1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
#![doc(test(attr(deny(warnings), allow(deprecated))))]
//! Fraction is designed to be a precise lossless drop-in replacement for floating types (f32, f64).
//!
//! It comes with a number of predefined type aliases covering the most common use cases such as
//! [Fraction], [Decimal], [BigFraction], [DynaDecimal] and so on (see [prelude] module for more examples).
//!
//! The public API provides you with the generic types that you may use straightforwardly to build your
//! own types, suiting your needs best (see [prelude] module for the examples).
//!
//! # Library features
//!
//! - Drop in replacement for floats with the exception for NaN == NaN so that it's hashable
//! - It's hashable, so may be used as values in Sets and keys in dictionaries and hash maps
//! - [Display](fraction::display) implementation for fractions and decimals
//! - [Fraction](GenericFraction) type, representing fractions
//! - [Decimal](GenericDecimal) type, based on [Fraction](GenericFraction) type represents floats as lossless decimals
//! - [DynaInt](dynaint) implements dynamically growing integer type that perfarms checked math and avoids stack overflows
//! - PostgreSQL binary protocol integration for both fractions and decimals
//! - Juniper support for both fractions and decimals
//! - [Generic integer conversions](generic), such as `i8 -> u8`, `usize -> u8` and so on
//! - [Lossless division](division) with no allocations and infinite precision
//!
//! # Disclaimer
//! Even though we do our best to keep it well covered with tests, there may be bugs out there.
//! The library API is still in flux. When it gets stable we will release the version 1.0.0.
//! You may find more info about Semantic Versioning on [https://semver.org/](https://semver.org/).
//! Bug reports and contributions are appreciated.
//!
//! # Crate features
//! - `with-bigint` (default) integration with [num::BigInt] and [num::BigUint] data types
//! - `with-decimal` (default) [Decimal] type implemented upon [GenericFraction]
//! - `with-dynaint` (default) dynamically growing integer avoiding stack overflows
//! - `with-unicode` Unicode formatting and parsing options
//! - `with-approx` adds methods for approximate computations (currently `sqrt`)
//! - `with-juniper-support` [Juniper](https://crates.io/crates/juniper) integration
//! - `with-postgres-support` [PostgreSQL](https://crates.io/crates/postgres) integration; Numeric/Decimal type
//! - `with-serde-support` [Serde](https://crates.io/crates/serde) traits implementation
//!
//! # Implementation
//! Basic math implemented upon the [num] crate (in particular the [num::rational] module).
//! The utilised traits from the [num] crate are re-exported, so you don't have to explicitly depend on that crate however,
//! you may import them from either of crates if necessary.
//!
//! # Usage
//! To start using types see the [Prelude](self::prelude) module.
//!
//! # Examples
//!
//! ## Simple use:
//!
//! ```
//! type F = fraction::Fraction; // choose the type accordingly to your needs (see prelude module docs)
//!
//! let two = F::from(0) + F::from(2); // 0 + 2 = 2
//! let two_third = two / F::from(3); // 2/3 = 0.666666[...]
//!
//! assert_eq!(F::from(2), two);
//! assert_eq!(F::new(2u64, 3u64), two_third);
//!
//! assert_eq!("2/3", format!("{}", two_third)); // print as Fraction (by default)
//! assert_eq!("0.6666", format!("{:.4}", two_third)); // format as decimal and print up to 4 digits after floating point
//! ```
//!
//! Decimal is implemented as a representation layer on top of Fraction.
//! Thus, it is also lossless and may require explicit control over "precision"
//! for comparison and formatting operations.
//! ```
//! type D = fraction::Decimal;
//!
//! let result = D::from(0.5) / D::from(0.3);
//!
//! assert_eq!(format!("{}", result), "1.6"); // calculation result uses precision of the operands
//! assert_eq!(format!("{:.4}", result), "1.6666"); // explicitly passing precision to format
//!
