glam/f32/
mat3.rs

1// Generated from mat.rs.tera template. Edit the template, not the generated file.
2
3use crate::{f32::math, swizzles::*, DMat3, EulerRot, Mat2, Mat3A, Mat4, Quat, Vec2, Vec3, Vec3A};
4#[cfg(not(target_arch = "spirv"))]
5use core::fmt;
6use core::iter::{Product, Sum};
7use core::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
8
9/// Creates a 3x3 matrix from three column vectors.
10#[inline(always)]
11#[must_use]
12pub const fn mat3(x_axis: Vec3, y_axis: Vec3, z_axis: Vec3) -> Mat3 {
13    Mat3::from_cols(x_axis, y_axis, z_axis)
14}
15
16/// A 3x3 column major matrix.
17///
18/// This 3x3 matrix type features convenience methods for creating and using linear and
19/// affine transformations. If you are primarily dealing with 2D affine transformations the
20/// [`Affine2`](crate::Affine2) type is much faster and more space efficient than
21/// using a 3x3 matrix.
22///
23/// Linear transformations including 3D rotation and scale can be created using methods
24/// such as [`Self::from_diagonal()`], [`Self::from_quat()`], [`Self::from_axis_angle()`],
25/// [`Self::from_rotation_x()`], [`Self::from_rotation_y()`], or
26/// [`Self::from_rotation_z()`].
27///
28/// The resulting matrices can be use to transform 3D vectors using regular vector
29/// multiplication.
30///
31/// Affine transformations including 2D translation, rotation and scale can be created
32/// using methods such as [`Self::from_translation()`], [`Self::from_angle()`],
33/// [`Self::from_scale()`] and [`Self::from_scale_angle_translation()`].
34///
35/// The [`Self::transform_point2()`] and [`Self::transform_vector2()`] convenience methods
36/// are provided for performing affine transforms on 2D vectors and points. These multiply
37/// 2D inputs as 3D vectors with an implicit `z` value of `1` for points and `0` for
38/// vectors respectively. These methods assume that `Self` contains a valid affine
39/// transform.
40#[derive(Clone, Copy)]
41#[repr(C)]
42pub struct Mat3 {
43    pub x_axis: Vec3,
44    pub y_axis: Vec3,
45    pub z_axis: Vec3,
46}
47
48impl Mat3 {
49    /// A 3x3 matrix with all elements set to `0.0`.
50    pub const ZERO: Self = Self::from_cols(Vec3::ZERO, Vec3::ZERO, Vec3::ZERO);
51
52    /// A 3x3 identity matrix, where all diagonal elements are `1`, and all off-diagonal elements are `0`.
53    pub const IDENTITY: Self = Self::from_cols(Vec3::X, Vec3::Y, Vec3::Z);
54
55    /// All NAN:s.
56    pub const NAN: Self = Self::from_cols(Vec3::NAN, Vec3::NAN, Vec3::NAN);
57
58    #[allow(clippy::too_many_arguments)]
59    #[inline(always)]
60    #[must_use]
61    const fn new(
62        m00: f32,
63        m01: f32,
64        m02: f32,
65        m10: f32,
66        m11: f32,
67        m12: f32,
68        m20: f32,
69        m21: f32,
70        m22: f32,
71    ) -> Self {
72        Self {
73            x_axis: Vec3::new(m00, m01, m02),
74            y_axis: Vec3::new(m10, m11, m12),
75            z_axis: Vec3::new(m20, m21, m22),
76        }
77    }
78
79    /// Creates a 3x3 matrix from three column vectors.
80    #[inline(always)]
81    #[must_use]
82    pub const fn from_cols(x_axis: Vec3, y_axis: Vec3, z_axis: Vec3) -> Self {
83        Self {
84            x_axis,
85            y_axis,
86            z_axis,
87        }
88    }
89
90    /// Creates a 3x3 matrix from a `[f32; 9]` array stored in column major order.
91    /// If your data is stored in row major you will need to `transpose` the returned
92    /// matrix.
