glam/f32/sse2/
mat3a.rs

1// Generated from mat.rs.tera template. Edit the template, not the generated file.
2
3use crate::{f32::math, swizzles::*, DMat3, EulerRot, Mat2, Mat3, Mat4, Quat, Vec2, Vec3, Vec3A};
4#[cfg(not(target_arch = "spirv"))]
5use core::fmt;
6use core::iter::{Product, Sum};
7use core::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
8
9#[cfg(target_arch = "x86")]
10use core::arch::x86::*;
11#[cfg(target_arch = "x86_64")]
12use core::arch::x86_64::*;
13
14/// Creates a 3x3 matrix from three column vectors.
15#[inline(always)]
16#[must_use]
17pub const fn mat3a(x_axis: Vec3A, y_axis: Vec3A, z_axis: Vec3A) -> Mat3A {
18    Mat3A::from_cols(x_axis, y_axis, z_axis)
19}
20
21/// A 3x3 column major matrix.
22///
23/// This 3x3 matrix type features convenience methods for creating and using linear and
24/// affine transformations. If you are primarily dealing with 2D affine transformations the
25/// [`Affine2`](crate::Affine2) type is much faster and more space efficient than
26/// using a 3x3 matrix.
27///
28/// Linear transformations including 3D rotation and scale can be created using methods
29/// such as [`Self::from_diagonal()`], [`Self::from_quat()`], [`Self::from_axis_angle()`],
30/// [`Self::from_rotation_x()`], [`Self::from_rotation_y()`], or
31/// [`Self::from_rotation_z()`].
32///
33/// The resulting matrices can be use to transform 3D vectors using regular vector
34/// multiplication.
35///
36/// Affine transformations including 2D translation, rotation and scale can be created
37/// using methods such as [`Self::from_translation()`], [`Self::from_angle()`],
38/// [`Self::from_scale()`] and [`Self::from_scale_angle_translation()`].
39///
40/// The [`Self::transform_point2()`] and [`Self::transform_vector2()`] convenience methods
41/// are provided for performing affine transforms on 2D vectors and points. These multiply
42/// 2D inputs as 3D vectors with an implicit `z` value of `1` for points and `0` for
43/// vectors respectively. These methods assume that `Self` contains a valid affine
44/// transform.
45#[derive(Clone, Copy)]
46#[repr(C)]
47pub struct Mat3A {
48    pub x_axis: Vec3A,
49    pub y_axis: Vec3A,
50    pub z_axis: Vec3A,
51}
52
53impl Mat3A {
54    /// A 3x3 matrix with all elements set to `0.0`.
55    pub const ZERO: Self = Self::from_cols(Vec3A::ZERO, Vec3A::ZERO, Vec3A::ZERO);
56
57    /// A 3x3 identity matrix, where all diagonal elements are `1`, and all off-diagonal elements are `0`.
58    pub const IDENTITY: Self = Self::from_cols(Vec3A::X, Vec3A::Y, Vec3A::Z);
59
60    /// All NAN:s.
61    pub const NAN: Self = Self::from_cols(Vec3A::NAN, Vec3A::NAN, Vec3A::NAN);
62
63    #[allow(clippy::too_many_arguments)]
64    #[inline(always)]
65    #[must_use]
66    const fn new(
67        m00: f32,
68        m01: f32,
69        m02: f32,
70        m10: f32,
71        m11: f32,
72        m12: f32,
73        m20: f32,
74        m21: f32,
75        m22: f32,
76    ) -> Self {
77        Self {
78            x_axis: Vec3A::new(m00, m01, m02),
79            y_axis: Vec3A::new(m10, m11, m12),
80            z_axis: Vec3A::new(m20, m21, m22),
81        }
82    }
83
84    /// Creates a 3x3 matrix from three column vectors.
85    #[inline(always)]
86    #[must_use]
87    pub const fn from_cols(x_axis: Vec3A, y_axis: Vec3A, z_axis: Vec3A) -> Self {
88        Self {
89            x_axis,
90            y_axis,
91            z_axis,
92        }
93    }
94
95    /// Creates a 3x3 matrix from a `[f32; 9]` array stored in column major order.
