1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
//! fixed-point numerical types
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
// shared between Fixed, F26Dot6, F2Dot14, F4Dot12, F6Dot10
macro_rules! fixed_impl {
($name:ident, $bits:literal, $fract_bits:literal, $ty:ty) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::AnyBitPattern, bytemuck::NoUninit))]
#[repr(transparent)]
#[doc = concat!(stringify!($bits), "-bit signed fixed point number with ", stringify!($fract_bits), " bits of fraction." )]
pub struct $name($ty);
impl $name {
/// Minimum value.
pub const MIN: Self = Self(<$ty>::MIN);
/// Maximum value.
pub const MAX: Self = Self(<$ty>::MAX);
/// This type's smallest representable value
pub const EPSILON: Self = Self(1);
/// Representation of 0.0.
pub const ZERO: Self = Self(0);
/// Representation of 1.0.
pub const ONE: Self = Self(1 << $fract_bits);
const INT_MASK: $ty = !0 << $fract_bits;
const ROUND: $ty = 1 << ($fract_bits - 1);
const FRACT_BITS: usize = $fract_bits;
/// Creates a new fixed point value from the underlying bit representation.
#[inline(always)]
pub const fn from_bits(bits: $ty) -> Self {
Self(bits)
}
/// Returns the underlying bit representation of the value.
#[inline(always)]
pub const fn to_bits(self) -> $ty {
self.0
}
//TODO: is this actually useful?
/// Returns the nearest integer value.
#[inline(always)]
pub const fn round(self) -> Self {
Self(self.0.wrapping_add(Self::ROUND) & Self::INT_MASK)
}
/// Returns the absolute value of the number.
#[inline(always)]
pub const fn abs(self) -> Self {
Self(self.0.abs())
}
/// Returns the largest integer less than or equal to the number.
#[inline(always)]
pub const fn floor(self) -> Self {
Self(self.0 & Self::INT_MASK)
}
/// Returns the fractional part of the number.
#[inline(always)]
pub const fn fract(self) -> Self {
Self(self.0 - self.floor().0)
}
/// Wrapping addition.
#[inline(always)]
pub fn wrapping_add(self, other: Self) -> Self {
Self(self.0.wrapping_add(other.0))
}
/// Saturating addition.
#[inline(always)]
pub const fn saturating_add(self, other: Self) -> Self {
Self(self.0.saturating_add(other.0))
}
/// Wrapping substitution.
#[inline(always)]
pub const fn wrapping_sub(self, other: Self) -> Self {
Self(self.0.wrapping_sub(other.0))
}
/// Saturating substitution.
#[inline(always)]
pub const fn saturating_sub(self, other: Self) -> Self {
Self(self.0.saturating_sub(other.0))
}
/// The representation of this number as a big-endian byte array.
#[inline(always)]
pub const fn to_be_bytes(self) -> [u8; $bits / 8] {
self.0.to_be_bytes()
}
}
impl Add for $name {
type Output = Self;
#[inline(always)]
fn add(self, other: Self) -> Self {
Self(self.0.wrapping_add(other.0))
}
}
impl AddAssign for $name {
#[inline(always)]
fn add_assign(&mut self, other: Self) {
*self = *self + other;
}
}
impl Sub for $name {
type Output = Self;
#[inline(always)]
fn sub(self, other: Self) -> Self {
Self(self.0.wrapping_sub(other.0))
}
}
impl SubAssign for $name {
#[inline(always)]
fn sub_assign(&mut self, other: Self) {
*self = *self - other;
}
}
};
}
/// Implements multiplication and division operators for fixed types.
macro_rules! fixed_mul_div {
($ty:ty) => {
impl $ty {
/// Multiplies `self` by `a` and divides the product by `b`.
// This one is specifically not always inlined due to size and
// frequency of use. We leave it to compiler discretion.
#[inline]
pub const fn mul_div(&self, a: Self, b: Self) -> Self {
let mut sign = 1;
let mut su = self.0 as u64;
let mut au = a.0 as u64;
let mut bu = b.0 as u64;
if self.0 < 0 {
su = 0u64.wrapping_sub(su);
sign = -1;
}
if a.0 < 0 {
au = 0u64.wrapping_sub(au);
sign = -sign;
}
if b.0 < 0 {
bu = 0u64.wrapping_sub(bu);
sign = -sign;
}
let result = if bu > 0 {
su.wrapping_mul(au).wrapping_add(bu >> 1) / bu
} else {
0x7FFFFFFF
};
Self(if sign < 0 {
-(result as i32)
} else {
result as i32
})
}
}
impl Mul for $ty {
type Output = Self;
#[inline(always)]
fn mul(self, other: Self) -> Self::Output {
let ab = self.0 as i64 * other.0 as i64;
Self(((ab + 0x8000 - i64::from(ab < 0)) >> 16) as i32)
}
}
impl MulAssign for $ty {
#[inline(always)]
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl Div for $ty {
type Output = Self;
#[inline(always)]
fn div(self, other: Self) -> Self::Output {
let mut sign = 1;
let mut a = self.0;
let mut b = other.0;
if a < 0 {
a = -a;
sign = -1;
}
if b < 0 {
b = -b;
sign = -sign;
}
let q = if b == 0 {
0x7FFFFFFF
} else {
((((a as u64) << 16) + ((b as u64) >> 1)) / (b as u64)) as u32
};
Self(if sign < 0 { -(q as i32) } else { q as i32 })
}
}
impl DivAssign for $ty {
#[inline(always)]
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}
impl Neg for $ty {
type Output = Self;
#[inline(always)]
fn neg(self) -> Self {
Self(-self.0)
}
}
};
}
/// impl float conversion methods.