93    #[inline]
94    #[must_use]
95    pub const fn from_cols_array(m: &[f32; 9]) -> Self {
96        Self::new(m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8])
97    }
98
99    /// Creates a `[f32; 9]` array storing data in column major order.
100    /// If you require data in row major order `transpose` the matrix first.
101    #[inline]
102    #[must_use]
103    pub const fn to_cols_array(&self) -> [f32; 9] {
104        [
105            self.x_axis.x,
106            self.x_axis.y,
107            self.x_axis.z,
108            self.y_axis.x,
109            self.y_axis.y,
110            self.y_axis.z,
111            self.z_axis.x,
112            self.z_axis.y,
113            self.z_axis.z,
114        ]
115    }
116
117    /// Creates a 3x3 matrix from a `[[f32; 3]; 3]` 3D array stored in column major order.
118    /// If your data is in row major order you will need to `transpose` the returned
119    /// matrix.
120    #[inline]
121    #[must_use]
122    pub const fn from_cols_array_2d(m: &[[f32; 3]; 3]) -> Self {
123        Self::from_cols(
124            Vec3::from_array(m[0]),
125            Vec3::from_array(m[1]),
126            Vec3::from_array(m[2]),
127        )
128    }
129
130    /// Creates a `[[f32; 3]; 3]` 3D array storing data in column major order.
131    /// If you require data in row major order `transpose` the matrix first.
132    #[inline]
133    #[must_use]
134    pub const fn to_cols_array_2d(&self) -> [[f32; 3]; 3] {
135        [
136            self.x_axis.to_array(),
137            self.y_axis.to_array(),
138            self.z_axis.to_array(),
139        ]
140    }
141
142    /// Creates a 3x3 matrix with its diagonal set to `diagonal` and all other entries set to 0.
143    #[doc(alias = "scale")]
144    #[inline]
145    #[must_use]
146    pub const fn from_diagonal(diagonal: Vec3) -> Self {
147        Self::new(
148            diagonal.x, 0.0, 0.0, 0.0, diagonal.y, 0.0, 0.0, 0.0, diagonal.z,
149        )
150    }
151
152    /// Creates a 3x3 matrix from a 4x4 matrix, discarding the 4th row and column.
153    #[inline]
154    #[must_use]
155    pub fn from_mat4(m: Mat4) -> Self {
156        Self::from_cols(m.x_axis.xyz(), m.y_axis.xyz(), m.z_axis.xyz())
157    }
158
159    /// Creates a 3D rotation matrix from the given quaternion.
160    ///
161    /// # Panics
162    ///
163    /// Will panic if `rotation` is not normalized when `glam_assert` is enabled.
164    #[inline]
165    #[must_use]
166    pub fn from_quat(rotation: Quat) -> Self {
167        glam_assert!(rotation.is_normalized());
168
169        let x2 = rotation.x + rotation.x;
170        let y2 = rotation.y + rotation.y;
171        let z2 = rotation.z + rotation.z;
172        let xx = rotation.x * x2;
173        let xy = rotation.x * y2;
174        let xz = rotation.x * z2;
175        let yy = rotation.y * y2;
176        let yz = rotation.y * z2;
177        let zz = rotation.z * z2;
178        let wx = rotation.w * x2;
179        let wy = rotation.w * y2;
180        let wz = rotation.w * z2;
181
182        Self::from_cols(
183            Vec3::new(1.0 - (yy + zz), xy + wz, xz - wy),
184            Vec3::new(xy - wz, 1.0 - (xx + zz), yz + wx),
185            Vec3::new(xz + wy, yz - wx, 1.0 - (xx + yy)),
186        )
187    }
188
189    /// Creates a 3D rotation matrix from a normalized rotation `axis` and `angle` (in
190    /// radians).
191    ///
192    /// # Panics
193    ///
194    /// Will panic if `axis` is not normalized when `glam_assert` is enabled.