96    /// If your data is stored in row major you will need to `transpose` the returned
97    /// matrix.
98    #[inline]
99    #[must_use]
100    pub const fn from_cols_array(m: &[f32; 9]) -> Self {
101        Self::new(m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8])
102    }
103
104    /// Creates a `[f32; 9]` array storing data in column major order.
105    /// If you require data in row major order `transpose` the matrix first.
106    #[inline]
107    #[must_use]
108    pub const fn to_cols_array(&self) -> [f32; 9] {
109        let [x_axis_x, x_axis_y, x_axis_z] = self.x_axis.to_array();
110        let [y_axis_x, y_axis_y, y_axis_z] = self.y_axis.to_array();
111        let [z_axis_x, z_axis_y, z_axis_z] = self.z_axis.to_array();
112
113        [
114            x_axis_x, x_axis_y, x_axis_z, y_axis_x, y_axis_y, y_axis_z, z_axis_x, z_axis_y,
115            z_axis_z,
116        ]
117    }
118
119    /// Creates a 3x3 matrix from a `[[f32; 3]; 3]` 3D array stored in column major order.
120    /// If your data is in row major order you will need to `transpose` the returned
121    /// matrix.
122    #[inline]
123    #[must_use]
124    pub const fn from_cols_array_2d(m: &[[f32; 3]; 3]) -> Self {
125        Self::from_cols(
126            Vec3A::from_array(m[0]),
127            Vec3A::from_array(m[1]),
128            Vec3A::from_array(m[2]),
129        )
130    }
131
132    /// Creates a `[[f32; 3]; 3]` 3D array storing data in column major order.
133    /// If you require data in row major order `transpose` the matrix first.
134    #[inline]
135    #[must_use]
136    pub const fn to_cols_array_2d(&self) -> [[f32; 3]; 3] {
137        [
138            self.x_axis.to_array(),
139            self.y_axis.to_array(),
140            self.z_axis.to_array(),
141        ]
142    }
143
144    /// Creates a 3x3 matrix with its diagonal set to `diagonal` and all other entries set to 0.
145    #[doc(alias = "scale")]
146    #[inline]
147    #[must_use]
148    pub const fn from_diagonal(diagonal: Vec3) -> Self {
149        Self::new(
150            diagonal.x, 0.0, 0.0, 0.0, diagonal.y, 0.0, 0.0, 0.0, diagonal.z,
151        )
152    }
153
154    /// Creates a 3x3 matrix from a 4x4 matrix, discarding the 4th row and column.
155    #[inline]
156    #[must_use]
157    pub fn from_mat4(m: Mat4) -> Self {
158        Self::from_cols(m.x_axis.into(), m.y_axis.into(), m.z_axis.into())
159    }
160
161    /// Creates a 3D rotation matrix from the given quaternion.
162    ///
163    /// # Panics
164    ///
165    /// Will panic if `rotation` is not normalized when `glam_assert` is enabled.
166    #[inline]
167    #[must_use]
168    pub fn from_quat(rotation: Quat) -> Self {
169        glam_assert!(rotation.is_normalized());
170
171        let x2 = rotation.x + rotation.x;
172        let y2 = rotation.y + rotation.y;
173        let z2 = rotation.z + rotation.z;
174        let xx = rotation.x * x2;
175        let xy = rotation.x * y2;
176        let xz = rotation.x * z2;
177        let yy = rotation.y * y2;
178        let yz = rotation.y * z2;
179        let zz = rotation.z * z2;
180        let wx = rotation.w * x2;
181        let wy = rotation.w * y2;
182        let wz = rotation.w * z2;
183
184        Self::from_cols(
185            Vec3A::new(1.0 - (yy + zz), xy + wz, xz - wy),
186            Vec3A::new(xy - wz, 1.0 - (xx + zz), yz + wx),
187            Vec3A::new(xz + wy, yz - wx, 1.0 - (xx + yy)),
188        )
189    }
190
191    /// Creates a 3D rotation matrix from a normalized rotation `axis` and `angle` (in
192    /// radians).
