: {}).",
width,
height)));
}
/// Validate this instance.
pub fn validate(&self, strict: bool) -> UnitResult {
if strict && (self.size.area() * 4 != self.pixel_data.len()) {
return Err(Error::invalid("preview dimensions do not match content length"))
}
Ok(())
}
}
impl ::std::fmt::Debug for Preview {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
write!(f, "Preview ({}x{} px)", self.size.width(), self.size.height())
}
}
impl TileDescription {
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
2 * u32::BYTE_SIZE + 1 // size x,y + (level mode + rounding mode)
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
u32::write(self.tile_size.width() as u32, write)?;
u32::write(self.tile_size.height() as u32, write)?;
let level_mode = match self.level_mode {
LevelMode::Singular => 0_u8,
LevelMode::MipMap => 1_u8,
LevelMode::RipMap => 2_u8,
};
let rounding_mode = match self.rounding_mode {
RoundingMode::Down => 0_u8,
RoundingMode::Up => 1_u8,
};
let mode: u8 = level_mode + (rounding_mode * 16);
mode.write(write)?;
Ok(())
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
let x_size = u32::read(read)? as usize;
let y_size = u32::read(read)? as usize;
let mode = u8::read(read)?;
// wow you really saved that one byte here
// mode = level_mode + (rounding_mode * 16)
let level_mode = mode & 0b00001111; // wow that works
let rounding_mode = mode >> 4; // wow that works
let level_mode = match level_mode {
0 => LevelMode::Singular,
1 => LevelMode::MipMap,
2 => LevelMode::RipMap,
_ => return Err(Error::invalid("tile description level mode")),
};
let rounding_mode = match rounding_mode {
0 => RoundingMode::Down,
1 => RoundingMode::Up,
_ => return Err(Error::invalid("tile description rounding mode")),
};
Ok(TileDescription { tile_size: Vec2(x_size, y_size), level_mode, rounding_mode, })
}
/// Validate this instance.
pub fn validate(&self) -> UnitResult {
let max = i32::MAX as i64 / 2;
if self.tile_size.width() == 0 || self.tile_size.height() == 0
|| self.tile_size.width() as i64 >= max || self.tile_size.height() as i64 >= max
{
return Err(Error::invalid("tile size"))
}
Ok(())
}
}
/// Number of bytes this attribute would consume in an exr file.
// TODO instead of pre calculating byte size, write to a tmp buffer whose length is inspected before actually writing?
pub fn byte_size(name: &Text, value: &AttributeValue) -> usize {
name.null_terminated_byte_size()
+ value.kind_name().len() + sequence_end::byte_size()
+ i32::BYTE_SIZE // serialized byte size
+ value.byte_size()
}
/// Without validation, write this attribute to the byte stream.
pub fn write<W: Write>(name: &TextSlice, value: &AttributeValue, write: &mut W) -> UnitResult {
Text::write_null_terminated_bytes(name, write)?;
Text::write_null_terminated_bytes(value.kind_name(), write)?;
i32::write(value.byte_size() as i32, write)?;
value.write(write)
}
/// Read the attribute without validating. The result may be `Ok` even if this single attribute is invalid.
pub fn read(read: &mut PeekRead<impl Read>, max_size: usize) -> Result<(Text, Result<AttributeValue>)> {
let name = Text::read_null_terminated(read, max_size)?;
let kind = Text::read_null_terminated(read, max_size)?;
let size = i32_to_usize(i32::read(read)?, "attribute size")?;
let value = AttributeValue::read(read, kind, size)?;
Ok((name, value))
}
/// Validate this attribute.
pub fn validate(name: &Text, value: &AttributeValue, long_names: &mut bool, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult {
name.validate(true, Some(long_names))?; // only name text has length restriction
value.validate(allow_sampling, data_window, strict) // attribute value text length is never restricted
}
impl AttributeValue {
/// Number of bytes this would consume in an exr file.