195    #[inline]
196    #[must_use]
197    pub fn from_axis_angle(axis: Vec3, angle: f32) -> Self {
198        glam_assert!(axis.is_normalized());
199
200        let (sin, cos) = math::sin_cos(angle);
201        let (xsin, ysin, zsin) = axis.mul(sin).into();
202        let (x, y, z) = axis.into();
203        let (x2, y2, z2) = axis.mul(axis).into();
204        let omc = 1.0 - cos;
205        let xyomc = x * y * omc;
206        let xzomc = x * z * omc;
207        let yzomc = y * z * omc;
208        Self::from_cols(
209            Vec3::new(x2 * omc + cos, xyomc + zsin, xzomc - ysin),
210            Vec3::new(xyomc - zsin, y2 * omc + cos, yzomc + xsin),
211            Vec3::new(xzomc + ysin, yzomc - xsin, z2 * omc + cos),
212        )
213    }
214
215    /// Creates a 3D rotation matrix from the given euler rotation sequence and the angles (in
216    /// radians).
217    #[inline]
218    #[must_use]
219    pub fn from_euler(order: EulerRot, a: f32, b: f32, c: f32) -> Self {
220        let quat = Quat::from_euler(order, a, b, c);
221        Self::from_quat(quat)
222    }
223
224    /// Creates a 3D rotation matrix from `angle` (in radians) around the x axis.
225    #[inline]
226    #[must_use]
227    pub fn from_rotation_x(angle: f32) -> Self {
228        let (sina, cosa) = math::sin_cos(angle);
229        Self::from_cols(
230            Vec3::X,
231            Vec3::new(0.0, cosa, sina),
232            Vec3::new(0.0, -sina, cosa),
233        )
234    }
235
236    /// Creates a 3D rotation matrix from `angle` (in radians) around the y axis.
237    #[inline]
238    #[must_use]
239    pub fn from_rotation_y(angle: f32) -> Self {
240        let (sina, cosa) = math::sin_cos(angle);
241        Self::from_cols(
242            Vec3::new(cosa, 0.0, -sina),
243            Vec3::Y,
244            Vec3::new(sina, 0.0, cosa),
245        )
246    }
247
248    /// Creates a 3D rotation matrix from `angle` (in radians) around the z axis.
249    #[inline]
250    #[must_use]
251    pub fn from_rotation_z(angle: f32) -> Self {
252        let (sina, cosa) = math::sin_cos(angle);
253        Self::from_cols(
254            Vec3::new(cosa, sina, 0.0),
255            Vec3::new(-sina, cosa, 0.0),
256            Vec3::Z,
257        )
258    }
259
260    /// Creates an affine transformation matrix from the given 2D `translation`.
261    ///
262    /// The resulting matrix can be used to transform 2D points and vectors. See
263    /// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
264    #[inline]
265    #[must_use]
266    pub fn from_translation(translation: Vec2) -> Self {
267        Self::from_cols(
268            Vec3::X,
269            Vec3::Y,
270            Vec3::new(translation.x, translation.y, 1.0),
271        )
272    }
273
274    /// Creates an affine transformation matrix from the given 2D rotation `angle` (in
275    /// radians).
276    ///
277    /// The resulting matrix can be used to transform 2D points and vectors. See
278    /// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
279    #[inline]
280    #[must_use]
281    pub fn from_angle(angle: f32) -> Self {
282        let (sin, cos) = math::sin_cos(angle);
283        Self::from_cols(Vec3::new(cos, sin, 0.0), Vec3::new(-sin, cos, 0.0), Vec3::Z)
284    }
285
286    /// Creates an affine transformation matrix from the given 2D `scale`, rotation `angle` (in
287    /// radians) and `translation`.
288    ///
289    /// The resulting matrix can be used to transform 2D points and vectors. See
290    /// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
291    #[inline]
292    #[must_use]
293    pub fn from_scale_angle_translation(scale: Vec2, angle: f32, translation: Vec2) -> Self {
294        let (sin, cos) = math::sin_cos(angle);
295        Self::from_cols(
296            Vec3::new(cos * scale.x, sin * scale.x, 0.0),
297            Vec3::new(-sin * scale.y, cos * scale.y, 0.0),
298            Vec3::new(translation.x, translation.y, 1.0),
299        )
300    }
301
302    /// Creates an affine transformation matrix from the given non-uniform 2D `scale`.