193    ///
194    /// # Panics
195    ///
196    /// Will panic if `axis` is not normalized when `glam_assert` is enabled.
197    #[inline]
198    #[must_use]
199    pub fn from_axis_angle(axis: Vec3, angle: f32) -> Self {
200        glam_assert!(axis.is_normalized());
201
202        let (sin, cos) = math::sin_cos(angle);
203        let (xsin, ysin, zsin) = axis.mul(sin).into();
204        let (x, y, z) = axis.into();
205        let (x2, y2, z2) = axis.mul(axis).into();
206        let omc = 1.0 - cos;
207        let xyomc = x * y * omc;
208        let xzomc = x * z * omc;
209        let yzomc = y * z * omc;
210        Self::from_cols(
211            Vec3A::new(x2 * omc + cos, xyomc + zsin, xzomc - ysin),
212            Vec3A::new(xyomc - zsin, y2 * omc + cos, yzomc + xsin),
213            Vec3A::new(xzomc + ysin, yzomc - xsin, z2 * omc + cos),
214        )
215    }
216
217    /// Creates a 3D rotation matrix from the given euler rotation sequence and the angles (in
218    /// radians).
219    #[inline]
220    #[must_use]
221    pub fn from_euler(order: EulerRot, a: f32, b: f32, c: f32) -> Self {
222        let quat = Quat::from_euler(order, a, b, c);
223        Self::from_quat(quat)
224    }
225
226    /// Creates a 3D rotation matrix from `angle` (in radians) around the x axis.
227    #[inline]
228    #[must_use]
229    pub fn from_rotation_x(angle: f32) -> Self {
230        let (sina, cosa) = math::sin_cos(angle);
231        Self::from_cols(
232            Vec3A::X,
233            Vec3A::new(0.0, cosa, sina),
234            Vec3A::new(0.0, -sina, cosa),
235        )
236    }
237
238    /// Creates a 3D rotation matrix from `angle` (in radians) around the y axis.
239    #[inline]
240    #[must_use]
241    pub fn from_rotation_y(angle: f32) -> Self {
242        let (sina, cosa) = math::sin_cos(angle);
243        Self::from_cols(
244            Vec3A::new(cosa, 0.0, -sina),
245            Vec3A::Y,
246            Vec3A::new(sina, 0.0, cosa),
247        )
248    }
249
250    /// Creates a 3D rotation matrix from `angle` (in radians) around the z axis.
251    #[inline]
252    #[must_use]
253    pub fn from_rotation_z(angle: f32) -> Self {
254        let (sina, cosa) = math::sin_cos(angle);
255        Self::from_cols(
256            Vec3A::new(cosa, sina, 0.0),
257            Vec3A::new(-sina, cosa, 0.0),
258            Vec3A::Z,
259        )
260    }
261
262    /// Creates an affine transformation matrix from the given 2D `translation`.
263    ///
264    /// The resulting matrix can be used to transform 2D points and vectors. See
265    /// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
266    #[inline]
267    #[must_use]
268    pub fn from_translation(translation: Vec2) -> Self {
269        Self::from_cols(
270            Vec3A::X,
271            Vec3A::Y,
272            Vec3A::new(translation.x, translation.y, 1.0),
273        )
274    }
275
276    /// Creates an affine transformation matrix from the given 2D rotation `angle` (in
277    /// radians).
278    ///
279    /// The resulting matrix can be used to transform 2D points and vectors. See
280    /// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
281    #[inline]
282    #[must_use]
283    pub fn from_angle(angle: f32) -> Self {
284        let (sin, cos) = math::sin_cos(angle);
285        Self::from_cols(
286            Vec3A::new(cos, sin, 0.0),
287            Vec3A::new(-sin, cos, 0.0),
288            Vec3A::Z,
289        )
290    }
291
292    /// Creates an affine transformation matrix from the given 2D `scale`, rotation `angle` (in
293    /// radians) and `translation`.
