exr/meta/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
//! Describes all meta data possible in an exr file.
//! Contains functionality to read and write meta data from bytes.
//! Browse the `exr::image` module to get started with the high-level interface.
pub mod attribute;
pub mod header;
use crate::io::*;
use ::smallvec::SmallVec;
use self::attribute::*;
use crate::block::chunk::{TileCoordinates, CompressedBlock};
use crate::error::*;
use std::fs::File;
use std::io::{BufReader};
use crate::math::*;
use std::collections::{HashSet};
use std::convert::TryFrom;
use crate::meta::header::{Header};
use crate::block::{BlockIndex, UncompressedBlock};
// TODO rename MetaData to ImageInfo?
/// Contains the complete meta data of an exr image.
/// Defines how the image is split up in the file,
/// the number and type of images and channels,
/// and various other attributes.
/// The usage of custom attributes is encouraged.
#[derive(Debug, Clone, PartialEq)]
pub struct MetaData {
/// Some flags summarizing the features that must be supported to decode the file.
pub requirements: Requirements,
/// One header to describe each layer in this file.
// TODO rename to layer descriptions?
pub headers: Headers,
}
/// List of `Header`s.
pub type Headers = SmallVec<[Header; 3]>;
/// List of `OffsetTable`s.
pub type OffsetTables = SmallVec<[OffsetTable; 3]>;
/// The offset table is an ordered list of indices referencing pixel data in the exr file.
/// For each pixel tile in the image, an index exists, which points to the byte-location
/// of the corresponding pixel data in the file. That index can be used to load specific
/// portions of an image without processing all bytes in a file. For each header,
/// an offset table exists with its indices ordered by `LineOrder::Increasing`.
// If the multipart bit is unset and the chunkCount attribute is not present,
// the number of entries in the chunk table is computed using the
// dataWindow, tileDesc, and compression attribute.
//
// If the multipart bit is set, the header must contain a
// chunkCount attribute, that contains the length of the offset table.
pub type OffsetTable = Vec<u64>;
/// A summary of requirements that must be met to read this exr file.
/// Used to determine whether this file can be read by a given reader.
/// It includes the OpenEXR version number. This library aims to support version `2.0`.
#[derive(Clone, Copy, Eq, PartialEq, Debug, Hash)]
pub struct Requirements {
/// This library supports reading version 1 and 2, and writing version 2.
// TODO write version 1 for simple images
pub file_format_version: u8,
/// If true, this image has tiled blocks and contains only a single layer.
/// If false and not deep and not multilayer, this image is a single layer image with scan line blocks.
pub is_single_layer_and_tiled: bool,
// in c or bad c++ this might have been relevant (omg is he allowed to say that)
/// Whether this file has strings with a length greater than 31.
/// Strings can never be longer than 255.
pub has_long_names: bool,
/// This image contains at least one layer with deep data.
pub has_deep_data: bool,
/// Whether this file contains multiple layers.
pub has_multiple_layers: bool,
}
/// Locates a rectangular section of pixels in an image.
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
pub struct TileIndices {
/// Index of the tile.
pub location: TileCoordinates,
/// Pixel size of the tile.
pub size: Vec2<usize>,
}
/// How the image pixels are split up into separate blocks.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum BlockDescription {
/// The image is divided into scan line blocks.
/// The number of scan lines in a block depends on the compression method.
ScanLines,
/// The image is divided into tile blocks.
/// Also specifies the size of each tile in the image
/// and whether this image contains multiple resolution levels.
Tiles(TileDescription)
}
/*impl TileIndices {
pub fn cmp(&self, other: &Self) -> Ordering {
match self.location.level_index.1.cmp(&other.location.level_index.1) {
Ordering::Equal => {
match self.location.level_index.0.cmp(&other.location.level_index.0) {
Ordering::Equal => {
match self.location.tile_index.1.cmp(&other.location.tile_index.1) {
Ordering::Equal => {
self.location.tile_index.0.cmp(&other.location.tile_index.0)
},
other => other,
}
},
other => other
}
},
other => other
}
}
}*/
impl BlockDescription {
/// Whether this image is tiled. If false, this image is divided into scan line blocks.
pub fn has_tiles(&self) -> bool {
match self {
BlockDescription::Tiles { .. } => true,
_ => false
}
}
}
/// The first four bytes of each exr file.