303    ///
304    /// The resulting matrix can be used to transform 2D points and vectors. See
305    /// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
306    ///
307    /// # Panics
308    ///
309    /// Will panic if all elements of `scale` are zero when `glam_assert` is enabled.
310    #[inline]
311    #[must_use]
312    pub fn from_scale(scale: Vec2) -> Self {
313        // Do not panic as long as any component is non-zero
314        glam_assert!(scale.cmpne(Vec2::ZERO).any());
315
316        Self::from_cols(
317            Vec3::new(scale.x, 0.0, 0.0),
318            Vec3::new(0.0, scale.y, 0.0),
319            Vec3::Z,
320        )
321    }
322
323    /// Creates an affine transformation matrix from the given 2x2 matrix.
324    ///
325    /// The resulting matrix can be used to transform 2D points and vectors. See
326    /// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
327    #[inline]
328    pub fn from_mat2(m: Mat2) -> Self {
329        Self::from_cols((m.x_axis, 0.0).into(), (m.y_axis, 0.0).into(), Vec3::Z)
330    }
331
332    /// Creates a 3x3 matrix from the first 9 values in `slice`.
333    ///
334    /// # Panics
335    ///
336    /// Panics if `slice` is less than 9 elements long.
337    #[inline]
338    #[must_use]
339    pub const fn from_cols_slice(slice: &[f32]) -> Self {
340        Self::new(
341            slice[0], slice[1], slice[2], slice[3], slice[4], slice[5], slice[6], slice[7],
342            slice[8],
343        )
344    }
345
346    /// Writes the columns of `self` to the first 9 elements in `slice`.
347    ///
348    /// # Panics
349    ///
350    /// Panics if `slice` is less than 9 elements long.
351    #[inline]
352    pub fn write_cols_to_slice(self, slice: &mut [f32]) {
353        slice[0] = self.x_axis.x;
354        slice[1] = self.x_axis.y;
355        slice[2] = self.x_axis.z;
356        slice[3] = self.y_axis.x;
357        slice[4] = self.y_axis.y;
358        slice[5] = self.y_axis.z;
359        slice[6] = self.z_axis.x;
360        slice[7] = self.z_axis.y;
361        slice[8] = self.z_axis.z;
362    }
363
364    /// Returns the matrix column for the given `index`.
365    ///
366    /// # Panics
367    ///
368    /// Panics if `index` is greater than 2.
369    #[inline]
370    #[must_use]
371    pub fn col(&self, index: usize) -> Vec3 {
372        match index {
373            0 => self.x_axis,
374            1 => self.y_axis,
375            2 => self.z_axis,
376            _ => panic!("index out of bounds"),
377        }
378    }
379
380    /// Returns a mutable reference to the matrix column for the given `index`.
381    ///
382    /// # Panics
383    ///
384    /// Panics if `index` is greater than 2.
385    #[inline]
386    pub fn col_mut(&mut self, index: usize) -> &mut Vec3 {
387        match index {
388            0 => &mut self.x_axis,
389            1 => &mut self.y_axis,
390            2 => &mut self.z_axis,
391            _ => panic!("index out of bounds"),
392        }
393    }
394
395    /// Returns the matrix row for the given `index`.
396    ///
397    /// # Panics
398    ///
399    /// Panics if `index` is greater than 2.
400    #[inline]
401    #[must_use]
402    pub fn row(&self, index: usize) -> Vec3 {
403        match index {
404            0 => Vec3::new(self.x_axis.x, self.y_axis.x, self.z_axis.x),
405            1 => Vec3::new(self.x_axis.y, self.y_axis.y, self.z_axis.y),
406            2 => Vec3::new(self.x_axis.z, self.y_axis.z, self.z_axis.z),
407            _ => panic!("index out of bounds"),
408        }
409    }
410
411    /// Returns `true` if, and only if, all elements are finite.
412    /// If any element is either `NaN`, positive or negative infinity, this will return `false`.
