image/codecs/dxt.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
//! Decoding of DXT (S3TC) compression
//!
//! DXT is an image format that supports lossy compression
//!
//! # Related Links
//! * <https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_s3tc.txt> - Description of the DXT compression OpenGL extensions.
//!
//! Note: this module only implements bare DXT encoding/decoding, it does not parse formats that can contain DXT files like .dds
use std::io::{self, Read, Seek, SeekFrom, Write};
use crate::color::ColorType;
use crate::error::{ImageError, ImageResult, ParameterError, ParameterErrorKind};
use crate::image::{self, ImageDecoder, ImageDecoderRect, ImageReadBuffer, Progress};
/// What version of DXT compression are we using?
/// Note that DXT2 and DXT4 are left away as they're
/// just DXT3 and DXT5 with premultiplied alpha
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum DxtVariant {
/// The DXT1 format. 48 bytes of RGB data in a 4x4 pixel square is
/// compressed into an 8 byte block of DXT1 data
DXT1,
/// The DXT3 format. 64 bytes of RGBA data in a 4x4 pixel square is
/// compressed into a 16 byte block of DXT3 data
DXT3,
/// The DXT5 format. 64 bytes of RGBA data in a 4x4 pixel square is
/// compressed into a 16 byte block of DXT5 data
DXT5,
}
impl DxtVariant {
/// Returns the amount of bytes of raw image data
/// that is encoded in a single DXTn block
fn decoded_bytes_per_block(self) -> usize {
match self {
DxtVariant::DXT1 => 48,
DxtVariant::DXT3 | DxtVariant::DXT5 => 64,
}
}
/// Returns the amount of bytes per block of encoded DXTn data
fn encoded_bytes_per_block(self) -> usize {
match self {
DxtVariant::DXT1 => 8,
DxtVariant::DXT3 | DxtVariant::DXT5 => 16,
}
}
/// Returns the color type that is stored in this DXT variant
pub fn color_type(self) -> ColorType {
match self {
DxtVariant::DXT1 => ColorType::Rgb8,
DxtVariant::DXT3 | DxtVariant::DXT5 => ColorType::Rgba8,
}
}
}
/// DXT decoder
pub struct DxtDecoder<R: Read> {
inner: R,
width_blocks: u32,
height_blocks: u32,
variant: DxtVariant,
row: u32,
}
impl<R: Read> DxtDecoder<R> {
/// Create a new DXT decoder that decodes from the stream ```r```.
/// As DXT is often stored as raw buffers with the width/height
/// somewhere else the width and height of the image need
/// to be passed in ```width``` and ```height```, as well as the
/// DXT variant in ```variant```.
/// width and height are required to be powers of 2 and at least 4.
/// otherwise an error will be returned
pub fn new(
r: R,
width: u32,
height: u32,
variant: DxtVariant,
) -> Result<DxtDecoder<R>, ImageError> {
if width % 4 != 0 || height % 4 != 0 {
// TODO: this is actually a bit of a weird case. We could return `DecodingError` but
// it's not really the format that is wrong However, the encoder should surely return
// `EncodingError` so it would be the logical choice for symmetry.
return Err(ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::DimensionMismatch,
)));
}
let width_blocks = width / 4;
let height_blocks = height / 4;
Ok(DxtDecoder {
inner: r,
width_blocks,
height_blocks,
variant,
row: 0,
})
}
fn read_scanline(&mut self, buf: &mut [u8]) -> io::Result<usize> {
assert_eq!(
u64::try_from(buf.len()),
Ok(
#[allow(deprecated)]
self.scanline_bytes()
)
);
let mut src =
vec![0u8; self.variant.encoded_bytes_per_block() * self.width_blocks as usize];
self.inner.read_exact(&mut src)?;
match self.variant {
DxtVariant::DXT1 => decode_dxt1_row(&src, buf),
DxtVariant::DXT3 => decode_dxt3_row(&src, buf),
DxtVariant::DXT5 => decode_dxt5_row(&src, buf),
}
self.row += 1;
Ok(buf.len())
}
}
// Note that, due to the way that DXT compression works, a scanline is considered to consist out of
// 4 lines of pixels.