294    ///
295    /// The resulting matrix can be used to transform 2D points and vectors. See
296    /// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
297    #[inline]
298    #[must_use]
299    pub fn from_scale_angle_translation(scale: Vec2, angle: f32, translation: Vec2) -> Self {
300        let (sin, cos) = math::sin_cos(angle);
301        Self::from_cols(
302            Vec3A::new(cos * scale.x, sin * scale.x, 0.0),
303            Vec3A::new(-sin * scale.y, cos * scale.y, 0.0),
304            Vec3A::new(translation.x, translation.y, 1.0),
305        )
306    }
307
308    /// Creates an affine transformation matrix from the given non-uniform 2D `scale`.
309    ///
310    /// The resulting matrix can be used to transform 2D points and vectors. See
311    /// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
312    ///
313    /// # Panics
314    ///
315    /// Will panic if all elements of `scale` are zero when `glam_assert` is enabled.
316    #[inline]
317    #[must_use]
318    pub fn from_scale(scale: Vec2) -> Self {
319        // Do not panic as long as any component is non-zero
320        glam_assert!(scale.cmpne(Vec2::ZERO).any());
321
322        Self::from_cols(
323            Vec3A::new(scale.x, 0.0, 0.0),
324            Vec3A::new(0.0, scale.y, 0.0),
325            Vec3A::Z,
326        )
327    }
328
329    /// Creates an affine transformation matrix from the given 2x2 matrix.
330    ///
331    /// The resulting matrix can be used to transform 2D points and vectors. See
332    /// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
333    #[inline]
334    pub fn from_mat2(m: Mat2) -> Self {
335        Self::from_cols((m.x_axis, 0.0).into(), (m.y_axis, 0.0).into(), Vec3A::Z)
336    }
337
338    /// Creates a 3x3 matrix from the first 9 values in `slice`.
339    ///
340    /// # Panics
341    ///
342    /// Panics if `slice` is less than 9 elements long.
343    #[inline]
344    #[must_use]
345    pub const fn from_cols_slice(slice: &[f32]) -> Self {
346        Self::new(
347            slice[0], slice[1], slice[2], slice[3], slice[4], slice[5], slice[6], slice[7],
348            slice[8],
349        )
350    }
351
352    /// Writes the columns of `self` to the first 9 elements in `slice`.
353    ///
354    /// # Panics
355    ///
356    /// Panics if `slice` is less than 9 elements long.
357    #[inline]
358    pub fn write_cols_to_slice(self, slice: &mut [f32]) {
359        slice[0] = self.x_axis.x;
360        slice[1] = self.x_axis.y;
361        slice[2] = self.x_axis.z;
362        slice[3] = self.y_axis.x;
363        slice[4] = self.y_axis.y;
364        slice[5] = self.y_axis.z;
365        slice[6] = self.z_axis.x;
366        slice[7] = self.z_axis.y;
367        slice[8] = self.z_axis.z;
368    }
369
370    /// Returns the matrix column for the given `index`.
371    ///
372    /// # Panics
373    ///
374    /// Panics if `index` is greater than 2.
375    #[inline]
376    #[must_use]
377    pub fn col(&self, index: usize) -> Vec3A {
378        match index {
379            0 => self.x_axis,
380            1 => self.y_axis,
381            2 => self.z_axis,
382            _ => panic!("index out of bounds"),
383        }
384    }
385
386    /// Returns a mutable reference to the matrix column for the given `index`.
387    ///
388    /// # Panics
389    ///
390    /// Panics if `index` is greater than 2.
391    #[inline]
392    pub fn col_mut(&mut self, index: usize) -> &mut Vec3A {
393        match index {
394            0 => &mut self.x_axis,
395            1 => &mut self.y_axis,
396            2 => &mut self.z_axis,
397            _ => panic!("index out of bounds"),
398        }
399    }
400
401    /// Returns the matrix row for the given `index`.
402    ///
403    /// # Panics
404    ///
405    /// Panics if `index` is greater than 2.
406    #[inline]
407    #[must_use]
408    pub fn row(&self, index: usize) -> Vec3A {
409        match index {
410            0 => Vec3A::new(self.x_axis.x, self.y_axis.x, self.z_axis.x),
411            1 => Vec3A::new(self.x_axis.y, self.y_axis.y, self.z_axis.y),
412            2 => Vec3A::new(self.x_axis.z, self.y_axis.z, self.z_axis.z),
413            _ => panic!("index out of bounds"),
414        }
415    }
416
417    /// Returns `true` if, and only if, all elements are finite.