413    #[inline]
414    #[must_use]
415    pub fn is_finite(&self) -> bool {
416        self.x_axis.is_finite() && self.y_axis.is_finite() && self.z_axis.is_finite()
417    }
418
419    /// Returns `true` if any elements are `NaN`.
420    #[inline]
421    #[must_use]
422    pub fn is_nan(&self) -> bool {
423        self.x_axis.is_nan() || self.y_axis.is_nan() || self.z_axis.is_nan()
424    }
425
426    /// Returns the transpose of `self`.
427    #[inline]
428    #[must_use]
429    pub fn transpose(&self) -> Self {
430        Self {
431            x_axis: Vec3::new(self.x_axis.x, self.y_axis.x, self.z_axis.x),
432            y_axis: Vec3::new(self.x_axis.y, self.y_axis.y, self.z_axis.y),
433            z_axis: Vec3::new(self.x_axis.z, self.y_axis.z, self.z_axis.z),
434        }
435    }
436
437    /// Returns the determinant of `self`.
438    #[inline]
439    #[must_use]
440    pub fn determinant(&self) -> f32 {
441        self.z_axis.dot(self.x_axis.cross(self.y_axis))
442    }
443
444    /// Returns the inverse of `self`.
445    ///
446    /// If the matrix is not invertible the returned matrix will be invalid.
447    ///
448    /// # Panics
449    ///
450    /// Will panic if the determinant of `self` is zero when `glam_assert` is enabled.
451    #[inline]
452    #[must_use]
453    pub fn inverse(&self) -> Self {
454        let tmp0 = self.y_axis.cross(self.z_axis);
455        let tmp1 = self.z_axis.cross(self.x_axis);
456        let tmp2 = self.x_axis.cross(self.y_axis);
457        let det = self.z_axis.dot(tmp2);
458        glam_assert!(det != 0.0);
459        let inv_det = Vec3::splat(det.recip());
460        Self::from_cols(tmp0.mul(inv_det), tmp1.mul(inv_det), tmp2.mul(inv_det)).transpose()
461    }
462
463    /// Transforms the given 2D vector as a point.
464    ///
465    /// This is the equivalent of multiplying `rhs` as a 3D vector where `z` is `1`.
466    ///
467    /// This method assumes that `self` contains a valid affine transform.
468    ///
469    /// # Panics
470    ///
471    /// Will panic if the 2nd row of `self` is not `(0, 0, 1)` when `glam_assert` is enabled.
472    #[inline]
473    #[must_use]
474    pub fn transform_point2(&self, rhs: Vec2) -> Vec2 {
475        glam_assert!(self.row(2).abs_diff_eq(Vec3::Z, 1e-6));
476        Mat2::from_cols(self.x_axis.xy(), self.y_axis.xy()) * rhs + self.z_axis.xy()
477    }
478
479    /// Rotates the given 2D vector.
480    ///
481    /// This is the equivalent of multiplying `rhs` as a 3D vector where `z` is `0`.
482    ///
483    /// This method assumes that `self` contains a valid affine transform.
484    ///
485    /// # Panics
486    ///
487    /// Will panic if the 2nd row of `self` is not `(0, 0, 1)` when `glam_assert` is enabled.
488    #[inline]
489    #[must_use]
490    pub fn transform_vector2(&self, rhs: Vec2) -> Vec2 {
491        glam_assert!(self.row(2).abs_diff_eq(Vec3::Z, 1e-6));
492        Mat2::from_cols(self.x_axis.xy(), self.y_axis.xy()) * rhs
493    }
494
495    /// Transforms a 3D vector.
496    #[inline]
497    #[must_use]
498    pub fn mul_vec3(&self, rhs: Vec3) -> Vec3 {
499        let mut res = self.x_axis.mul(rhs.x);
500        res = res.add(self.y_axis.mul(rhs.y));
501        res = res.add(self.z_axis.mul(rhs.z));
502        res
503    }
504
505    /// Transforms a [`Vec3A`].