pub fn byte_size(&self) -> usize {
use self::AttributeValue::*;
match *self {
IntegerBounds(_) => self::IntegerBounds::byte_size(),
FloatRect(_) => self::FloatRect::byte_size(),
I32(_) => i32::BYTE_SIZE,
F32(_) => f32::BYTE_SIZE,
F64(_) => f64::BYTE_SIZE,
Rational(_) => { i32::BYTE_SIZE + u32::BYTE_SIZE },
TimeCode(_) => self::TimeCode::BYTE_SIZE,
IntVec2(_) => { 2 * i32::BYTE_SIZE },
FloatVec2(_) => { 2 * f32::BYTE_SIZE },
IntVec3(_) => { 3 * i32::BYTE_SIZE },
FloatVec3(_) => { 3 * f32::BYTE_SIZE },
ChannelList(ref channels) => channels.byte_size(),
Chromaticities(_) => self::Chromaticities::byte_size(),
Compression(_) => self::Compression::byte_size(),
EnvironmentMap(_) => self::EnvironmentMap::byte_size(),
KeyCode(_) => self::KeyCode::byte_size(),
LineOrder(_) => self::LineOrder::byte_size(),
Matrix3x3(ref value) => value.len() * f32::BYTE_SIZE,
Matrix4x4(ref value) => value.len() * f32::BYTE_SIZE,
Preview(ref value) => value.byte_size(),
// attribute value texts never have limited size.
// also, don't serialize size, as it can be inferred from attribute size
Text(ref value) => value.bytes.len(),
TextVector(ref value) => value.iter().map(self::Text::i32_sized_byte_size).sum(),
TileDescription(_) => self::TileDescription::byte_size(),
Custom { ref bytes, .. } => bytes.len(),
BlockType(ref kind) => kind.byte_size()
}
}
/// The exr name string of the type that an attribute can have.
pub fn kind_name(&self) -> &TextSlice {
use self::AttributeValue::*;
use self::type_names as ty;
match *self {
IntegerBounds(_) => ty::I32BOX2,
FloatRect(_) => ty::F32BOX2,
I32(_) => ty::I32,
F32(_) => ty::F32,
F64(_) => ty::F64,
Rational(_) => ty::RATIONAL,
TimeCode(_) => ty::TIME_CODE,
IntVec2(_) => ty::I32VEC2,
FloatVec2(_) => ty::F32VEC2,
IntVec3(_) => ty::I32VEC3,
FloatVec3(_) => ty::F32VEC3,
ChannelList(_) => ty::CHANNEL_LIST,
Chromaticities(_) => ty::CHROMATICITIES,
Compression(_) => ty::COMPRESSION,
EnvironmentMap(_) => ty::ENVIRONMENT_MAP,
KeyCode(_) => ty::KEY_CODE,
LineOrder(_) => ty::LINE_ORDER,
Matrix3x3(_) => ty::F32MATRIX3X3,
Matrix4x4(_) => ty::F32MATRIX4X4,
Preview(_) => ty::PREVIEW,
Text(_) => ty::TEXT,
TextVector(_) => ty::TEXT_VECTOR,
TileDescription(_) => ty::TILES,
BlockType(_) => super::BlockType::TYPE_NAME,
Custom { ref kind, .. } => kind.as_slice(),
}
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(&self, write: &mut W) -> UnitResult {
use self::AttributeValue::*;
match *self {
IntegerBounds(value) => value.write(write)?,
FloatRect(value) => value.write(write)?,
I32(value) => value.write(write)?,
F32(value) => value.write(write)?,
F64(value) => value.write(write)?,
Rational((a, b)) => { a.write(write)?; b.write(write)?; },
TimeCode(codes) => { codes.write(write)?; },
IntVec2(Vec2(x, y)) => { x.write(write)?; y.write(write)?; },
FloatVec2(Vec2(x, y)) => { x.write(write)?; y.write(write)?; },
IntVec3((x, y, z)) => { x.write(write)?; y.write(write)?; z.write(write)?; },
FloatVec3((x, y, z)) => { x.write(write)?; y.write(write)?; z.write(write)?; },
ChannelList(ref channels) => channels.write(write)?,
Chromaticities(ref value) => value.write(write)?,
Compression(value) => value.write(write)?,
EnvironmentMap(value) => value.write(write)?,
KeyCode(value) => value.write(write)?,
LineOrder(value) => value.write(write)?,
Matrix3x3(mut value) => f32::write_slice(write, &mut value)?,
Matrix4x4(mut value) => f32::write_slice(write, &mut value)?,
Preview(ref value) => { value.write(write)?; },
// attribute value texts never have limited size.