/// Used to abort reading non-exr files.
pub mod magic_number {
use super::*;
/// The first four bytes of each exr file.
pub const BYTES: [u8; 4] = [0x76, 0x2f, 0x31, 0x01];
/// Without validation, write this instance to the byte stream.
pub fn write(write: &mut impl Write) -> Result<()> {
u8::write_slice(write, &self::BYTES)
}
/// Consumes four bytes from the reader and returns whether the file may be an exr file.
// TODO check if exr before allocating BufRead
pub fn is_exr(read: &mut impl Read) -> Result<bool> {
let mut magic_num = [0; 4];
u8::read_slice(read, &mut magic_num)?;
Ok(magic_num == self::BYTES)
}
/// Validate this image. If it is an exr file, return `Ok(())`.
pub fn validate_exr(read: &mut impl Read) -> UnitResult {
if self::is_exr(read)? {
Ok(())
} else {
Err(Error::invalid("file identifier missing"))
}
}
}
/// A `0_u8` at the end of a sequence.
pub mod sequence_end {
use super::*;
/// Number of bytes this would consume in an exr file.
pub fn byte_size() -> usize {
1
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(write: &mut W) -> UnitResult {
0_u8.write(write)
}
/// Peeks the next byte. If it is zero, consumes the byte and returns true.
pub fn has_come(read: &mut PeekRead<impl Read>) -> Result<bool> {
Ok(read.skip_if_eq(0)?)
}
}
fn missing_attribute(name: &str) -> Error {
Error::invalid(format!("missing or invalid {} attribute", name))
}
/// Compute the number of tiles required to contain all values.
pub fn compute_block_count(full_res: usize, tile_size: usize) -> usize {
// round up, because if the image is not evenly divisible by the tiles,
// we add another tile at the end (which is only partially used)
RoundingMode::Up.divide(full_res, tile_size)
}
/// Compute the start position and size of a block inside a dimension.
#[inline]
pub fn calculate_block_position_and_size(total_size: usize, block_size: usize, block_index: usize) -> Result<(usize, usize)> {
let block_position = block_size * block_index;
Ok((
block_position,
calculate_block_size(total_size, block_size, block_position)?
))
}
/// Calculate the size of a single block. If this is the last block,
/// this only returns the required size, which is always smaller than the default block size.
// TODO use this method everywhere instead of convoluted formulas
#[inline]
pub fn calculate_block_size(total_size: usize, block_size: usize, block_position: usize) -> Result<usize> {
if block_position >= total_size {
return Err(Error::invalid("block index"))
}
if block_position + block_size <= total_size {
Ok(block_size)
}
else {
Ok(total_size - block_position)
}
}
/// Calculate number of mip levels in a given resolution.
// TODO this should be cached? log2 may be very expensive
pub fn compute_level_count(round: RoundingMode, full_res: usize) -> usize {
usize::try_from(round.log2(u32::try_from(full_res).unwrap())).unwrap() + 1
}
/// Calculate the size of a single mip level by index.
// TODO this should be cached? log2 may be very expensive
pub fn compute_level_size(round: RoundingMode, full_res: usize, level_index: usize) -> usize {
assert!(level_index < std::mem::size_of::<usize>() * 8, "largest level size exceeds maximum integer value");
round.divide(full_res, 1 << level_index).max(1)
}
/// Iterates over all rip map level resolutions of a given size, including the indices of each level.
/// The order of iteration conforms to `LineOrder::Increasing`.
// TODO cache these?