506    #[inline]
507    #[must_use]
508    pub fn mul_vec3a(&self, rhs: Vec3A) -> Vec3A {
509        self.mul_vec3(rhs.into()).into()
510    }
511
512    /// Multiplies two 3x3 matrices.
513    #[inline]
514    #[must_use]
515    pub fn mul_mat3(&self, rhs: &Self) -> Self {
516        Self::from_cols(
517            self.mul(rhs.x_axis),
518            self.mul(rhs.y_axis),
519            self.mul(rhs.z_axis),
520        )
521    }
522
523    /// Adds two 3x3 matrices.
524    #[inline]
525    #[must_use]
526    pub fn add_mat3(&self, rhs: &Self) -> Self {
527        Self::from_cols(
528            self.x_axis.add(rhs.x_axis),
529            self.y_axis.add(rhs.y_axis),
530            self.z_axis.add(rhs.z_axis),
531        )
532    }
533
534    /// Subtracts two 3x3 matrices.
535    #[inline]
536    #[must_use]
537    pub fn sub_mat3(&self, rhs: &Self) -> Self {
538        Self::from_cols(
539            self.x_axis.sub(rhs.x_axis),
540            self.y_axis.sub(rhs.y_axis),
541            self.z_axis.sub(rhs.z_axis),
542        )
543    }
544
545    /// Multiplies a 3x3 matrix by a scalar.
546    #[inline]
547    #[must_use]
548    pub fn mul_scalar(&self, rhs: f32) -> Self {
549        Self::from_cols(
550            self.x_axis.mul(rhs),
551            self.y_axis.mul(rhs),
552            self.z_axis.mul(rhs),
553        )
554    }
555
556    /// Returns true if the absolute difference of all elements between `self` and `rhs`
557    /// is less than or equal to `max_abs_diff`.
558    ///
559    /// This can be used to compare if two matrices contain similar elements. It works best
560    /// when comparing with a known value. The `max_abs_diff` that should be used used
561    /// depends on the values being compared against.
562    ///
563    /// For more see
564    /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
565    #[inline]
566    #[must_use]
567    pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f32) -> bool {
568        self.x_axis.abs_diff_eq(rhs.x_axis, max_abs_diff)
569            && self.y_axis.abs_diff_eq(rhs.y_axis, max_abs_diff)
570            && self.z_axis.abs_diff_eq(rhs.z_axis, max_abs_diff)
571    }
572
573    #[inline]
574    pub fn as_dmat3(&self) -> DMat3 {
575        DMat3::from_cols(
576            self.x_axis.as_dvec3(),
577            self.y_axis.as_dvec3(),
578            self.z_axis.as_dvec3(),
579        )
580    }
581}
582
583impl Default for Mat3 {
584    #[inline]
585    fn default() -> Self {
586        Self::IDENTITY
587    }
588}
589
590impl Add<Mat3> for Mat3 {
591    type Output = Self;
592    #[inline]
593    fn add(self, rhs: Self) -> Self::Output {
594        self.add_mat3(&rhs)
595    }
596}
597
598impl AddAssign<Mat3> for Mat3 {
599    #[inline]
600    fn add_assign(&mut self, rhs: Self) {
601        *self = self.add_mat3(&rhs);
602    }
603}
604
605impl Sub<Mat3> for Mat3 {
606    type Output = Self;
607    #[inline]
608    fn sub(self, rhs: Self) -> Self::Output {
609        self.sub_mat3(&rhs)
610    }
611}
612
613impl SubAssign<Mat3> for Mat3 {
614    #[inline]
615    fn sub_assign(&mut self, rhs: Self) {
616        *self = self.sub_mat3(&rhs);
617    }
618}
619
620impl Neg for Mat3 {
621    type Output = Self;
622    #[inline]
623    fn neg(self) -> Self::Output {
624        Self::from_cols(self.x_axis.neg(), self.y_axis.neg(), self.z_axis.neg())
625    }
626}
627
628impl Mul<Mat3> for Mat3 {