///
/// We convert to different float types in order to ensure we can roundtrip
/// without floating point error.
macro_rules! float_conv {
($name:ident, $to:ident, $from:ident, $ty:ty) => {
impl $name {
#[doc = concat!("Creates a fixed point value from a", stringify!($ty), ".")]
///
/// This operation is lossy; the float will be rounded to the nearest
/// representable value.
#[inline(always)]
pub fn $from(x: $ty) -> Self {
// When x is positive: 1.0 - 0.5 = 0.5
// When x is negative: 0.0 - 0.5 = -0.5
let frac = (x.is_sign_positive() as u8 as $ty) - 0.5;
Self((x * Self::ONE.0 as $ty + frac) as _)
}
#[doc = concat!("Returns the value as an ", stringify!($ty), ".")]
///
/// This operation is lossless: all representable values can be
/// round-tripped.
#[inline(always)]
pub fn $to(self) -> $ty {
let int = ((self.0 & Self::INT_MASK) >> Self::FRACT_BITS) as $ty;
let fract = (self.0 & !Self::INT_MASK) as $ty / Self::ONE.0 as $ty;
int + fract
}
}
//hack: we can losslessly go to float, so use those fmt impls
impl std::fmt::Display for $name {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
self.$to().fmt(f)
}
}
impl std::fmt::Debug for $name {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
self.$to().fmt(f)
}
}
};
}
fixed_impl!(F2Dot14, 16, 14, i16);
fixed_impl!(F4Dot12, 16, 12, i16);
fixed_impl!(F6Dot10, 16, 10, i16);
fixed_impl!(Fixed, 32, 16, i32);
fixed_impl!(F26Dot6, 32, 6, i32);
fixed_mul_div!(Fixed);
fixed_mul_div!(F26Dot6);
float_conv!(F2Dot14, to_f32, from_f32, f32);
float_conv!(F4Dot12, to_f32, from_f32, f32);
float_conv!(F6Dot10, to_f32, from_f32, f32);
float_conv!(Fixed, to_f64, from_f64, f64);
float_conv!(F26Dot6, to_f64, from_f64, f64);
crate::newtype_scalar!(F2Dot14, [u8; 2]);
crate::newtype_scalar!(F4Dot12, [u8; 2]);
crate::newtype_scalar!(F6Dot10, [u8; 2]);
crate::newtype_scalar!(Fixed, [u8; 4]);
impl Fixed {
/// Creates a 16.16 fixed point value from a 32 bit integer.
#[inline(always)]
pub const fn from_i32(i: i32) -> Self {
Self(i << 16)
}
/// Converts a 16.16 fixed point value to a 32 bit integer, rounding off
/// the fractional bits.
#[inline(always)]
pub const fn to_i32(self) -> i32 {
self.0.wrapping_add(0x8000) >> 16
}
/// Converts a 16.16 to 26.6 fixed point value.
#[inline(always)]
pub const fn to_f26dot6(self) -> F26Dot6 {
F26Dot6(self.0.wrapping_add(0x200) >> 10)
}
/// Converts a 16.16 to 2.14 fixed point value.
///
/// This specific conversion is defined by the spec:
/// <https://learn.microsoft.com/en-us/typography/opentype/spec/otvaroverview#coordinate-scales-and-normalization>
///
/// "5. Convert the final, normalized 16.16 coordinate value to 2.14 by this method: add 0x00000002,
/// and sign-extend shift to the right by 2."
#[inline(always)]
pub const fn to_f2dot14(self) -> F2Dot14 {
F2Dot14((self.0.wrapping_add(2) >> 2) as _)
}
/// Converts a 16.16 fixed point value to a single precision floating
/// point value.
///
/// This operation is lossy. Use `to_f64()` for a lossless conversion.
#[inline(always)]
pub fn to_f32(self) -> f32 {
const SCALE_FACTOR: f32 = 1.0 / 65536.0;
self.0 as f32 * SCALE_FACTOR
}
}
impl From<i32> for Fixed {
fn from(value: i32) -> Self {
Self::from_i32(value)
}
}
impl F26Dot6 {
/// Creates a 26.6 fixed point value from a 32 bit integer.
#[inline(always)]
pub const fn from_i32(i: i32) -> Self {
Self(i << 6)
}
/// Converts a 26.6 fixed point value to a 32 bit integer, rounding off
/// the fractional bits.