// also, don't serialize size, as it can be inferred from attribute size
Text(ref value) => u8::write_slice(write, value.bytes.as_slice())?,
TextVector(ref value) => self::Text::write_vec_of_i32_sized_texts(write, value)?,
TileDescription(ref value) => value.write(write)?,
Custom { ref bytes, .. } => u8::write_slice(write, &bytes)?, // write.write(&bytes).map(|_| ()),
BlockType(kind) => kind.write(write)?
};
Ok(())
}
/// Read the value without validating.
/// Returns `Ok(Ok(attribute))` for valid attributes.
/// Returns `Ok(Err(Error))` for invalid attributes from a valid byte source.
/// Returns `Err(Error)` for invalid byte sources, for example for invalid files.
pub fn read(read: &mut PeekRead<impl Read>, kind: Text, byte_size: usize) -> Result<Result<Self>> {
use self::AttributeValue::*;
use self::type_names as ty;
// always read bytes
let attribute_bytes = u8::read_vec(read, byte_size, 128, None, "attribute value size")?;
// TODO no allocation for small attributes // : SmallVec<[u8; 64]> = smallvec![0; byte_size];
let parse_attribute = move || {
let reader = &mut attribute_bytes.as_slice();
Ok(match kind.bytes.as_slice() {
ty::I32BOX2 => IntegerBounds(self::IntegerBounds::read(reader)?),
ty::F32BOX2 => FloatRect(self::FloatRect::read(reader)?),
ty::I32 => I32(i32::read(reader)?),
ty::F32 => F32(f32::read(reader)?),
ty::F64 => F64(f64::read(reader)?),
ty::RATIONAL => Rational({
let a = i32::read(reader)?;
let b = u32::read(reader)?;
(a, b)
}),
ty::TIME_CODE => TimeCode(self::TimeCode::read(reader)?),
ty::I32VEC2 => IntVec2({
let a = i32::read(reader)?;
let b = i32::read(reader)?;
Vec2(a, b)
}),
ty::F32VEC2 => FloatVec2({
let a = f32::read(reader)?;
let b = f32::read(reader)?;
Vec2(a, b)
}),
ty::I32VEC3 => IntVec3({
let a = i32::read(reader)?;
let b = i32::read(reader)?;
let c = i32::read(reader)?;
(a, b, c)
}),
ty::F32VEC3 => FloatVec3({
let a = f32::read(reader)?;
let b = f32::read(reader)?;
let c = f32::read(reader)?;
(a, b, c)
}),
ty::CHANNEL_LIST => ChannelList(self::ChannelList::read(&mut PeekRead::new(attribute_bytes.as_slice()))?),
ty::CHROMATICITIES => Chromaticities(self::Chromaticities::read(reader)?),
ty::COMPRESSION => Compression(self::Compression::read(reader)?),
ty::ENVIRONMENT_MAP => EnvironmentMap(self::EnvironmentMap::read(reader)?),
ty::KEY_CODE => KeyCode(self::KeyCode::read(reader)?),
ty::LINE_ORDER => LineOrder(self::LineOrder::read(reader)?),
ty::F32MATRIX3X3 => Matrix3x3({
let mut result = [0.0_f32; 9];
f32::read_slice(reader, &mut result)?;
result
}),
ty::F32MATRIX4X4 => Matrix4x4({
let mut result = [0.0_f32; 16];
f32::read_slice(reader, &mut result)?;
result
}),
ty::PREVIEW => Preview(self::Preview::read(reader)?),
ty::TEXT => Text(self::Text::read_sized(reader, byte_size)?),
// the number of strings can be inferred from the total attribute size
ty::TEXT_VECTOR => TextVector(self::Text::read_vec_of_i32_sized(
&mut PeekRead::new(attribute_bytes.as_slice()),
byte_size
)?),
ty::TILES => TileDescription(self::TileDescription::read(reader)?),
_ => Custom { kind: kind.clone(), bytes: attribute_bytes.clone() } // TODO no clone
})
};
Ok(parse_attribute())
}
/// Validate this instance.
