fdeflate/
compress.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
use simd_adler32::Adler32;
use std::io::{self, Seek, SeekFrom, Write};

use crate::tables::{
    BITMASKS, HUFFMAN_CODES, HUFFMAN_LENGTHS, LENGTH_TO_LEN_EXTRA, LENGTH_TO_SYMBOL,
};

/// Compressor that produces fdeflate compressed streams.
pub struct Compressor<W: Write> {
    checksum: Adler32,
    buffer: u64,
    nbits: u8,
    writer: W,
}
impl<W: Write> Compressor<W> {
    fn write_bits(&mut self, bits: u64, nbits: u8) -> io::Result<()> {
        debug_assert!(nbits <= 64);

        self.buffer |= bits << self.nbits;
        self.nbits += nbits;

        if self.nbits >= 64 {
            self.writer.write_all(&self.buffer.to_le_bytes())?;
            self.nbits -= 64;
            self.buffer = bits.checked_shr((nbits - self.nbits) as u32).unwrap_or(0);
        }
        debug_assert!(self.nbits < 64);
        Ok(())
    }

    fn flush(&mut self) -> io::Result<()> {
        if self.nbits % 8 != 0 {
            self.write_bits(0, 8 - self.nbits % 8)?;
        }
        if self.nbits > 0 {
            self.writer
                .write_all(&self.buffer.to_le_bytes()[..self.nbits as usize / 8])
                .unwrap();
            self.buffer = 0;
            self.nbits = 0;
        }
        Ok(())
    }

    fn write_run(&mut self, mut run: u32) -> io::Result<()> {
        self.write_bits(HUFFMAN_CODES[0] as u64, HUFFMAN_LENGTHS[0])?;
        run -= 1;

        while run >= 258 {
            self.write_bits(HUFFMAN_CODES[285] as u64, HUFFMAN_LENGTHS[285] + 1)?;
            run -= 258;
        }

        if run > 4 {
            let sym = LENGTH_TO_SYMBOL[run as usize - 3] as usize;
            self.write_bits(HUFFMAN_CODES[sym] as u64, HUFFMAN_LENGTHS[sym])?;

            let len_extra = LENGTH_TO_LEN_EXTRA[run as usize - 3];
            let extra = ((run - 3) & BITMASKS[len_extra as usize]) as u64;
            self.write_bits(extra, len_extra + 1)?;
        } else {
            debug_assert_eq!(HUFFMAN_CODES[0], 0);
            self.write_bits(0, run as u8 * HUFFMAN_LENGTHS[0])?;
        }

        Ok(())
    }

    /// Create a new Compressor.
    pub fn new(writer: W) -> io::Result<Self> {
        let mut compressor = Self {
            checksum: Adler32::new(),
            buffer: 0,
            nbits: 0,
            writer,
        };
        compressor.write_headers()?;
        Ok(compressor)
    }

    fn write_headers(&mut self) -> io::Result<()> {
        const HEADER: [u8; 54] = [
            120, 1, 237, 192, 3, 160, 36, 89, 150, 198, 241, 255, 119, 238, 141, 200, 204, 167,
            114, 75, 99, 174, 109, 219, 182, 109, 219, 182, 109, 219, 182, 109, 105, 140, 158, 150,
            74, 175, 158, 50, 51, 34, 238, 249, 118, 183, 106, 122, 166, 135, 59, 107, 213, 15,
        ];
        self.writer.write_all(&HEADER[..53]).unwrap();
        self.write_bits(HEADER[53] as u64, 5)?;

        Ok(())
    }

    /// Write data to the compressor.
    pub fn write_data(&mut self, data: &[u8]) -> io::Result<()> {
        self.checksum.write(data);

        let mut run = 0;
        let mut chunks = data.chunks_exact(8);
        for chunk in &mut chunks {
            let ichunk = u64::from_le_bytes(chunk.try_into().unwrap());

            if ichunk == 0 {
                run += 8;
                continue;
            } else if run > 0 {
                let run_extra = ichunk.trailing_zeros() / 8;
                self.write_run(run + run_extra)?;
                run = 0;

                if run_extra > 0 {
                    run = ichunk.leading_zeros() / 8;
                    for &b in &chunk[run_extra as usize..8 - run as usize] {
                        self.write_bits(
                            HUFFMAN_CODES[b as usize] as u64,
                            HUFFMAN_LENGTHS[b as usize],
                        )?;
                    }
                    continue;
                }
            }

            let run_start = ichunk.leading_zeros() / 8;
            if run_start > 0 {
                for &b in &chunk[..8 - run_start as usize] {
                    self.write_bits(
                        HUFFMAN_CODES[b as usize] as u64,
                        HUFFMAN_LENGTHS[b as usize],
                    )?;
                }
                run = run_start;
                continue;
            }

            let n0 = HUFFMAN_LENGTHS[chunk[0] as usize];
            let n1 = HUFFMAN_LENGTHS[chunk[1] as usize];
            let n2 = HUFFMAN_LENGTHS[chunk[2] as usize];
            let n3 = HUFFMAN_LENGTHS[chunk[3] as usize];
            let bits = HUFFMAN_CODES[chunk[0] as usize] as u64
                | ((HUFFMAN_CODES[chunk[1] as usize] as u64) << n0)
                | ((HUFFMAN_CODES[chunk[2] as usize] as u64) << (n0 + n1))
                | ((HUFFMAN_CODES[chunk[3] as usize] as u64) << (n0 + n1 + n2));
            self.write_bits(bits, n0 + n1 + n2 + n3)?;