// TODO compute these directly instead of summing up an iterator?
pub fn rip_map_levels(round: RoundingMode, max_resolution: Vec2<usize>) -> impl Iterator<Item=(Vec2<usize>, Vec2<usize>)> {
rip_map_indices(round, max_resolution).map(move |level_indices|{
// TODO progressively divide instead??
let width = compute_level_size(round, max_resolution.width(), level_indices.x());
let height = compute_level_size(round, max_resolution.height(), level_indices.y());
(level_indices, Vec2(width, height))
})
}
/// Iterates over all mip map level resolutions of a given size, including the indices of each level.
/// The order of iteration conforms to `LineOrder::Increasing`.
// TODO cache all these level values when computing table offset size??
// TODO compute these directly instead of summing up an iterator?
pub fn mip_map_levels(round: RoundingMode, max_resolution: Vec2<usize>) -> impl Iterator<Item=(usize, Vec2<usize>)> {
mip_map_indices(round, max_resolution)
.map(move |level_index|{
// TODO progressively divide instead??
let width = compute_level_size(round, max_resolution.width(), level_index);
let height = compute_level_size(round, max_resolution.height(), level_index);
(level_index, Vec2(width, height))
})
}
/// Iterates over all rip map level indices of a given size.
/// The order of iteration conforms to `LineOrder::Increasing`.
pub fn rip_map_indices(round: RoundingMode, max_resolution: Vec2<usize>) -> impl Iterator<Item=Vec2<usize>> {
let (width, height) = (
compute_level_count(round, max_resolution.width()),
compute_level_count(round, max_resolution.height())
);
(0..height).flat_map(move |y_level|{
(0..width).map(move |x_level|{
Vec2(x_level, y_level)
})
})
}
/// Iterates over all mip map level indices of a given size.
/// The order of iteration conforms to `LineOrder::Increasing`.
pub fn mip_map_indices(round: RoundingMode, max_resolution: Vec2<usize>) -> impl Iterator<Item=usize> {
0..compute_level_count(round, max_resolution.width().max(max_resolution.height()))
}
/// Compute the number of chunks that an image is divided into. May be an expensive operation.
// If not multilayer and chunkCount not present,
// the number of entries in the chunk table is computed
// using the dataWindow and tileDesc attributes and the compression format
pub fn compute_chunk_count(compression: Compression, data_size: Vec2<usize>, blocks: BlockDescription) -> usize {
if let BlockDescription::Tiles(tiles) = blocks {
let round = tiles.rounding_mode;
let Vec2(tile_width, tile_height) = tiles.tile_size;
// TODO cache all these level values??
use crate::meta::attribute::LevelMode::*;
match tiles.level_mode {
Singular => {
let tiles_x = compute_block_count(data_size.width(), tile_width);
let tiles_y = compute_block_count(data_size.height(), tile_height);
tiles_x * tiles_y
}
MipMap => {
mip_map_levels(round, data_size).map(|(_, Vec2(level_width, level_height))| {
compute_block_count(level_width, tile_width) * compute_block_count(level_height, tile_height)
}).sum()
},
RipMap => {
rip_map_levels(round, data_size).map(|(_, Vec2(level_width, level_height))| {
compute_block_count(level_width, tile_width) * compute_block_count(level_height, tile_height)
}).sum()
}
}
}
// scan line blocks never have mip maps
else {
compute_block_count(data_size.height(), compression.scan_lines_per_block())
}
}
impl MetaData {
/// Read the exr meta data from a file.
/// Use `read_from_unbuffered` instead if you do not have a file.
/// Does not validate the meta data.
#[must_use]
pub fn read_from_file(path: impl AsRef<::std::path::Path>, pedantic: bool) -> Result<Self> {
Self::read_from_unbuffered(File::open(path)?, pedantic)
}
/// Buffer the reader and then read the exr meta data from it.
/// Use `read_from_buffered` if your reader is an in-memory reader.
/// Use `read_from_file` if you have a file path.
/// Does not validate the meta data.