impl<'a, R: 'a + Read> ImageDecoder<'a> for DxtDecoder<R> {
type Reader = DxtReader<R>;
fn dimensions(&self) -> (u32, u32) {
(self.width_blocks * 4, self.height_blocks * 4)
}
fn color_type(&self) -> ColorType {
self.variant.color_type()
}
fn scanline_bytes(&self) -> u64 {
self.variant.decoded_bytes_per_block() as u64 * u64::from(self.width_blocks)
}
fn into_reader(self) -> ImageResult<Self::Reader> {
Ok(DxtReader {
buffer: ImageReadBuffer::new(
#[allow(deprecated)]
self.scanline_bytes(),
self.total_bytes(),
),
decoder: self,
})
}
fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
#[allow(deprecated)]
for chunk in buf.chunks_mut(self.scanline_bytes().max(1) as usize) {
self.read_scanline(chunk)?;
}
Ok(())
}
}
impl<'a, R: 'a + Read + Seek> ImageDecoderRect<'a> for DxtDecoder<R> {
fn read_rect_with_progress<F: Fn(Progress)>(
&mut self,
x: u32,
y: u32,
width: u32,
height: u32,
buf: &mut [u8],
progress_callback: F,
) -> ImageResult<()> {
let encoded_scanline_bytes =
self.variant.encoded_bytes_per_block() as u64 * u64::from(self.width_blocks);
let start = self.inner.stream_position()?;
image::load_rect(
x,
y,
width,
height,
buf,
progress_callback,
self,
|s, scanline| {
s.inner
.seek(SeekFrom::Start(start + scanline * encoded_scanline_bytes))?;
Ok(())
},
|s, buf| s.read_scanline(buf).map(|_| ()),
)?;
self.inner.seek(SeekFrom::Start(start))?;
Ok(())
}
}
/// DXT reader
pub struct DxtReader<R: Read> {
buffer: ImageReadBuffer,
decoder: DxtDecoder<R>,
}
impl<R: Read> Read for DxtReader<R> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let decoder = &mut self.decoder;
self.buffer.read(buf, |buf| decoder.read_scanline(buf))
}
}
/// DXT encoder
pub struct DxtEncoder<W: Write> {
w: W,
}
impl<W: Write> DxtEncoder<W> {
/// Create a new encoder that writes its output to ```w```
pub fn new(w: W) -> DxtEncoder<W> {
DxtEncoder { w }
}
/// Encodes the image data ```data```
/// that has dimensions ```width``` and ```height```
/// in ```DxtVariant``` ```variant```
/// data is assumed to be in variant.color_type()
pub fn encode(
mut self,
data: &[u8],
width: u32,
height: u32,
variant: DxtVariant,
) -> ImageResult<()> {
if width % 4 != 0 || height % 4 != 0 {
// TODO: this is not very idiomatic yet. Should return an EncodingError.
return Err(ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::DimensionMismatch,
)));
}
let width_blocks = width / 4;
let height_blocks = height / 4;
let stride = variant.decoded_bytes_per_block();
assert!(data.len() >= width_blocks as usize * height_blocks as usize * stride);
for chunk in data.chunks(width_blocks as usize * stride) {
let data = match variant {
DxtVariant::DXT1 => encode_dxt1_row(chunk),
DxtVariant::DXT3 => encode_dxt3_row(chunk),
DxtVariant::DXT5 => encode_dxt5_row(chunk),
};
self.w.write_all(&data)?;
}
Ok(())
}
}
/**
* Actual encoding/decoding logic below.