418    /// If any element is either `NaN`, positive or negative infinity, this will return `false`.
419    #[inline]
420    #[must_use]
421    pub fn is_finite(&self) -> bool {
422        self.x_axis.is_finite() && self.y_axis.is_finite() && self.z_axis.is_finite()
423    }
424
425    /// Returns `true` if any elements are `NaN`.
426    #[inline]
427    #[must_use]
428    pub fn is_nan(&self) -> bool {
429        self.x_axis.is_nan() || self.y_axis.is_nan() || self.z_axis.is_nan()
430    }
431
432    /// Returns the transpose of `self`.
433    #[inline]
434    #[must_use]
435    pub fn transpose(&self) -> Self {
436        unsafe {
437            let tmp0 = _mm_shuffle_ps(self.x_axis.0, self.y_axis.0, 0b01_00_01_00);
438            let tmp1 = _mm_shuffle_ps(self.x_axis.0, self.y_axis.0, 0b11_10_11_10);
439
440            Self {
441                x_axis: Vec3A(_mm_shuffle_ps(tmp0, self.z_axis.0, 0b00_00_10_00)),
442                y_axis: Vec3A(_mm_shuffle_ps(tmp0, self.z_axis.0, 0b01_01_11_01)),
443                z_axis: Vec3A(_mm_shuffle_ps(tmp1, self.z_axis.0, 0b10_10_10_00)),
444            }
445        }
446    }
447
448    /// Returns the determinant of `self`.
449    #[inline]
450    #[must_use]
451    pub fn determinant(&self) -> f32 {
452        self.z_axis.dot(self.x_axis.cross(self.y_axis))
453    }
454
455    /// Returns the inverse of `self`.
456    ///
457    /// If the matrix is not invertible the returned matrix will be invalid.
458    ///
459    /// # Panics
460    ///
461    /// Will panic if the determinant of `self` is zero when `glam_assert` is enabled.
462    #[inline]
463    #[must_use]
464    pub fn inverse(&self) -> Self {
465        let tmp0 = self.y_axis.cross(self.z_axis);
466        let tmp1 = self.z_axis.cross(self.x_axis);
467        let tmp2 = self.x_axis.cross(self.y_axis);
468        let det = self.z_axis.dot(tmp2);
469        glam_assert!(det != 0.0);
470        let inv_det = Vec3A::splat(det.recip());
471        Self::from_cols(tmp0.mul(inv_det), tmp1.mul(inv_det), tmp2.mul(inv_det)).transpose()
472    }
473
474    /// Transforms the given 2D vector as a point.
475    ///
476    /// This is the equivalent of multiplying `rhs` as a 3D vector where `z` is `1`.
477    ///
478    /// This method assumes that `self` contains a valid affine transform.
479    ///
480    /// # Panics
481    ///
482    /// Will panic if the 2nd row of `self` is not `(0, 0, 1)` when `glam_assert` is enabled.
483    #[inline]
484    #[must_use]
485    pub fn transform_point2(&self, rhs: Vec2) -> Vec2 {
486        glam_assert!(self.row(2).abs_diff_eq(Vec3A::Z, 1e-6));
487        Mat2::from_cols(self.x_axis.xy(), self.y_axis.xy()) * rhs + self.z_axis.xy()
488    }
489
490    /// Rotates the given 2D vector.
491    ///
492    /// This is the equivalent of multiplying `rhs` as a 3D vector where `z` is `0`.
493    ///
494    /// This method assumes that `self` contains a valid affine transform.
495    ///
496    /// # Panics
497    ///
498    /// Will panic if the 2nd row of `self` is not `(0, 0, 1)` when `glam_assert` is enabled.
499    #[inline]
500    #[must_use]
501    pub fn transform_vector2(&self, rhs: Vec2) -> Vec2 {
502        glam_assert!(self.row(2).abs_diff_eq(Vec3A::Z, 1e-6));
503        Mat2::from_cols(self.x_axis.xy(), self.y_axis.xy()) * rhs
504    }
505
506    /// Transforms a 3D vector.