#[must_use]
pub fn read_from_unbuffered(unbuffered: impl Read, pedantic: bool) -> Result<Self> {
Self::read_from_buffered(BufReader::new(unbuffered), pedantic)
}
/// Read the exr meta data from a reader.
/// Use `read_from_file` if you have a file path.
/// Use `read_from_unbuffered` if this is not an in-memory reader.
/// Does not validate the meta data.
#[must_use]
pub fn read_from_buffered(buffered: impl Read, pedantic: bool) -> Result<Self> {
let mut read = PeekRead::new(buffered);
MetaData::read_unvalidated_from_buffered_peekable(&mut read, pedantic)
}
/// Does __not validate__ the meta data completely.
#[must_use]
pub(crate) fn read_unvalidated_from_buffered_peekable(read: &mut PeekRead<impl Read>, pedantic: bool) -> Result<Self> {
magic_number::validate_exr(read)?;
let requirements = Requirements::read(read)?;
// do this check now in order to fast-fail for newer versions and features than version 2
requirements.validate()?;
let headers = Header::read_all(read, &requirements, pedantic)?;
// TODO check if supporting requirements 2 always implies supporting requirements 1
Ok(MetaData { requirements, headers })
}
/// Validates the meta data.
#[must_use]
pub(crate) fn read_validated_from_buffered_peekable(
read: &mut PeekRead<impl Read>, pedantic: bool
) -> Result<Self> {
let meta_data = Self::read_unvalidated_from_buffered_peekable(read, !pedantic)?;
MetaData::validate(meta_data.headers.as_slice(), pedantic)?;
Ok(meta_data)
}
/// Validates the meta data and writes it to the stream.
/// If pedantic, throws errors for files that may produce errors in other exr readers.
/// Returns the automatically detected minimum requirement flags.
pub(crate) fn write_validating_to_buffered(write: &mut impl Write, headers: &[Header], pedantic: bool) -> Result<Requirements> {
// pedantic validation to not allow slightly invalid files
// that still could be read correctly in theory
let minimal_requirements = Self::validate(headers, pedantic)?;
magic_number::write(write)?;
minimal_requirements.write(write)?;
Header::write_all(headers, write, minimal_requirements.has_multiple_layers)?;
Ok(minimal_requirements)
}
/// Read one offset table from the reader for each header.
pub fn read_offset_tables(read: &mut PeekRead<impl Read>, headers: &Headers) -> Result<OffsetTables> {
headers.iter()
.map(|header| u64::read_vec(read, header.chunk_count, u16::MAX as usize, None, "offset table size"))
.collect()
}
/// Skip the offset tables by advancing the reader by the required byte count.
// TODO use seek for large (probably all) tables!
pub fn skip_offset_tables(read: &mut PeekRead<impl Read>, headers: &Headers) -> Result<usize> {
let chunk_count: usize = headers.iter().map(|header| header.chunk_count).sum();
crate::io::skip_bytes(read, chunk_count * u64::BYTE_SIZE)?; // TODO this should seek for large tables
Ok(chunk_count)
}
/// This iterator tells you the block indices of all blocks that must be in the image.
/// The order of the blocks depends on the `LineOrder` attribute
/// (unspecified line order is treated the same as increasing line order).
/// The blocks written to the file must be exactly in this order,
/// except for when the `LineOrder` is unspecified.
/// The index represents the block index, in increasing line order, within the header.
pub fn enumerate_ordered_header_block_indices(&self) -> impl '_ + Iterator<Item=(usize, BlockIndex)> {
crate::block::enumerate_ordered_header_block_indices(&self.headers)
}
/// Go through all the block indices in the correct order and call the specified closure for each of these blocks.
/// That way, the blocks indices are filled with real block data and returned as an iterator.
/// The closure returns the an `UncompressedBlock` for each block index.
pub fn collect_ordered_blocks<'s>(&'s self, mut get_block: impl 's + FnMut(BlockIndex) -> UncompressedBlock)
-> impl 's + Iterator<Item=(usize, UncompressedBlock)>
{
self.enumerate_ordered_header_block_indices().map(move |(index_in_header, block_index)|{
(index_in_header, get_block(block_index))
})
}
/// Go through all the block indices in the correct order and call the specified closure for each of these blocks.