*/
use std::mem::swap;
type Rgb = [u8; 3];
/// decodes a 5-bit R, 6-bit G, 5-bit B 16-bit packed color value into 8-bit RGB
/// mapping is done so min/max range values are preserved. So for 5-bit
/// values 0x00 -> 0x00 and 0x1F -> 0xFF
fn enc565_decode(value: u16) -> Rgb {
let red = (value >> 11) & 0x1F;
let green = (value >> 5) & 0x3F;
let blue = (value) & 0x1F;
[
(red * 0xFF / 0x1F) as u8,
(green * 0xFF / 0x3F) as u8,
(blue * 0xFF / 0x1F) as u8,
]
}
/// encodes an 8-bit RGB value into a 5-bit R, 6-bit G, 5-bit B 16-bit packed color value
/// mapping preserves min/max values. It is guaranteed that i == encode(decode(i)) for all i
fn enc565_encode(rgb: Rgb) -> u16 {
let red = (u16::from(rgb[0]) * 0x1F + 0x7E) / 0xFF;
let green = (u16::from(rgb[1]) * 0x3F + 0x7E) / 0xFF;
let blue = (u16::from(rgb[2]) * 0x1F + 0x7E) / 0xFF;
(red << 11) | (green << 5) | blue
}
/// utility function: squares a value
fn square(a: i32) -> i32 {
a * a
}
/// returns the squared error between two RGB values
fn diff(a: Rgb, b: Rgb) -> i32 {
square(i32::from(a[0]) - i32::from(b[0]))
+ square(i32::from(a[1]) - i32::from(b[1]))
+ square(i32::from(a[2]) - i32::from(b[2]))
}
/*
* Functions for decoding DXT compression
*/
/// Constructs the DXT5 alpha lookup table from the two alpha entries
/// if alpha0 > alpha1, constructs a table of [a0, a1, 6 linearly interpolated values from a0 to a1]
/// if alpha0 <= alpha1, constructs a table of [a0, a1, 4 linearly interpolated values from a0 to a1, 0, 0xFF]
fn alpha_table_dxt5(alpha0: u8, alpha1: u8) -> [u8; 8] {
let mut table = [alpha0, alpha1, 0, 0, 0, 0, 0, 0xFF];
if alpha0 > alpha1 {
for i in 2..8u16 {
table[i as usize] =
(((8 - i) * u16::from(alpha0) + (i - 1) * u16::from(alpha1)) / 7) as u8;
}
} else {
for i in 2..6u16 {
table[i as usize] =
(((6 - i) * u16::from(alpha0) + (i - 1) * u16::from(alpha1)) / 5) as u8;
}
}
table
}
/// decodes an 8-byte dxt color block into the RGB channels of a 16xRGB or 16xRGBA block.
/// source should have a length of 8, dest a length of 48 (RGB) or 64 (RGBA)
fn decode_dxt_colors(source: &[u8], dest: &mut [u8], is_dxt1: bool) {
// sanity checks, also enable the compiler to elide all following bound checks
assert!(source.len() == 8 && (dest.len() == 48 || dest.len() == 64));
// calculate pitch to store RGB values in dest (3 for RGB, 4 for RGBA)
let pitch = dest.len() / 16;
// extract color data
let color0 = u16::from(source[0]) | (u16::from(source[1]) << 8);
let color1 = u16::from(source[2]) | (u16::from(source[3]) << 8);
let color_table = u32::from(source[4])
| (u32::from(source[5]) << 8)
| (u32::from(source[6]) << 16)
| (u32::from(source[7]) << 24);
// let color_table = source[4..8].iter().rev().fold(0, |t, &b| (t << 8) | b as u32);
// decode the colors to rgb format
let mut colors = [[0; 3]; 4];
colors[0] = enc565_decode(color0);
colors[1] = enc565_decode(color1);
// determine color interpolation method
if color0 > color1 || !is_dxt1 {
// linearly interpolate the other two color table entries
for i in 0..3 {
colors[2][i] = ((u16::from(colors[0][i]) * 2 + u16::from(colors[1][i]) + 1) / 3) as u8;
colors[3][i] = ((u16::from(colors[0][i]) + u16::from(colors[1][i]) * 2 + 1) / 3) as u8;
}
} else {
// linearly interpolate one other entry, keep the other at 0
for i in 0..3 {
colors[2][i] = ((u16::from(colors[0][i]) + u16::from(colors[1][i]) + 1) / 2) as u8;
}
}
// serialize the result. Every color is determined by looking up
// two bits in color_table which identify which color to actually pick from the 4 possible colors
for i in 0..16 {
dest[i * pitch..i * pitch + 3]
.copy_from_slice(&colors[(color_table >> (i * 2)) as usize & 3]);
}
}
/// Decodes a 16-byte bock of dxt5 data to a 16xRGBA block
fn decode_dxt5_block(source: &[u8], dest: &mut [u8]) {
assert!(source.len() == 16 && dest.len() == 64);
// extract alpha index table (stored as little endian 64-bit value)
let alpha_table = source[2..8]
.iter()
.rev()
.fold(0, |t, &b| (t << 8) | u64::from(b));
// alhpa level decode
let alphas = alpha_table_dxt5(source[0], source[1]);
// serialize alpha
for i in 0..16 {
dest[i * 4 + 3] = alphas[(alpha_table >> (i * 3)) as usize & 7];
}
// handle colors
decode_dxt_colors(&source[8..16], dest, false);
}
/// Decodes a 16-byte bock of dxt3 data to a 16xRGBA block
fn decode_dxt3_block(source: &[u8], dest: &mut [u8]) {
assert!(source.len() == 16 && dest.len() == 64);
// extract alpha index table (stored as little endian 64-bit value)
let alpha_table = source[0..8]
.iter()
.rev()
.fold(0, |t, &b| (t << 8) | u64::from(b));
// serialize alpha (stored as 4-bit values)
for i in 0..16 {
dest[i * 4 + 3] = ((alpha_table >> (i * 4)) as u8 & 0xF) * 0x11;
}
// handle colors
decode_dxt_colors(&source[8..16], dest, false);
}
/// Decodes a 8-byte bock of dxt5 data to a 16xRGB block
fn decode_dxt1_block(source: &[u8], dest: &mut [u8]) {
assert!(source.len() == 8 && dest.len() == 48);
decode_dxt_colors(source, dest, true);
}
/// Decode a row of DXT1 data to four rows of RGB data.