pub fn validate(&self, allow_sampling: bool, data_window: IntegerBounds, strict: bool) -> UnitResult {
use self::AttributeValue::*;
match *self {
ChannelList(ref channels) => channels.validate(allow_sampling, data_window, strict)?,
TileDescription(ref value) => value.validate()?,
Preview(ref value) => value.validate(strict)?,
TimeCode(ref time_code) => time_code.validate(strict)?,
TextVector(ref vec) => if strict && vec.is_empty() {
return Err(Error::invalid("text vector may not be empty"))
},
_ => {}
};
Ok(())
}
/// Return `Ok(i32)` if this attribute is an i32.
pub fn to_i32(&self) -> Result<i32> {
match *self {
AttributeValue::I32(value) => Ok(value),
_ => Err(invalid_type())
}
}
/// Return `Ok(f32)` if this attribute is an f32.
pub fn to_f32(&self) -> Result<f32> {
match *self {
AttributeValue::F32(value) => Ok(value),
_ => Err(invalid_type())
}
}
/// Return `Ok(Text)` if this attribute is a text.
pub fn into_text(self) -> Result<Text> {
match self {
AttributeValue::Text(value) => Ok(value),
_ => Err(invalid_type())
}
}
/// Return `Ok(Text)` if this attribute is a text.
pub fn to_text(&self) -> Result<&Text> {
match self {
AttributeValue::Text(value) => Ok(value),
_ => Err(invalid_type())
}
}
/// Return `Ok(Chromaticities)` if this attribute is a chromaticities attribute.
pub fn to_chromaticities(&self) -> Result<Chromaticities> {
match *self {
AttributeValue::Chromaticities(value) => Ok(value),
_ => Err(invalid_type())
}
}
/// Return `Ok(TimeCode)` if this attribute is a time code.
pub fn to_time_code(&self) -> Result<TimeCode> {
match *self {
AttributeValue::TimeCode(value) => Ok(value),
_ => Err(invalid_type())
}
}
}
/// Contains string literals identifying the type of an attribute.
pub mod type_names {
macro_rules! define_attribute_type_names {
( $($name: ident : $value: expr),* ) => {
$(
/// The byte-string name of this attribute type as it appears in an exr file.