#[inline(always)]
pub const fn to_i32(self) -> i32 {
self.0.wrapping_add(32) >> 6
}
/// Converts a 26.6 fixed point value to a single precision floating
/// point value.
///
/// This operation is lossy. Use `to_f64()` for a lossless conversion.
#[inline(always)]
pub fn to_f32(self) -> f32 {
const SCALE_FACTOR: f32 = 1.0 / 64.0;
self.0 as f32 * SCALE_FACTOR
}
}
impl F2Dot14 {
/// Converts a 2.14 to 16.16 fixed point value.
#[inline(always)]
pub const fn to_fixed(self) -> Fixed {
Fixed(self.0 as i32 * 4)
}
}
#[cfg(test)]
mod tests {
#![allow(overflowing_literals)] // we want to specify byte values directly
use super::*;
#[test]
fn f2dot14_floats() {
// Examples from https://docs.microsoft.com/en-us/typography/opentype/spec/otff#data-types
assert_eq!(F2Dot14(0x7fff), F2Dot14::from_f32(1.999939));
assert_eq!(F2Dot14(0x7000), F2Dot14::from_f32(1.75));
assert_eq!(F2Dot14(0x0001), F2Dot14::from_f32(0.0000610356));
assert_eq!(F2Dot14(0x0000), F2Dot14::from_f32(0.0));
assert_eq!(F2Dot14(0xffff), F2Dot14::from_f32(-0.000061));
assert_eq!(F2Dot14(0x8000), F2Dot14::from_f32(-2.0));
}
#[test]
fn roundtrip_f2dot14() {
for i in i16::MIN..=i16::MAX {
let val = F2Dot14(i);
assert_eq!(val, F2Dot14::from_f32(val.to_f32()));
}
}
#[test]
fn round_f2dot14() {
assert_eq!(F2Dot14(0x7000).round(), F2Dot14::from_f32(-2.0));
assert_eq!(F2Dot14(0x1F00).round(), F2Dot14::from_f32(0.0));
assert_eq!(F2Dot14(0x2000).round(), F2Dot14::from_f32(1.0));
}
#[test]
fn round_fixed() {
//TODO: make good test cases
assert_eq!(Fixed(0x0001_7FFE).round(), Fixed(0x0001_0000));
assert_eq!(Fixed(0x0001_7FFF).round(), Fixed(0x0001_0000));
assert_eq!(Fixed(0x0001_8000).round(), Fixed(0x0002_0000));
}
// disabled because it's slow; these were just for my edification anyway
//#[test]
//fn roundtrip_fixed() {
//for i in i32::MIN..=i32::MAX {
//let val = Fixed(i);
//assert_eq!(val, Fixed::from_f64(val.to_f64()));
//}
//}
#[test]
fn fixed_floats() {
assert_eq!(Fixed(0x7fff_0000), Fixed::from_f64(32767.));
assert_eq!(Fixed(0x7000_0001), Fixed::from_f64(28672.00001525879));
assert_eq!(Fixed(0x0001_0000), Fixed::from_f64(1.0));
assert_eq!(Fixed(0x0000_0000), Fixed::from_f64(0.0));
assert_eq!(
Fixed(i32::from_be_bytes([0xff; 4])),
Fixed::from_f64(-0.000015259)
);
assert_eq!(Fixed(0x7fff_ffff), Fixed::from_f64(32768.0));
}
// We lost the f64::round() intrinsic when dropping std and the
// alternative implementation was very slightly incorrect, throwing
// off some tests. This makes sure we match.
#[test]
fn fixed_floats_rounding() {
fn with_round_intrinsic(x: f64) -> Fixed {
Fixed((x * 65536.0).round() as i32)
}
// These particular values were tripping up tests
let inputs = [0.05, 0.6, 0.2, 0.4, 0.67755];
for input in inputs {
assert_eq!(Fixed::from_f64(input), with_round_intrinsic(input));
// Test negated values as well for good measure
assert_eq!(Fixed::from_f64(-input), with_round_intrinsic(-input));
}
}
#[test]
fn fixed_to_int() {
assert_eq!(Fixed::from_f64(1.0).to_i32(), 1);
assert_eq!(Fixed::from_f64(1.5).to_i32(), 2);
assert_eq!(F26Dot6::from_f64(1.0).to_i32(), 1);
assert_eq!(F26Dot6::from_f64(1.5).to_i32(), 2);
}
#[test]
fn fixed_from_int() {
assert_eq!(Fixed::from_i32(1000).to_bits(), 1000 << 16);
assert_eq!(F26Dot6::from_i32(1000).to_bits(), 1000 << 6);
}
#[test]
fn fixed_to_f26dot6() {
assert_eq!(Fixed::from_f64(42.5).to_f26dot6(), F26Dot6::from_f64(42.5));
}
#[test]
fn fixed_muldiv() {
assert_eq!(
Fixed::from_f64(0.5) * Fixed::from_f64(2.0),
Fixed::from_f64(1.0)
);
assert_eq!(
Fixed::from_f64(0.5) / Fixed::from_f64(2.0),
Fixed::from_f64(0.25)
);
}
}