/// source.len() should be a multiple of 8, otherwise this panics.
fn decode_dxt1_row(source: &[u8], dest: &mut [u8]) {
assert!(source.len() % 8 == 0);
let block_count = source.len() / 8;
assert!(dest.len() >= block_count * 48);
// contains the 16 decoded pixels per block
let mut decoded_block = [0u8; 48];
for (x, encoded_block) in source.chunks(8).enumerate() {
decode_dxt1_block(encoded_block, &mut decoded_block);
// copy the values from the decoded block to linewise RGB layout
for line in 0..4 {
let offset = (block_count * line + x) * 12;
dest[offset..offset + 12].copy_from_slice(&decoded_block[line * 12..(line + 1) * 12]);
}
}
}
/// Decode a row of DXT3 data to four rows of RGBA data.
/// source.len() should be a multiple of 16, otherwise this panics.
fn decode_dxt3_row(source: &[u8], dest: &mut [u8]) {
assert!(source.len() % 16 == 0);
let block_count = source.len() / 16;
assert!(dest.len() >= block_count * 64);
// contains the 16 decoded pixels per block
let mut decoded_block = [0u8; 64];
for (x, encoded_block) in source.chunks(16).enumerate() {
decode_dxt3_block(encoded_block, &mut decoded_block);
// copy the values from the decoded block to linewise RGB layout
for line in 0..4 {
let offset = (block_count * line + x) * 16;
dest[offset..offset + 16].copy_from_slice(&decoded_block[line * 16..(line + 1) * 16]);
}
}
}
/// Decode a row of DXT5 data to four rows of RGBA data.
/// source.len() should be a multiple of 16, otherwise this panics.
fn decode_dxt5_row(source: &[u8], dest: &mut [u8]) {
assert!(source.len() % 16 == 0);
let block_count = source.len() / 16;
assert!(dest.len() >= block_count * 64);
// contains the 16 decoded pixels per block
let mut decoded_block = [0u8; 64];
for (x, encoded_block) in source.chunks(16).enumerate() {
decode_dxt5_block(encoded_block, &mut decoded_block);
// copy the values from the decoded block to linewise RGB layout
for line in 0..4 {
let offset = (block_count * line + x) * 16;
dest[offset..offset + 16].copy_from_slice(&decoded_block[line * 16..(line + 1) * 16]);
}
}
}
/*
* Functions for encoding DXT compression
*/
/// Tries to perform the color encoding part of dxt compression
/// the approach taken is simple, it picks unique combinations
/// of the colors present in the block, and attempts to encode the
/// block with each, picking the encoding that yields the least
/// squared error out of all of them.
///
/// This could probably be faster but is already reasonably fast
/// and a good reference impl to optimize others against.
///
/// Another way to perform this analysis would be to perform a
/// singular value decomposition of the different colors, and
/// then pick 2 points on this line as the base colors. But
/// this is still rather unwieldy math and has issues
/// with the 3-linear-colors-and-0 case, it's also worse
/// at conserving the original colors.