pub const $name: &'static [u8] = $value;
)*
};
}
define_attribute_type_names! {
I32BOX2: b"box2i",
F32BOX2: b"box2f",
I32: b"int",
F32: b"float",
F64: b"double",
RATIONAL: b"rational",
TIME_CODE: b"timecode",
I32VEC2: b"v2i",
F32VEC2: b"v2f",
I32VEC3: b"v3i",
F32VEC3: b"v3f",
CHANNEL_LIST: b"chlist",
CHROMATICITIES: b"chromaticities",
COMPRESSION: b"compression",
ENVIRONMENT_MAP:b"envmap",
KEY_CODE: b"keycode",
LINE_ORDER: b"lineOrder",
F32MATRIX3X3: b"m33f",
F32MATRIX4X4: b"m44f",
PREVIEW: b"preview",
TEXT: b"string",
TEXT_VECTOR: b"stringvector",
TILES: b"tiledesc"
}
}
#[cfg(test)]
mod test {
use super::*;
use ::std::io::Cursor;
use rand::{random, thread_rng, Rng};
#[test]
fn text_ord() {
for _ in 0..1024 {
let text1 = Text::from_bytes_unchecked((0..4).map(|_| rand::random::<u8>()).collect());
let text2 = Text::from_bytes_unchecked((0..4).map(|_| rand::random::<u8>()).collect());
assert_eq!(text1.to_string().cmp(&text2.to_string()), text1.cmp(&text2), "in text {:?} vs {:?}", text1, text2);
}
}
#[test]
fn rounding_up(){
let round_up = RoundingMode::Up;
assert_eq!(round_up.divide(10, 10), 1, "divide equal");
assert_eq!(round_up.divide(10, 2), 5, "divide even");
assert_eq!(round_up.divide(10, 5), 2, "divide even");
assert_eq!(round_up.divide(8, 5), 2, "round up");
assert_eq!(round_up.divide(10, 3), 4, "round up");
assert_eq!(round_up.divide(100, 50), 2, "divide even");
assert_eq!(round_up.divide(100, 49), 3, "round up");
}
#[test]
fn rounding_down(){
let round_down = RoundingMode::Down;
assert_eq!(round_down.divide(8, 5), 1, "round down");
assert_eq!(round_down.divide(10, 3), 3, "round down");
assert_eq!(round_down.divide(100, 50), 2, "divide even");
assert_eq!(round_down.divide(100, 49), 2, "round down");
assert_eq!(round_down.divide(100, 51), 1, "round down");
}
#[test]
fn tile_description_write_read_roundtrip(){
let tiles = [
TileDescription {
tile_size: Vec2(31, 7),
level_mode: LevelMode::MipMap,
rounding_mode: RoundingMode::Down,
},
TileDescription {
tile_size: Vec2(0, 0),
level_mode: LevelMode::Singular,
rounding_mode: RoundingMode::Up,
},
TileDescription {
tile_size: Vec2(4294967294, 4294967295),
level_mode: LevelMode::RipMap,
rounding_mode: RoundingMode::Down,
},
];
for tile in &tiles {
let mut bytes = Vec::new();
tile.write(&mut bytes).unwrap();
let new_tile = TileDescription::read(&mut Cursor::new(bytes)).unwrap();
assert_eq!(*tile, new_tile, "tile round trip");
}
}
#[test]
fn attribute_write_read_roundtrip_and_byte_size(){
let attributes = [
(
Text::from("greeting"),
AttributeValue::Text(Text::from("hello")),
),
(
Text::from("age"),
AttributeValue::I32(923),
),
(
Text::from("leg count"),
AttributeValue::F64(9.114939599234),
),
(
Text::from("rabbit area"),
AttributeValue::FloatRect(FloatRect {
min: Vec2(23.4234, 345.23),
max: Vec2(68623.0, 3.12425926538),
}),
),
(
Text::from("rabbit area int"),
AttributeValue::IntegerBounds(IntegerBounds {
position: Vec2(23, 345),
size: Vec2(68623, 3),
}),
),
(
Text::from("rabbit area int"),
AttributeValue::IntegerBounds(IntegerBounds {
position: Vec2(-(i32::MAX / 2 - 1), -(i32::MAX / 2 - 1)),
size: Vec2(i32::MAX as usize - 2, i32::MAX as usize - 2),
}),
),
(
Text::from("rabbit area int 2"),
AttributeValue::IntegerBounds(IntegerBounds {
position: Vec2(0, 0),
size: Vec2(i32::MAX as usize / 2 - 1, i32::MAX as usize / 2 - 1),
}),
),
(
Text::from("tests are difficult"),
AttributeValue::TextVector(vec![
Text::from("sdoifjpsdv"),