//! assert_eq!("1.6666", format!("{}", result.set_precision(4))); // the other way to set precision explicitly on Decimal
//! ```
//!
//! ## Construct:
//!
//! Fraction:
//!
//! ```
//! use std::str::FromStr;
//! use fraction::{Fraction, Sign};
//!
//! // fraction crate also re-exports num::{One, Zero} traits for convenience.
//! use fraction::{One, Zero};
//!
//!
//! // There are several ways to construct a fraction, depending on your use case
//!
//! // `new` - construct with numerator/denominator and normalize the fraction.
//! // "Normalization" means it will always find the least common denominator
//! // and convert the input accordingly.
//! let f = Fraction::new(1u8, 2u8);
//!
//! // `new_generic` - construct with numerator/denominator of different integer types
//! assert_eq!(f, Fraction::new_generic(Sign::Plus, 1i32, 2u8).unwrap());
//!
//! // `from` - converts from primitive types such as i32 and f32.
//! assert_eq!(f, Fraction::from(0.5)); // convert from float (f32, f64)
//!
//! // `from_str` - tries parse a string fraction. Supports the usual decimal notation.
//! assert_eq!(f, Fraction::from_str("0.5").unwrap()); // parse a string
//!
//! // `from_str` - also supports _fraction_ notation such as "numerator/denominator" delimited by slash (`/`).
//! assert_eq!(f, Fraction::from_str("1/2").unwrap()); // parse a string
//!
//! // `new_raw` - construct with numerator/denominator but do not normalize the fraction.
//! // This is the most performant constructor, but does not calculate the common denominator,
//! // so may lead to unexpected results in following calculations if the fraction is not normalised.
//! // WARNING: Only use if you are sure numerator/denominator are already normalized.
//! assert_eq!(f, Fraction::new_raw(1u64, 2u64));
//!
//! // `one` - implements num::One trait
//! assert_eq!(f * 2, Fraction::one());
//!
//! // `zero` - implements num::Zero trait
//! assert_eq!(f - f, Fraction::zero());
//! ```
//!
//! Decimal:
//! ```
//! use std::str::FromStr;
//! use fraction::{Decimal, Fraction};
//!
//! // There are similar ways to construct Decimal. Underneath it is always represented as Fraction.
//! // When constructed, Decimal preserves its precision (number of digits after floating point).
//! // When two decimals are calculated, the result takes the biggest precision of both.
//! // The precision is used for visual representation (formatting and printing) and for comparison of two decimals.
//! // Precision is NOT used in any calculations. All calculations are lossless and implemented through Fraction.
//! // To override the precision use Decimal::set_precision.
//!
//! let d = Decimal::from(1); // from integer, precision = 0
//! assert_eq!(d, Decimal::from_fraction(Fraction::from(1))); // from fraction, precision is calculated from fraction
//!
//! let d = Decimal::from(1.3); // from float (f32, f64)
//! assert_eq!(d, Decimal::from_str("1.3").unwrap());
//!
//! let d = Decimal::from(0.5); // from float (f32, f64)
//! assert_eq!(d, Decimal::from_str("1/2").unwrap());
//! ```
//!
//! ## Format (convert to string)
//! Formatting works similar for both Decimal and Fraction (Decimal uses Fraction internally).
//! The format implementation closely follows the rust Format trait documentation.
//!
//! ```
//! type F = fraction::Fraction;
//!
//! let result = F::from(0.7) / F::from(0.4);
//! assert_eq!(format!("{}", result), "7/4"); // Printed as fraction by default
//! assert_eq!(format!("{:.2}", result), "1.75"); // if precision is defined, printed as decimal
//! assert_eq!(format!("{:#.3}", result), "1.750"); // to print leading zeroes, pass hash to the format
//! ```
//!
//! Additionally, there are [methods](GenericFraction::get_unicode_display) available for various unicode display options:
//! See [this SO answer](https://stackoverflow.com/a/77861320/14681457) for a discussion.
//!