/// That way, the blocks indices are filled with real block data and returned as an iterator.
/// The closure returns the byte data for each block index.
pub fn collect_ordered_block_data<'s>(&'s self, mut get_block_data: impl 's + FnMut(BlockIndex) -> Vec<u8>)
-> impl 's + Iterator<Item=(usize, UncompressedBlock)>
{
self.collect_ordered_blocks(move |block_index|
UncompressedBlock { index: block_index, data: get_block_data(block_index) }
)
}
/// Validates this meta data. Returns the minimal possible requirements.
pub fn validate(headers: &[Header], pedantic: bool) -> Result<Requirements> {
if headers.len() == 0 {
return Err(Error::invalid("at least one layer is required"));
}
let deep = false; // TODO deep data
let is_multilayer = headers.len() > 1;
let first_header_has_tiles = headers.iter().next()
.map_or(false, |header| header.blocks.has_tiles());
let mut minimal_requirements = Requirements {
// according to the spec, version 2 should only be necessary if `is_multilayer || deep`.
// but the current open exr library does not support images with version 1, so always use version 2.
file_format_version: 2,
// start as low as possible, later increasing if required
has_long_names: false,
is_single_layer_and_tiled: !is_multilayer && first_header_has_tiles,
has_multiple_layers: is_multilayer,
has_deep_data: deep,
};
for header in headers {
if header.deep { // TODO deep data (and then remove this check)
return Err(Error::unsupported("deep data not supported yet"));
}
header.validate(is_multilayer, &mut minimal_requirements.has_long_names, pedantic)?;
}
// TODO validation fn!
/*if let Some(max) = max_pixel_bytes {
let byte_size: usize = headers.iter()
.map(|header| header.total_pixel_bytes())
.sum();
if byte_size > max {
return Err(Error::invalid("image larger than specified maximum"));
}
}*/
if pedantic { // check for duplicate header names
let mut header_names = HashSet::with_capacity(headers.len());
for header in headers {
if !header_names.insert(&header.own_attributes.layer_name) {
return Err(Error::invalid(format!(
"duplicate layer name: `{}`",
header.own_attributes.layer_name.as_ref().expect("header validation bug")
)));
}
}
}
if pedantic {
let must_share = headers.iter().flat_map(|header| header.own_attributes.other.iter())
.any(|(_, value)| value.to_chromaticities().is_ok() || value.to_time_code().is_ok());
if must_share {
return Err(Error::invalid("chromaticities and time code attributes must must not exist in own attributes but shared instead"));
}
}
if pedantic && headers.len() > 1 { // check for attributes that should not differ in between headers
let first_header = headers.first().expect("header count validation bug");
let first_header_attributes = &first_header.shared_attributes;
for header in &headers[1..] {
if &header.shared_attributes != first_header_attributes {
return Err(Error::invalid("display window, pixel aspect, chromaticities, and time code attributes must be equal for all headers"))
}
}
}
debug_assert!(minimal_requirements.validate().is_ok(), "inferred requirements are invalid");
Ok(minimal_requirements)
}
}
impl Requirements {
// this is actually used for control flow, as the number of headers may be 1 in a multilayer file
/// Is this file declared to contain multiple layers?
pub fn is_multilayer(&self) -> bool {
self.has_multiple_layers
}
/// Read the value without validating.