///
/// source: should be RGBAx16 or RGBx16 bytes of data,
/// dest 8 bytes of resulting encoded color data
fn encode_dxt_colors(source: &[u8], dest: &mut [u8], is_dxt1: bool) {
// sanity checks and determine stride when parsing the source data
assert!((source.len() == 64 || source.len() == 48) && dest.len() == 8);
let stride = source.len() / 16;
// reference colors array
let mut colors = [[0u8; 3]; 4];
// Put the colors we're going to be processing in an array with pure RGB layout
// note: we reverse the pixel order here. The reason for this is found in the inner quantization loop.
let mut targets = [[0u8; 3]; 16];
for (s, d) in source.chunks(stride).rev().zip(&mut targets) {
*d = [s[0], s[1], s[2]];
}
// roundtrip all colors through the r5g6b5 encoding
for rgb in &mut targets {
*rgb = enc565_decode(enc565_encode(*rgb));
}
// and deduplicate the set of colors to choose from as the algorithm is O(N^2) in this
let mut colorspace_ = [[0u8; 3]; 16];
let mut colorspace_len = 0;
for color in &targets {
if !colorspace_[..colorspace_len].contains(color) {
colorspace_[colorspace_len] = *color;
colorspace_len += 1;
}
}
let mut colorspace = &colorspace_[..colorspace_len];
// in case of slight gradients it can happen that there's only one entry left in the color table.
// as the resulting banding can be quite bad if we would just left the block at the closest
// encodable color, we have a special path here that tries to emulate the wanted color
// using the linear interpolation between gradients
if colorspace.len() == 1 {
// the base color we got from colorspace reduction
let ref_rgb = colorspace[0];
// the unreduced color in this block that's the furthest away from the actual block
let mut rgb = targets
.iter()
.cloned()
.max_by_key(|rgb| diff(*rgb, ref_rgb))
.unwrap();
// amplify differences by 2.5, which should push them to the next quantized value
// if possible without overshoot
for i in 0..3 {
rgb[i] =
((i16::from(rgb[i]) - i16::from(ref_rgb[i])) * 5 / 2 + i16::from(ref_rgb[i])) as u8;
}
// roundtrip it through quantization
let encoded = enc565_encode(rgb);
let rgb = enc565_decode(encoded);
// in case this didn't land us a different color the best way to represent this field is
// as a single color block
if rgb == ref_rgb {
dest[0] = encoded as u8;
dest[1] = (encoded >> 8) as u8;
for d in dest.iter_mut().take(8).skip(2) {
*d = 0;
}
return;
}
// we did find a separate value: add it to the options so after one round of quantization
// we're done
colorspace_[1] = rgb;
colorspace = &colorspace_[..2];
}
// block quantization loop: we basically just try every possible combination, returning
// the combination with the least squared error
// stores the best candidate colors
let mut chosen_colors = [[0; 3]; 4];
// did this index table use the [0,0,0] variant
let mut chosen_use_0 = false;
// error calculated for the last entry
let mut chosen_error = 0xFFFF_FFFFu32;
// loop through unique permutations of the colorspace, where c1 != c2
'search: for (i, &c1) in colorspace.iter().enumerate() {
colors[0] = c1;
for &c2 in &colorspace[0..i] {
colors[1] = c2;
if is_dxt1 {
// what's inside here is ran at most 120 times.
for use_0 in 0..2 {
// and 240 times here.
if use_0 != 0 {
// interpolate one color, set the other to 0
for i in 0..3 {
colors[2][i] =
((u16::from(colors[0][i]) + u16::from(colors[1][i]) + 1) / 2) as u8;
}
colors[3] = [0, 0, 0];
} else {
// interpolate to get 2 more colors
for i in 0..3 {
colors[2][i] =
((u16::from(colors[0][i]) * 2 + u16::from(colors[1][i]) + 1) / 3)
as u8;
colors[3][i] =
((u16::from(colors[0][i]) + u16::from(colors[1][i]) * 2 + 1) / 3)
as u8;
}
}
// calculate the total error if we were to quantize the block with these color combinations
// both these loops have statically known iteration counts and are well vectorizable
// note that the inside of this can be run about 15360 times worst case, i.e. 960 times per
// pixel.
let total_error = targets
.iter()
.map(|t| colors.iter().map(|c| diff(*c, *t) as u32).min().unwrap())
.sum();
// update the match if we found a better one
if total_error < chosen_error {
chosen_colors = colors;
chosen_use_0 = use_0 != 0;
chosen_error = total_error;
// if we've got a perfect or at most 1 LSB off match, we're done
if total_error < 4 {
break 'search;
}
}
}
} else {
// what's inside here is ran at most 120 times.