            let n4 = HUFFMAN_LENGTHS[chunk[4] as usize];
            let n5 = HUFFMAN_LENGTHS[chunk[5] as usize];
            let n6 = HUFFMAN_LENGTHS[chunk[6] as usize];
            let n7 = HUFFMAN_LENGTHS[chunk[7] as usize];
            let bits2 = HUFFMAN_CODES[chunk[4] as usize] as u64
                | ((HUFFMAN_CODES[chunk[5] as usize] as u64) << n4)
                | ((HUFFMAN_CODES[chunk[6] as usize] as u64) << (n4 + n5))
                | ((HUFFMAN_CODES[chunk[7] as usize] as u64) << (n4 + n5 + n6));
            self.write_bits(bits2, n4 + n5 + n6 + n7)?;
        }

        if run > 0 {
            self.write_run(run)?;
        }

        for &b in chunks.remainder() {
            self.write_bits(
                HUFFMAN_CODES[b as usize] as u64,
                HUFFMAN_LENGTHS[b as usize],
            )?;
        }

        Ok(())
    }

    /// Write the remainder of the stream and return the inner writer.
    pub fn finish(mut self) -> io::Result<W> {
        // Write end of block
        self.write_bits(HUFFMAN_CODES[256] as u64, HUFFMAN_LENGTHS[256])?;
        self.flush()?;

        // Write Adler32 checksum
        let checksum: u32 = self.checksum.finish();
        self.writer
            .write_all(checksum.to_be_bytes().as_ref())
            .unwrap();
        Ok(self.writer)
    }
}

/// Compressor that only writes the stored blocks.
///
/// This is useful for writing files that are not compressed, but still need to be wrapped in a
/// zlib stream.
pub struct StoredOnlyCompressor<W> {
    writer: W,
    checksum: Adler32,
    block_bytes: u16,
}
impl<W: Write + Seek> StoredOnlyCompressor<W> {
    /// Creates a new `StoredOnlyCompressor` that writes to the given writer.
    pub fn new(mut writer: W) -> io::Result<Self> {
        writer.write_all(&[0x78, 0x01])?; // zlib header
        writer.write_all(&[0; 5])?; // placeholder stored block header

        Ok(Self {
            writer,
            checksum: Adler32::new(),
            block_bytes: 0,
        })
    }

    fn set_block_header(&mut self, size: u16, last: bool) -> io::Result<()> {
        self.writer.seek(SeekFrom::Current(-(size as i64 + 5)))?;
        self.writer.write_all(&[
            last as u8,
            (size & 0xFF) as u8,
            ((size >> 8) & 0xFF) as u8,
            (!size & 0xFF) as u8,
            ((!size >> 8) & 0xFF) as u8,
        ])?;
        self.writer.seek(SeekFrom::Current(size as i64))?;

        Ok(())
    }

    /// Writes the given data to the underlying writer.
    pub fn write_data(&mut self, mut data: &[u8]) -> io::Result<()> {
        self.checksum.write(data);
        while !data.is_empty() {
            if self.block_bytes == u16::MAX {
                self.set_block_header(u16::MAX, false)?;
                self.writer.write_all(&[0; 5])?; // placeholder stored block header
                self.block_bytes = 0;
            }

            let prefix_bytes = data.len().min((u16::MAX - self.block_bytes) as usize);
            self.writer.write_all(&data[..prefix_bytes])?;
            self.block_bytes += prefix_bytes as u16;
            data = &data[prefix_bytes..];
        }

        Ok(())
    }

    /// Finish writing the final block and return the underlying writer.
    pub fn finish(mut self) -> io::Result<W> {
        self.set_block_header(self.block_bytes, true)?;

        // Write Adler32 checksum
        let checksum: u32 = self.checksum.finish();
        self.writer
            .write_all(checksum.to_be_bytes().as_ref())
            .unwrap();

        Ok(self.writer)
    }
}
impl<W> StoredOnlyCompressor<W> {
    /// Return the number of bytes that will be written to the output stream
    /// for the given input size. Because this compressor only writes stored blocks,
    /// the output size is always slightly *larger* than the input size.
    pub fn compressed_size(raw_size: usize) -> usize {
        (raw_size.saturating_sub(1) / u16::MAX as usize) * (u16::MAX as usize + 5)
            + (raw_size % u16::MAX as usize + 5)
            + 6
    }
}

/// Compresses the given data.
pub fn compress_to_vec(input: &[u8]) -> Vec<u8> {
    let mut compressor = Compressor::new(Vec::with_capacity(input.len() / 4)).unwrap();
    compressor.write_data(input).unwrap();
    compressor.finish().unwrap()
}

#[cfg(test)]
mod tests {
    use super::*;
    use rand::Rng;

    fn roundtrip(data: &[u8]) {
        let compressed = compress_to_vec(data);
        let decompressed = miniz_oxide::inflate::decompress_to_vec_zlib(&compressed).unwrap();
        assert_eq!(&decompressed, data);
    }

    #[test]
    fn it_works() {
        roundtrip(b"Hello world!");
    }

    #[test]
    fn constant() {
        roundtrip(&vec![0; 2048]);
        roundtrip(&vec![5; 2048]);
        roundtrip(&vec![128; 2048]);
        roundtrip(&vec![254; 2048]);
    }

    #[test]
    fn random() {
        let mut rng = rand::thread_rng();
        let mut data = vec![0; 2048];
        for _ in 0..10 {
            for byte in &mut data {
                *byte = rng.gen();
            }
            roundtrip(&data);
        }
    }
}