//! ```
//! type F = fraction::Fraction;
//!
//! let res = F::from(0.7) / F::from(0.4);
//! assert_eq!("7⁄4",format!("{}", res.get_unicode_display())); // needs font support. Unicode way
//! assert_eq!("13⁄4",format!("{}", res.get_unicode_display().mixed())); // interpreted wrongly without font support
//! assert_eq!("⁷/₄",format!("{}", res.get_unicode_display().supsub())); // no need for font support
//! assert_eq!("1³/₄",format!("{}", res.get_unicode_display().supsub().mixed()));
//! ```
//!
//! ## Convert into/from other types
//!
//! Both `fraction` and `decimal` types implement
//! - `from` and `try_into` for all built-in primitive types.
//! - `from` and `try_into` for `BigInt` and `BigUint` when `with-bigint` feature enabled.
//!
//! ```rust
//! use fraction::{Fraction, One, BigInt, BigUint};
//! use std::convert::TryInto;
//!
//! // Convert from examples (from primitives always succeed)
//! assert_eq!(Fraction::from(1i8), Fraction::one());
//! assert_eq!(Fraction::from(1u8), Fraction::one());
//! assert_eq!(Fraction::from(BigInt::one()), Fraction::one());
//! assert_eq!(Fraction::from(BigUint::one()), Fraction::one());
//! assert_eq!(Fraction::from(1f32), Fraction::one());
//! assert_eq!(Fraction::from(1f64), Fraction::one());
//!
//!
//! // Convert into examples (try_into returns Result<T, ()>)
//! assert_eq!(Ok(1i8), Fraction::one().try_into());
//! assert_eq!(Ok(1u8), Fraction::one().try_into());
//! assert_eq!(Ok(BigInt::one()), Fraction::one().try_into());
//! assert_eq!(Ok(BigUint::one()), Fraction::one().try_into());
//! assert_eq!(Ok(1f32), Fraction::one().try_into());
//! assert_eq!(Ok(1f64), Fraction::one().try_into());
//! ```
//!
//! ### Postgres usage
//! Postgres uses i16 for its binary protocol, so you'll have to use at least u16
//! as the base type for fractions/decimals.
//! Otherwise you may workaround with DynaInt<u8, _something_more_than_u8_>.
//! The safest way to go with would be DynaInt based types
//! such as DynaFraction or DynaDecimal as they would prevent
//! stack overflows for high values.
//!
//! Beware bad numbers such as 1/3, 1/7.
//! Fraction keeps the highest achievable precision (up to 16383 digits after floating point).
//! Decimal uses its own precision.
//! So, if you may end up with bad numbers, it may be preferable to go with Decimals over Fractions.
//!
//! Both types (fractions and decimals) should work transparently
//! in accordance with Postgres crate documentation
extern crate num;
#[cfg(feature = "with-bigint")]
#[macro_use]
extern crate lazy_static;
#[cfg(feature = "with-bigint")]
pub use num::bigint::{BigInt, BigUint};
pub use num::rational::{ParseRatioError, Ratio};
pub use num::{
traits::{ConstOne, ConstZero},
Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, FromPrimitive, Integer, Num, One,
Signed, ToPrimitive, Zero,
};
#[cfg(test)]
#[macro_use]
mod tests;
pub mod convert;
pub mod division;
pub mod error;
mod fraction;
pub use fraction::*;
pub mod generic;
pub mod prelude;
pub use self::prelude::*;
// ====================================== FEATURES ======================================
#[cfg(feature = "with-juniper-support")]
extern crate juniper;
#[cfg(feature = "with-postgres-support")]
#[macro_use]
extern crate postgres_types;
#[cfg(feature = "with-serde-support")]
#[macro_use]
extern crate serde_derive;
#[cfg(feature = "with-serde-support")]
extern crate serde;
#[cfg(feature = "with-decimal")]
mod decimal;
#[cfg(feature = "with-dynaint")]
pub mod dynaint;