// interpolate to get 2 more colors
for i in 0..3 {
colors[2][i] =
((u16::from(colors[0][i]) * 2 + u16::from(colors[1][i]) + 1) / 3) as u8;
colors[3][i] =
((u16::from(colors[0][i]) + u16::from(colors[1][i]) * 2 + 1) / 3) as u8;
}
// calculate the total error if we were to quantize the block with these color combinations
// both these loops have statically known iteration counts and are well vectorizable
// note that the inside of this can be run about 15360 times worst case, i.e. 960 times per
// pixel.
let total_error = targets
.iter()
.map(|t| colors.iter().map(|c| diff(*c, *t) as u32).min().unwrap())
.sum();
// update the match if we found a better one
if total_error < chosen_error {
chosen_colors = colors;
chosen_error = total_error;
// if we've got a perfect or at most 1 LSB off match, we're done
if total_error < 4 {
break 'search;
}
}
}
}
}
// calculate the final indices
// note that targets is already in reverse pixel order, to make the index computation easy.
let mut chosen_indices = 0u32;
for t in &targets {
let (idx, _) = chosen_colors
.iter()
.enumerate()
.min_by_key(|&(_, c)| diff(*c, *t))
.unwrap();
chosen_indices = (chosen_indices << 2) | idx as u32;
}
// encode the colors
let mut color0 = enc565_encode(chosen_colors[0]);
let mut color1 = enc565_encode(chosen_colors[1]);
// determine encoding. Note that color0 == color1 is impossible at this point
if is_dxt1 {
if color0 > color1 {
if chosen_use_0 {
swap(&mut color0, &mut color1);
// Indexes are packed 2 bits wide, swap index 0/1 but preserve 2/3.
let filter = (chosen_indices & 0xAAAA_AAAA) >> 1;
chosen_indices ^= filter ^ 0x5555_5555;
}
} else if !chosen_use_0 {
swap(&mut color0, &mut color1);
// Indexes are packed 2 bits wide, swap index 0/1 and 2/3.
chosen_indices ^= 0x5555_5555;
}
}
// encode everything.
dest[0] = color0 as u8;
dest[1] = (color0 >> 8) as u8;
dest[2] = color1 as u8;
dest[3] = (color1 >> 8) as u8;
for i in 0..4 {
dest[i + 4] = (chosen_indices >> (i * 8)) as u8;
}
}
/// Encodes a buffer of 16 alpha bytes into a dxt5 alpha index table,
/// where the alpha table they are indexed against is created by
/// calling alpha_table_dxt5(alpha0, alpha1)
/// returns the resulting error and alpha table
fn encode_dxt5_alpha(alpha0: u8, alpha1: u8, alphas: &[u8; 16]) -> (i32, u64) {
// create a table for the given alpha ranges
let table = alpha_table_dxt5(alpha0, alpha1);
let mut indices = 0u64;
let mut total_error = 0i32;
// least error brute force search
for (i, &a) in alphas.iter().enumerate() {
let (index, error) = table
.iter()
.enumerate()
.map(|(i, &e)| (i, square(i32::from(e) - i32::from(a))))
.min_by_key(|&(_, e)| e)
.unwrap();
total_error += error;
indices |= (index as u64) << (i * 3);
}
(total_error, indices)
}
/// Encodes a RGBAx16 sequence of bytes to a 16 bytes DXT5 block
fn encode_dxt5_block(source: &[u8], dest: &mut [u8]) {
assert!(source.len() == 64 && dest.len() == 16);
// perform dxt color encoding
encode_dxt_colors(source, &mut dest[8..16], false);
// copy out the alpha bytes
let mut alphas = [0; 16];
for i in 0..16 {
alphas[i] = source[i * 4 + 3];
}
// try both alpha compression methods, see which has the least error.
let alpha07 = alphas.iter().cloned().min().unwrap();
let alpha17 = alphas.iter().cloned().max().unwrap();
let (error7, indices7) = encode_dxt5_alpha(alpha07, alpha17, &alphas);
// if all alphas are 0 or 255 it doesn't particularly matter what we do here.