507    #[inline]
508    #[must_use]
509    pub fn mul_vec3(&self, rhs: Vec3) -> Vec3 {
510        self.mul_vec3a(rhs.into()).into()
511    }
512
513    /// Transforms a [`Vec3A`].
514    #[inline]
515    #[must_use]
516    pub fn mul_vec3a(&self, rhs: Vec3A) -> Vec3A {
517        let mut res = self.x_axis.mul(rhs.xxx());
518        res = res.add(self.y_axis.mul(rhs.yyy()));
519        res = res.add(self.z_axis.mul(rhs.zzz()));
520        res
521    }
522
523    /// Multiplies two 3x3 matrices.
524    #[inline]
525    #[must_use]
526    pub fn mul_mat3(&self, rhs: &Self) -> Self {
527        Self::from_cols(
528            self.mul(rhs.x_axis),
529            self.mul(rhs.y_axis),
530            self.mul(rhs.z_axis),
531        )
532    }
533
534    /// Adds two 3x3 matrices.
535    #[inline]
536    #[must_use]
537    pub fn add_mat3(&self, rhs: &Self) -> Self {
538        Self::from_cols(
539            self.x_axis.add(rhs.x_axis),
540            self.y_axis.add(rhs.y_axis),
541            self.z_axis.add(rhs.z_axis),
542        )
543    }
544
545    /// Subtracts two 3x3 matrices.
546    #[inline]
547    #[must_use]
548    pub fn sub_mat3(&self, rhs: &Self) -> Self {
549        Self::from_cols(
550            self.x_axis.sub(rhs.x_axis),
551            self.y_axis.sub(rhs.y_axis),
552            self.z_axis.sub(rhs.z_axis),
553        )
554    }
555
556    /// Multiplies a 3x3 matrix by a scalar.
557    #[inline]
558    #[must_use]
559    pub fn mul_scalar(&self, rhs: f32) -> Self {
560        Self::from_cols(
561            self.x_axis.mul(rhs),
562            self.y_axis.mul(rhs),
563            self.z_axis.mul(rhs),
564        )
565    }
566
567    /// Returns true if the absolute difference of all elements between `self` and `rhs`
568    /// is less than or equal to `max_abs_diff`.
569    ///
570    /// This can be used to compare if two matrices contain similar elements. It works best
571    /// when comparing with a known value. The `max_abs_diff` that should be used used
572    /// depends on the values being compared against.
573    ///
574    /// For more see
575    /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
576    #[inline]
577    #[must_use]
578    pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f32) -> bool {
579        self.x_axis.abs_diff_eq(rhs.x_axis, max_abs_diff)
580            && self.y_axis.abs_diff_eq(rhs.y_axis, max_abs_diff)
581            && self.z_axis.abs_diff_eq(rhs.z_axis, max_abs_diff)
582    }
583
584    #[inline]
585    pub fn as_dmat3(&self) -> DMat3 {
586        DMat3::from_cols(
587            self.x_axis.as_dvec3(),
588            self.y_axis.as_dvec3(),
589            self.z_axis.as_dvec3(),
590        )
591    }
592}
593
594impl Default for Mat3A {
595    #[inline]
596    fn default() -> Self {
597        Self::IDENTITY
598    }
599}
600
601impl Add<Mat3A> for Mat3A {
602    type Output = Self;
603    #[inline]
604    fn add(self, rhs: Self) -> Self::Output {
605        self.add_mat3(&rhs)
606    }
607}
608
609impl AddAssign<Mat3A> for Mat3A {
610    #[inline]
611    fn add_assign(&mut self, rhs: Self) {
612        *self = self.add_mat3(&rhs);
613    }
614}
615
616impl Sub<Mat3A> for Mat3A {
617    type Output = Self;
618    #[inline]
619    fn sub(self, rhs: Self) -> Self::Output {
620        self.sub_mat3(&rhs)
621    }
622}
623
624impl SubAssign<Mat3A> for Mat3A {