pub fn read<R: Read>(read: &mut R) -> Result<Self> {
use ::bit_field::BitField;
let version_and_flags = u32::read(read)?;
// take the 8 least significant bits, they contain the file format version number
let version = (version_and_flags & 0x000F) as u8;
// the 24 most significant bits are treated as a set of boolean flags
let is_single_tile = version_and_flags.get_bit(9);
let has_long_names = version_and_flags.get_bit(10);
let has_deep_data = version_and_flags.get_bit(11);
let has_multiple_layers = version_and_flags.get_bit(12);
// all remaining bits except 9, 10, 11 and 12 are reserved and should be 0
// if a file has any of these bits set to 1, it means this file contains
// a feature that we don't support
let unknown_flags = version_and_flags >> 13; // all flags excluding the 12 bits we already parsed
if unknown_flags != 0 { // TODO test if this correctly detects unsupported files
return Err(Error::unsupported("too new file feature flags"));
}
let version = Requirements {
file_format_version: version,
is_single_layer_and_tiled: is_single_tile, has_long_names,
has_deep_data, has_multiple_layers,
};
Ok(version)
}
/// Without validation, write this instance to the byte stream.
pub fn write<W: Write>(self, write: &mut W) -> UnitResult {
use ::bit_field::BitField;
// the 8 least significant bits contain the file format version number
// and the flags are set to 0
let mut version_and_flags = self.file_format_version as u32;
// the 24 most significant bits are treated as a set of boolean flags
version_and_flags.set_bit(9, self.is_single_layer_and_tiled);
version_and_flags.set_bit(10, self.has_long_names);
version_and_flags.set_bit(11, self.has_deep_data);
version_and_flags.set_bit(12, self.has_multiple_layers);
// all remaining bits except 9, 10, 11 and 12 are reserved and should be 0
version_and_flags.write(write)?;
Ok(())
}
/// Validate this instance.
pub fn validate(&self) -> UnitResult {
if self.file_format_version == 2 {
match (
self.is_single_layer_and_tiled, self.has_deep_data, self.has_multiple_layers,
self.file_format_version
) {
// Single-part scan line. One normal scan line image.
(false, false, false, 1..=2) => Ok(()),
// Single-part tile. One normal tiled image.
(true, false, false, 1..=2) => Ok(()),
// Multi-part (new in 2.0).
// Multiple normal images (scan line and/or tiled).
(false, false, true, 2) => Ok(()),
// Single-part deep data (new in 2.0).
// One deep tile or deep scan line part
(false, true, false, 2) => Ok(()),
// Multi-part deep data (new in 2.0).
// Multiple parts (any combination of:
// tiles, scan lines, deep tiles and/or deep scan lines).
(false, true, true, 2) => Ok(()),
_ => Err(Error::invalid("file feature flags"))
}
}
else {
Err(Error::unsupported("file versions other than 2.0 are not supported"))
}
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::meta::header::{ImageAttributes, LayerAttributes};
#[test]
fn round_trip_requirements() {
let requirements = Requirements {
file_format_version: 2,
is_single_layer_and_tiled: true,
has_long_names: false,
has_deep_data: true,
has_multiple_layers: false
};
let mut data: Vec<u8> = Vec::new();
requirements.write(&mut data).unwrap();
let read = Requirements::read(&mut data.as_slice()).unwrap();
assert_eq!(requirements, read);
}
#[test]
fn round_trip(){
let header = Header {
channels: ChannelList::new(smallvec![
ChannelDescription {
name: Text::from("main"),
sample_type: SampleType::U32,
quantize_linearly: false,
sampling: Vec2(1, 1)
}
],
),
compression: Compression::Uncompressed,
line_order: LineOrder::Increasing,
deep_data_version: Some(1),
chunk_count: compute_chunk_count(Compression::Uncompressed, Vec2(2000, 333), BlockDescription::ScanLines),
