1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
mod cache;

pub use cache::Cache;

use crate::core::{Point, Rectangle, Size, Vector};
use crate::graphics::geometry::{Fill, Path, Stroke, Text};
use crate::Renderer;

pub enum Frame {
    TinySkia(iced_tiny_skia::geometry::Frame),
    #[cfg(feature = "wgpu")]
    Wgpu(iced_wgpu::geometry::Frame),
}

pub enum Geometry {
    TinySkia(iced_tiny_skia::Primitive),
    #[cfg(feature = "wgpu")]
    Wgpu(iced_wgpu::Primitive),
}

macro_rules! delegate {
    ($frame:expr, $name:ident, $body:expr) => {
        match $frame {
            Self::TinySkia($name) => $body,
            #[cfg(feature = "wgpu")]
            Self::Wgpu($name) => $body,
        }
    };
}

impl Frame {
    pub fn new(renderer: &Renderer, size: Size) -> Self {
        match renderer {
            Renderer::TinySkia(_) => {
                Frame::TinySkia(iced_tiny_skia::geometry::Frame::new(size))
            }
            #[cfg(feature = "wgpu")]
            Renderer::Wgpu(_) => {
                Frame::Wgpu(iced_wgpu::geometry::Frame::new(size))
            }
        }
    }

    /// Returns the width of the [`Frame`].
    #[inline]
    pub fn width(&self) -> f32 {
        delegate!(self, frame, frame.width())
    }

    /// Returns the height of the [`Frame`].
    #[inline]
    pub fn height(&self) -> f32 {
        delegate!(self, frame, frame.height())
    }

    /// Returns the dimensions of the [`Frame`].
    #[inline]
    pub fn size(&self) -> Size {
        delegate!(self, frame, frame.size())
    }

    /// Returns the coordinate of the center of the [`Frame`].
    #[inline]
    pub fn center(&self) -> Point {
        delegate!(self, frame, frame.center())
    }

    /// Draws the given [`Path`] on the [`Frame`] by filling it with the
    /// provided style.
    pub fn fill(&mut self, path: &Path, fill: impl Into<Fill>) {
        delegate!(self, frame, frame.fill(path, fill));
    }

    /// Draws an axis-aligned rectangle given its top-left corner coordinate and
    /// its `Size` on the [`Frame`] by filling it with the provided style.
    pub fn fill_rectangle(
        &mut self,
        top_left: Point,
        size: Size,
        fill: impl Into<Fill>,
    ) {
        delegate!(self, frame, frame.fill_rectangle(top_left, size, fill));
    }

    /// Draws the stroke of the given [`Path`] on the [`Frame`] with the
    /// provided style.
    pub fn stroke<'a>(&mut self, path: &Path, stroke: impl Into<Stroke<'a>>) {
        delegate!(self, frame, frame.stroke(path, stroke));
    }

    /// Draws the characters of the given [`Text`] on the [`Frame`], filling
    /// them with the given color.
    ///
    /// __Warning:__ Text currently does not work well with rotations and scale
    /// transforms! The position will be correctly transformed, but the
    /// resulting glyphs will not be rotated or scaled properly.
    ///
    /// Additionally, all text will be rendered on top of all the layers of
    /// a `Canvas`. Therefore, it is currently only meant to be used for
    /// overlays, which is the most common use case.
    ///
    /// Support for vectorial text is planned, and should address all these
    /// limitations.
    pub fn fill_text(&mut self, text: impl Into<Text>) {
        delegate!(self, frame, frame.fill_text(text));
    }

    /// Stores the current transform of the [`Frame`] and executes the given
    /// drawing operations, restoring the transform afterwards.
    ///
    /// This method is useful to compose transforms and perform drawing
    /// operations in different coordinate systems.
    #[inline]
    pub fn with_save(&mut self, f: impl FnOnce(&mut Frame)) {
        delegate!(self, frame, frame.push_transform());

        f(self);

        delegate!(self, frame, frame.pop_transform());
    }

    /// Executes the given drawing operations within a [`Rectangle`] region,
    /// clipping any geometry that overflows its bounds. Any transformations
    /// performed are local to the provided closure.
    ///
    /// This method is useful to perform drawing operations that need to be
    /// clipped.
    #[inline]
    pub fn with_clip(&mut self, region: Rectangle, f: impl FnOnce(&mut Frame)) {
        let mut frame = match self {
            Self::TinySkia(_) => Self::TinySkia(
                iced_tiny_skia::geometry::Frame::new(region.size()),
            ),
            #[cfg(feature = "wgpu")]
            Self::Wgpu(_) => {
                Self::Wgpu(iced_wgpu::geometry::Frame::new(region.size()))
            }
        };

        f(&mut frame);

        let origin = Point::new(region.x, region.y);

        match (self, frame) {
            (Self::TinySkia(target), Self::TinySkia(frame)) => {
                target.clip(frame, origin);
            }
            #[cfg(feature = "wgpu")]
            (Self::Wgpu(target), Self::Wgpu(frame)) => {
                target.clip(frame, origin);
            }
            #[allow(unreachable_patterns)]
            _ => unreachable!(),
        };
    }

    /// Applies a translation to the current transform of the [`Frame`].
    #[inline]
    pub fn translate(&mut self, translation: Vector) {
        delegate!(self, frame, frame.translate(translation));
    }

    /// Applies a rotation in radians to the current transform of the [`Frame`].
    #[inline]
    pub fn rotate(&mut self, angle: f32) {
        delegate!(self, frame, frame.rotate(angle));
    }

    /// Applies a uniform scaling to the current transform of the [`Frame`].
    #[inline]
    pub fn scale(&mut self, scale: impl Into<f32>) {
        delegate!(self, frame, frame.scale(scale));
    }

    /// Applies a non-uniform scaling to the current transform of the [`Frame`].
    #[inline]
    pub fn scale_nonuniform(&mut self, scale: impl Into<Vector>) {
        delegate!(self, frame, frame.scale_nonuniform(scale));
    }

    pub fn into_geometry(self) -> Geometry {
        match self {
            Self::TinySkia(frame) => Geometry::TinySkia(frame.into_primitive()),
            #[cfg(feature = "wgpu")]
            Self::Wgpu(frame) => Geometry::Wgpu(frame.into_primitive()),
        }
    }
}