1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
//! Optimistic type conversion
//!
//! When [std::convert::TryFrom] and [std::convert::TryInto] get stabilised
//! they should be used instead. However, at this point we need our
//! own implementation for optional conversion between types.
//!
//! The particular use case is when we have a data type claiming
//! more space than it's using and we want to move the value into
//! another, smaller data type. Such operation may only be performed
//! at runtime with particular checks that the value fits into the
//! smaller data type. Otherwise we cannot perform safe cast.
//!
//! # Examples
//! Integer conversion
//! ```
//! use fraction::convert::TryToConvertFrom;
//!
//! assert_eq!(Some(255u8), u8::try_to_convert_from(255u16));
//! assert_eq!(None, u8::try_to_convert_from(256u16));
//! ```
//!
//! Fraction conversion
//! ```
//! use fraction::{GenericFraction, convert::TryToConvertFrom, One};
//!
//! type F8 = GenericFraction<u8>;
//! type F16 = GenericFraction<u16>;
//!
//! let f8_255 = F8::new(255u8, 1u8);
//! let f16_255 = F16::try_to_convert_from(f8_255).unwrap();
//! let f16_256 = f16_255 + F16::one();
//!
//! assert_eq!(Some(f8_255), F8::try_to_convert_from(f16_255));
//! assert_eq!(None, F8::try_to_convert_from(f16_256));
//! ```

use generic::{read_generic_integer, GenericInteger};
use num::{CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, Integer, One};

use super::GenericFraction;

#[cfg(feature = "with-bigint")]
use super::{BigInt, BigUint};

pub trait TryToConvertFrom<F>: Sized {
    fn try_to_convert_from(src: F) -> Option<Self>;
}

macro_rules! convert_impl {
    (unsigned; $($T:ty),+) => {
        $(
            impl<T> TryToConvertFrom<T> for $T
            where
                T: GenericInteger + Clone + One + CheckedAdd + CheckedDiv + CheckedMul + CheckedSub + PartialOrd,
                $T: GenericInteger
            {
                fn try_to_convert_from(src: T) -> Option<Self> {
                    read_generic_integer::<Self, T>(src)
                        .map_or_else(
                            || None,
                            |(sign, val)| if sign.is_positive () { Some(val) } else { None }
                        )
                }
            }
        )+
    };

    (signed; $($T:ty),+) => {
        $(
            impl<T> TryToConvertFrom<T> for $T
            where
                T: GenericInteger + Clone + One + CheckedAdd + CheckedDiv + CheckedMul + CheckedSub + PartialOrd,
                $T: GenericInteger
            {
                fn try_to_convert_from(src: T) -> Option<Self> {
                    read_generic_integer::<Self, T>(src)
                        .map_or_else(
                            || None,
                            |(sign, val)| Some(if sign.is_negative() {-val} else {val})
                        )
                }
            }
        )+
    };

    /* when Rust gets specializations we'll be able to do cheaper conversions for some types
    (cast; $($F:ty => $T:ty),+) => {
        $(
            impl TryToConvertFrom<$F> for $T
            {
                fn try_to_convert_from(src: $F) -> Option<$T> {
                    Some(src as $T)
                }
            }
        )+
    };
    */
}

convert_impl!(unsigned; u8, u16, u32, u64, u128, usize);
convert_impl!(signed; i8, i16, i32, i64, i128, isize);

#[cfg(feature = "with-bigint")]
convert_impl!(unsigned; BigUint);

#[cfg(feature = "with-bigint")]
convert_impl!(signed; BigInt);

impl<T, F> TryToConvertFrom<GenericFraction<F>> for GenericFraction<T>
where
    T: TryToConvertFrom<F> + Clone + Integer,
    F: Clone + Integer,
{
    fn try_to_convert_from(src: GenericFraction<F>) -> Option<Self> {
        match src {
            GenericFraction::NaN => Some(GenericFraction::NaN),
            GenericFraction::Infinity(sign) => Some(GenericFraction::Infinity(sign)),
            GenericFraction::Rational(sign, ratio) => {
                let (n, d): (F, F) = ratio.into();

                let numer = <T as TryToConvertFrom<F>>::try_to_convert_from(n)?;
                let denom = <T as TryToConvertFrom<F>>::try_to_convert_from(d)?;

                Some(GenericFraction::Rational(
                    sign,
                    super::Ratio::new_raw(numer, denom),
                ))
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use convert::TryToConvertFrom;
    use fraction::GenericFraction;

    type F1 = GenericFraction<u8>;
    type F2 = GenericFraction<i8>;

    #[test]
    fn try_to_convert_integers() {
        {
            assert_eq!(Some(127i8), i8::try_to_convert_from(127u8));
            assert_eq!(Some(127u8), u8::try_to_convert_from(127i8));
            assert_eq!(None, i8::try_to_convert_from(128u8));
            assert_eq!(None, u8::try_to_convert_from(-127i8));
            assert_eq!(None, u8::try_to_convert_from(256u16));
        }
    }

    #[test]
    fn try_to_convert_generic_fraction() {
        {
            let fu = F1::new(1u8, 2u8);
            let fi = F2::try_to_convert_from(fu);

            assert!(fi.is_some());
            assert_eq!(fi.unwrap(), F2::new(1i8, 2i8));
        }

        {
            let fi = F2::new(1i8, 2i8);
            let fu = F1::try_to_convert_from(fi);

            assert!(fu.is_some());
            assert_eq!(fu.unwrap(), F1::new(1u8, 2u8));
        }

        {
            let fu = F1::infinity();
            let fi = F2::try_to_convert_from(fu);

            assert!(fi.is_some());
            assert_eq!(fi.unwrap(), F2::infinity());
        }

        {
            let fu = F1::neg_infinity();
            let fi = F2::try_to_convert_from(fu);

            assert!(fi.is_some());
            assert_eq!(fi.unwrap(), F2::neg_infinity());
        }
    }
}