625    #[inline]
626    fn sub_assign(&mut self, rhs: Self) {
627        *self = self.sub_mat3(&rhs);
628    }
629}
630
631impl Neg for Mat3A {
632    type Output = Self;
633    #[inline]
634    fn neg(self) -> Self::Output {
635        Self::from_cols(self.x_axis.neg(), self.y_axis.neg(), self.z_axis.neg())
636    }
637}
638
639impl Mul<Mat3A> for Mat3A {
640    type Output = Self;
641    #[inline]
642    fn mul(self, rhs: Self) -> Self::Output {
643        self.mul_mat3(&rhs)
644    }
645}
646
647impl MulAssign<Mat3A> for Mat3A {
648    #[inline]
649    fn mul_assign(&mut self, rhs: Self) {
650        *self = self.mul_mat3(&rhs);
651    }
652}
653
654impl Mul<Vec3A> for Mat3A {
655    type Output = Vec3A;
656    #[inline]
657    fn mul(self, rhs: Vec3A) -> Self::Output {
658        self.mul_vec3a(rhs)
659    }
660}
661
662impl Mul<Mat3A> for f32 {
663    type Output = Mat3A;
664    #[inline]
665    fn mul(self, rhs: Mat3A) -> Self::Output {
666        rhs.mul_scalar(self)
667    }
668}
669
670impl Mul<f32> for Mat3A {
671    type Output = Self;
672    #[inline]
673    fn mul(self, rhs: f32) -> Self::Output {
674        self.mul_scalar(rhs)
675    }
676}
677
678impl MulAssign<f32> for Mat3A {
679    #[inline]
680    fn mul_assign(&mut self, rhs: f32) {
681        *self = self.mul_scalar(rhs);
682    }
683}
684
685impl Mul<Vec3> for Mat3A {
686    type Output = Vec3;
687    #[inline]
688    fn mul(self, rhs: Vec3) -> Vec3 {
689        self.mul_vec3a(rhs.into()).into()
690    }
691}
692
693impl From<Mat3> for Mat3A {
694    #[inline]
695    fn from(m: Mat3) -> Self {
696        Self {
697            x_axis: m.x_axis.into(),
698            y_axis: m.y_axis.into(),
699            z_axis: m.z_axis.into(),
700        }
701    }
702}
703
704impl Sum<Self> for Mat3A {
705    fn sum<I>(iter: I) -> Self
706    where
707        I: Iterator<Item = Self>,
708    {
709        iter.fold(Self::ZERO, Self::add)
710    }
711}
712
713impl<'a> Sum<&'a Self> for Mat3A {
714    fn sum<I>(iter: I) -> Self
715    where
716        I: Iterator<Item = &'a Self>,
717    {
718        iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
719    }
720}
721
722impl Product for Mat3A {
723    fn product<I>(iter: I) -> Self
724    where
725        I: Iterator<Item = Self>,
726    {
727        iter.fold(Self::IDENTITY, Self::mul)
728    }
729}
730
731impl<'a> Product<&'a Self> for Mat3A {
732    fn product<I>(iter: I) -> Self
733    where
734        I: Iterator<Item = &'a Self>,
735    {
736        iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b))
737    }
738}
739
740impl PartialEq for Mat3A {
741    #[inline]
742    fn eq(&self, rhs: &Self) -> bool {
743        self.x_axis.eq(&rhs.x_axis) && self.y_axis.eq(&rhs.y_axis) && self.z_axis.eq(&rhs.z_axis)
744    }
745}
746
747#[cfg(not(target_arch = "spirv"))]
748impl fmt::Debug for Mat3A {
749    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
750        fmt.debug_struct(stringify!(Mat3A))
751            .field("x_axis", &self.x_axis)
752            .field("y_axis", &self.y_axis)
753            .field("z_axis", &self.z_axis)
754            .finish()
755    }
756}
757
758#[cfg(not(target_arch = "spirv"))]
759impl fmt::Display for Mat3A {
760    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
761        write!(f, "[{}, {}, {}]", self.x_axis, self.y_axis, self.z_axis)
762    }
763}