Text::from("sdoifjpsdvxxxx"),
Text::from("sdoifjasd"),
Text::from("sdoifj"),
Text::from("sdoifjddddddddasdasd"),
]),
),
(
Text::from("what should we eat tonight"),
AttributeValue::Preview(Preview {
size: Vec2(10, 30),
pixel_data: vec![31; 10 * 30 * 4],
}),
),
(
Text::from("leg count, again"),
AttributeValue::ChannelList(ChannelList::new(smallvec![
ChannelDescription {
name: Text::from("Green"),
sample_type: SampleType::F16,
quantize_linearly: false,
sampling: Vec2(1,2)
},
ChannelDescription {
name: Text::from("Red"),
sample_type: SampleType::F32,
quantize_linearly: true,
sampling: Vec2(1,2)
},
ChannelDescription {
name: Text::from("Purple"),
sample_type: SampleType::U32,
quantize_linearly: false,
sampling: Vec2(0,0)
}
],
)),
),
];
for (name, value) in &attributes {
let mut bytes = Vec::new();
super::write(name.as_slice(), value, &mut bytes).unwrap();
assert_eq!(super::byte_size(name, value), bytes.len(), "attribute.byte_size() for {:?}", (name, value));
let new_attribute = super::read(&mut PeekRead::new(Cursor::new(bytes)), 300).unwrap();
assert_eq!((name.clone(), value.clone()), (new_attribute.0, new_attribute.1.unwrap()), "attribute round trip");
}
{
let (name, value) = (
Text::from("asdkaspfokpaosdkfpaokswdpoakpsfokaposdkf"),
AttributeValue::I32(0),
);
let mut long_names = false;
super::validate(&name, &value, &mut long_names, false, IntegerBounds::zero(), false).unwrap();
assert!(long_names);
}
{
let (name, value) = (
Text::from("sdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfposdöksadöofkaspdolkpöasolfkcöalsod,kfcöaslodkcpöasolkfpo"),
AttributeValue::I32(0),
);
super::validate(&name, &value, &mut false, false, IntegerBounds::zero(), false).expect_err("name length check failed");
}
}
#[test]
fn time_code_pack(){
let mut rng = thread_rng();
let codes = std::iter::repeat_with(|| TimeCode {
hours: rng.gen_range(0 .. 24),
minutes: rng.gen_range(0 .. 60),
seconds: rng.gen_range(0 .. 60),
frame: rng.gen_range(0 .. 29),
drop_frame: random(),
color_frame: random(),
field_phase: random(),
binary_group_flags: [random(),random(),random()],
binary_groups: std::iter::repeat_with(|| rng.gen_range(0 .. 16)).take(8)
.collect::<SmallVec<[u8;8]>>().into_inner().unwrap()
});
for code in codes.take(500) {
code.validate(true).expect("invalid timecode test input");
{ // through tv60 packing, roundtrip
let packed_tv60 = code.pack_time_as_tv60_u32().expect("invalid timecode test input");
let packed_user = code.pack_user_data_as_u32();
assert_eq!(TimeCode::from_tv60_time(packed_tv60, packed_user), code);
}
{ // through bytes, roundtrip
let mut bytes = Vec::<u8>::new();
code.write(&mut bytes).unwrap();
let decoded = TimeCode::read(&mut bytes.as_slice()).unwrap();
assert_eq!(code, decoded);
}
{
let tv50_code = TimeCode {
drop_frame: false, // apparently, tv50 does not support drop frame, so do not use this value
.. code
};
let packed_tv50 = code.pack_time_as_tv50_u32().expect("invalid timecode test input");
let packed_user = code.pack_user_data_as_u32();
assert_eq!(TimeCode::from_tv50_time(packed_tv50, packed_user), tv50_code);
}
{
let film24_code = TimeCode {
// apparently, film24 does not support some flags, so do not use those values
color_frame: false,
drop_frame: false,
.. code
};
let packed_film24 = code.pack_time_as_film24_u32().expect("invalid timecode test input");
let packed_user = code.pack_user_data_as_u32();
assert_eq!(TimeCode::from_film24_time(packed_film24, packed_user), film24_code);
}
}
}
}