629    type Output = Self;
630    #[inline]
631    fn mul(self, rhs: Self) -> Self::Output {
632        self.mul_mat3(&rhs)
633    }
634}
635
636impl MulAssign<Mat3> for Mat3 {
637    #[inline]
638    fn mul_assign(&mut self, rhs: Self) {
639        *self = self.mul_mat3(&rhs);
640    }
641}
642
643impl Mul<Vec3> for Mat3 {
644    type Output = Vec3;
645    #[inline]
646    fn mul(self, rhs: Vec3) -> Self::Output {
647        self.mul_vec3(rhs)
648    }
649}
650
651impl Mul<Mat3> for f32 {
652    type Output = Mat3;
653    #[inline]
654    fn mul(self, rhs: Mat3) -> Self::Output {
655        rhs.mul_scalar(self)
656    }
657}
658
659impl Mul<f32> for Mat3 {
660    type Output = Self;
661    #[inline]
662    fn mul(self, rhs: f32) -> Self::Output {
663        self.mul_scalar(rhs)
664    }
665}
666
667impl MulAssign<f32> for Mat3 {
668    #[inline]
669    fn mul_assign(&mut self, rhs: f32) {
670        *self = self.mul_scalar(rhs);
671    }
672}
673
674impl Mul<Vec3A> for Mat3 {
675    type Output = Vec3A;
676    #[inline]
677    fn mul(self, rhs: Vec3A) -> Vec3A {
678        self.mul_vec3a(rhs)
679    }
680}
681
682impl From<Mat3A> for Mat3 {
683    #[inline]
684    fn from(m: Mat3A) -> Self {
685        Self {
686            x_axis: m.x_axis.into(),
687            y_axis: m.y_axis.into(),
688            z_axis: m.z_axis.into(),
689        }
690    }
691}
692
693impl Sum<Self> for Mat3 {
694    fn sum<I>(iter: I) -> Self
695    where
696        I: Iterator<Item = Self>,
697    {
698        iter.fold(Self::ZERO, Self::add)
699    }
700}
701
702impl<'a> Sum<&'a Self> for Mat3 {
703    fn sum<I>(iter: I) -> Self
704    where
705        I: Iterator<Item = &'a Self>,
706    {
707        iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
708    }
709}
710
711impl Product for Mat3 {
712    fn product<I>(iter: I) -> Self
713    where
714        I: Iterator<Item = Self>,
715    {
716        iter.fold(Self::IDENTITY, Self::mul)
717    }
718}
719
720impl<'a> Product<&'a Self> for Mat3 {
721    fn product<I>(iter: I) -> Self
722    where
723        I: Iterator<Item = &'a Self>,
724    {
725        iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b))
726    }
727}
728
729impl PartialEq for Mat3 {
730    #[inline]
731    fn eq(&self, rhs: &Self) -> bool {
732        self.x_axis.eq(&rhs.x_axis) && self.y_axis.eq(&rhs.y_axis) && self.z_axis.eq(&rhs.z_axis)
733    }
734}
735
736#[cfg(not(target_arch = "spirv"))]
737impl AsRef<[f32; 9]> for Mat3 {
738    #[inline]
739    fn as_ref(&self) -> &[f32; 9] {
740        unsafe { &*(self as *const Self as *const [f32; 9]) }
741    }
742}
743
744#[cfg(not(target_arch = "spirv"))]
745impl AsMut<[f32; 9]> for Mat3 {
746    #[inline]
747    fn as_mut(&mut self) -> &mut [f32; 9] {
748        unsafe { &mut *(self as *mut Self as *mut [f32; 9]) }
749    }
750}
751
752#[cfg(not(target_arch = "spirv"))]
753impl fmt::Debug for Mat3 {
754    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
755        fmt.debug_struct(stringify!(Mat3))
756            .field("x_axis", &self.x_axis)
757            .field("y_axis", &self.y_axis)
758            .field("z_axis", &self.z_axis)
759            .finish()
760    }
761}
762
763#[cfg(not(target_arch = "spirv"))]
764impl fmt::Display for Mat3 {
765    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
766        write!(f, "[{}, {}, {}]", self.x_axis, self.y_axis, self.z_axis)
767    }
768}