let alpha05 = alphas
.iter()
.cloned()
.filter(|&i| i != 255)
.max()
.unwrap_or(255);
let alpha15 = alphas
.iter()
.cloned()
.filter(|&i| i != 0)
.min()
.unwrap_or(0);
let (error5, indices5) = encode_dxt5_alpha(alpha05, alpha15, &alphas);
// pick the best one, encode the min/max values
let mut alpha_table = if error5 < error7 {
dest[0] = alpha05;
dest[1] = alpha15;
indices5
} else {
dest[0] = alpha07;
dest[1] = alpha17;
indices7
};
// encode the alphas
for byte in dest[2..8].iter_mut() {
*byte = alpha_table as u8;
alpha_table >>= 8;
}
}
/// Encodes a RGBAx16 sequence of bytes into a 16 bytes DXT3 block
fn encode_dxt3_block(source: &[u8], dest: &mut [u8]) {
assert!(source.len() == 64 && dest.len() == 16);
// perform dxt color encoding
encode_dxt_colors(source, &mut dest[8..16], false);
// DXT3 alpha compression is very simple, just round towards the nearest value
// index the alpha values into the 64bit alpha table
let mut alpha_table = 0u64;
for i in 0..16 {
let alpha = u64::from(source[i * 4 + 3]);
let alpha = (alpha + 0x8) / 0x11;
alpha_table |= alpha << (i * 4);
}
// encode the alpha values
for byte in &mut dest[0..8] {
*byte = alpha_table as u8;
alpha_table >>= 8;
}
}
/// Encodes a RGBx16 sequence of bytes into a 8 bytes DXT1 block
fn encode_dxt1_block(source: &[u8], dest: &mut [u8]) {
assert!(source.len() == 48 && dest.len() == 8);
// perform dxt color encoding
encode_dxt_colors(source, dest, true);
}
/// Decode a row of DXT1 data to four rows of RGBA data.
/// source.len() should be a multiple of 8, otherwise this panics.
fn encode_dxt1_row(source: &[u8]) -> Vec<u8> {
assert!(source.len() % 48 == 0);
let block_count = source.len() / 48;
let mut dest = vec![0u8; block_count * 8];
// contains the 16 decoded pixels per block
let mut decoded_block = [0u8; 48];
for (x, encoded_block) in dest.chunks_mut(8).enumerate() {
// copy the values from the decoded block to linewise RGB layout
for line in 0..4 {
let offset = (block_count * line + x) * 12;
decoded_block[line * 12..(line + 1) * 12].copy_from_slice(&source[offset..offset + 12]);
}
encode_dxt1_block(&decoded_block, encoded_block);
}
dest
}
/// Decode a row of DXT3 data to four rows of RGBA data.
/// source.len() should be a multiple of 16, otherwise this panics.
fn encode_dxt3_row(source: &[u8]) -> Vec<u8> {
assert!(source.len() % 64 == 0);
let block_count = source.len() / 64;
let mut dest = vec![0u8; block_count * 16];
// contains the 16 decoded pixels per block
let mut decoded_block = [0u8; 64];
for (x, encoded_block) in dest.chunks_mut(16).enumerate() {
// copy the values from the decoded block to linewise RGB layout
for line in 0..4 {
let offset = (block_count * line + x) * 16;
decoded_block[line * 16..(line + 1) * 16].copy_from_slice(&source[offset..offset + 16]);
}
encode_dxt3_block(&decoded_block, encoded_block);
}
dest
}
/// Decode a row of DXT5 data to four rows of RGBA data.
/// source.len() should be a multiple of 16, otherwise this panics.
fn encode_dxt5_row(source: &[u8]) -> Vec<u8> {
assert!(source.len() % 64 == 0);
let block_count = source.len() / 64;
let mut dest = vec![0u8; block_count * 16];
// contains the 16 decoded pixels per block
let mut decoded_block = [0u8; 64];
for (x, encoded_block) in dest.chunks_mut(16).enumerate() {
// copy the values from the decoded block to linewise RGB layout
for line in 0..4 {
let offset = (block_count * line + x) * 16;
decoded_block[line * 16..(line + 1) * 16].copy_from_slice(&source[offset..offset + 16]);
}
encode_dxt5_block(&decoded_block, encoded_block);
}
dest
}