max_samples_per_pixel: Some(4),
shared_attributes: ImageAttributes {
pixel_aspect: 3.0,
.. ImageAttributes::new(IntegerBounds {
position: Vec2(2,1),
size: Vec2(11, 9)
})
},
blocks: BlockDescription::ScanLines,
deep: false,
layer_size: Vec2(2000, 333),
own_attributes: LayerAttributes {
layer_name: Some(Text::from("test name lol")),
layer_position: Vec2(3, -5),
screen_window_center: Vec2(0.3, 99.0),
screen_window_width: 0.19,
.. Default::default()
}
};
let meta = MetaData {
requirements: Requirements {
file_format_version: 2,
is_single_layer_and_tiled: false,
has_long_names: false,
has_deep_data: false,
has_multiple_layers: false
},
headers: smallvec![ header ],
};
let mut data: Vec<u8> = Vec::new();
MetaData::write_validating_to_buffered(&mut data, meta.headers.as_slice(), true).unwrap();
let meta2 = MetaData::read_from_buffered(data.as_slice(), false).unwrap();
MetaData::validate(meta2.headers.as_slice(), true).unwrap();
assert_eq!(meta, meta2);
}
#[test]
fn infer_low_requirements() {
let header_version_1_short_names = Header {
channels: ChannelList::new(smallvec![
ChannelDescription {
name: Text::from("main"),
sample_type: SampleType::U32,
quantize_linearly: false,
sampling: Vec2(1, 1)
}
],
),
compression: Compression::Uncompressed,
line_order: LineOrder::Increasing,
deep_data_version: Some(1),
chunk_count: compute_chunk_count(Compression::Uncompressed, Vec2(2000, 333), BlockDescription::ScanLines),
max_samples_per_pixel: Some(4),
shared_attributes: ImageAttributes {
pixel_aspect: 3.0,
.. ImageAttributes::new(IntegerBounds {
position: Vec2(2,1),
size: Vec2(11, 9)
})
},
blocks: BlockDescription::ScanLines,
deep: false,
layer_size: Vec2(2000, 333),
own_attributes: LayerAttributes {
other: vec![
(Text::try_from("x").unwrap(), AttributeValue::F32(3.0)),
(Text::try_from("y").unwrap(), AttributeValue::F32(-1.0)),
].into_iter().collect(),
.. Default::default()
}
};
let low_requirements = MetaData::validate(
&[header_version_1_short_names], true
).unwrap();
assert_eq!(low_requirements.has_long_names, false);
assert_eq!(low_requirements.file_format_version, 2); // always have version 2
assert_eq!(low_requirements.has_deep_data, false);
assert_eq!(low_requirements.has_multiple_layers, false);
}
#[test]
fn infer_high_requirements() {
let header_version_2_long_names = Header {
channels: ChannelList::new(
smallvec![
ChannelDescription {
name: Text::new_or_panic("main"),
sample_type: SampleType::U32,
quantize_linearly: false,
sampling: Vec2(1, 1)
}
],
),
compression: Compression::Uncompressed,
line_order: LineOrder::Increasing,
deep_data_version: Some(1),
chunk_count: compute_chunk_count(Compression::Uncompressed, Vec2(2000, 333), BlockDescription::ScanLines),
max_samples_per_pixel: Some(4),
shared_attributes: ImageAttributes {
pixel_aspect: 3.0,
.. ImageAttributes::new(IntegerBounds {
position: Vec2(2,1),
size: Vec2(11, 9)
})
},
blocks: BlockDescription::ScanLines,
deep: false,
layer_size: Vec2(2000, 333),
own_attributes: LayerAttributes {
layer_name: Some(Text::new_or_panic("oasdasoidfj")),
other: vec![
(Text::new_or_panic("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"), AttributeValue::F32(3.0)),
(Text::new_or_panic("y"), AttributeValue::F32(-1.0)),
].into_iter().collect(),
.. Default::default()
}
};
let mut layer_2 = header_version_2_long_names.clone();
layer_2.own_attributes.layer_name = Some(Text::new_or_panic("anythingelse"));
let low_requirements = MetaData::validate(
&[header_version_2_long_names, layer_2], true
).unwrap();
assert_eq!(low_requirements.has_long_names, true);
assert_eq!(low_requirements.file_format_version, 2);
assert_eq!(low_requirements.has_deep_data, false);
assert_eq!(low_requirements.has_multiple_layers, true);
}
}