image/codecs/
gif.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
//!  Decoding of GIF Images
//!
//!  GIF (Graphics Interchange Format) is an image format that supports lossless compression.
//!
//!  # Related Links
//!  * <http://www.w3.org/Graphics/GIF/spec-gif89a.txt> - The GIF Specification
//!
//! # Examples
//! ```rust,no_run
//! use image::codecs::gif::{GifDecoder, GifEncoder};
//! use image::{ImageDecoder, AnimationDecoder};
//! use std::fs::File;
//! # fn main() -> std::io::Result<()> {
//! // Decode a gif into frames
//! let file_in = File::open("foo.gif")?;
//! let mut decoder = GifDecoder::new(file_in).unwrap();
//! let frames = decoder.into_frames();
//! let frames = frames.collect_frames().expect("error decoding gif");
//!
//! // Encode frames into a gif and save to a file
//! let mut file_out = File::open("out.gif")?;
//! let mut encoder = GifEncoder::new(file_out);
//! encoder.encode_frames(frames.into_iter());
//! # Ok(())
//! # }
//! ```
#![allow(clippy::while_let_loop)]

use std::io::{self, Cursor, Read, Write};
use std::marker::PhantomData;
use std::mem;

use gif::ColorOutput;
use gif::{DisposalMethod, Frame};

use crate::animation::{self, Ratio};
use crate::color::{ColorType, Rgba};
use crate::error::LimitError;
use crate::error::LimitErrorKind;
use crate::error::{
    DecodingError, EncodingError, ImageError, ImageResult, ParameterError, ParameterErrorKind,
    UnsupportedError, UnsupportedErrorKind,
};
use crate::image::{self, AnimationDecoder, ImageDecoder, ImageFormat};
use crate::io::Limits;
use crate::traits::Pixel;
use crate::ImageBuffer;

/// GIF decoder
pub struct GifDecoder<R: Read> {
    reader: gif::Decoder<R>,
    limits: Limits,
}

impl<R: Read> GifDecoder<R> {
    /// Creates a new decoder that decodes the input steam `r`
    pub fn new(r: R) -> ImageResult<GifDecoder<R>> {
        let mut decoder = gif::DecodeOptions::new();
        decoder.set_color_output(ColorOutput::RGBA);

        Ok(GifDecoder {
            reader: decoder.read_info(r).map_err(ImageError::from_decoding)?,
            limits: Limits::no_limits(),
        })
    }

    /// Creates a new decoder that decodes the input steam `r`, using limits `limits`
    #[deprecated(since = "0.24.8", note = "Use `new` followed by `set_limits` instead")]
    pub fn with_limits(r: R, limits: Limits) -> ImageResult<GifDecoder<R>> {
        let mut decoder = Self::new(r)?;
        // call `.set_limits()` instead of just setting the field directly
        // so that we raise an error in case they are exceeded
        decoder.set_limits(limits)?;
        Ok(decoder)
    }
}

/// Wrapper struct around a `Cursor<Vec<u8>>`
pub struct GifReader<R>(Cursor<Vec<u8>>, PhantomData<R>);
impl<R> Read for GifReader<R> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.0.read(buf)
    }
    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
        if self.0.position() == 0 && buf.is_empty() {
            mem::swap(buf, self.0.get_mut());
            Ok(buf.len())
        } else {
            self.0.read_to_end(buf)
        }
    }
}

impl<'a, R: 'a + Read> ImageDecoder<'a> for GifDecoder<R> {
    type Reader = GifReader<R>;

    fn dimensions(&self) -> (u32, u32) {
        (
            u32::from(self.reader.width()),
            u32::from(self.reader.height()),
        )
    }

    fn color_type(&self) -> ColorType {
        ColorType::Rgba8
    }

    fn into_reader(self) -> ImageResult<Self::Reader> {
        Ok(GifReader(
            Cursor::new(image::decoder_to_vec(self)?),
            PhantomData,
        ))
    }

    fn set_limits(&mut self, limits: Limits) -> ImageResult<()> {
        limits.check_support(&crate::io::LimitSupport::default())?;

        let (width, height) = self.dimensions();
        limits.check_dimensions(width, height)?;

        self.limits = limits;

        Ok(())
    }

    fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
        assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));

        let frame = match self
            .reader
            .next_frame_info()
            .map_err(ImageError::from_decoding)?
        {
            Some(frame) => FrameInfo::new_from_frame(frame),
            None => {
                return Err(ImageError::Parameter(ParameterError::from_kind(
                    ParameterErrorKind::NoMoreData,
                )))
            }
        };

        let (width, height) = self.dimensions();

        if frame.left == 0
            && frame.width == width
            && (frame.top as u64 + frame.height as u64 <= height as u64)
        {
            // If the frame matches the logical screen, or, as a more general case,
            // fits into it and touches its left and right borders, then
            // we can directly write it into the buffer without causing line wraparound.
            let line_length = usize::try_from(width)
                .unwrap()
                .checked_mul(self.color_type().bytes_per_pixel() as usize)
                .unwrap();

            // isolate the portion of the buffer to read the frame data into.
            // the chunks above and below it are going to be zeroed.
            let (blank_top, rest) =
                buf.split_at_mut(line_length.checked_mul(frame.top as usize).unwrap());
            let (buf, blank_bottom) =
                rest.split_at_mut(line_length.checked_mul(frame.height as usize).unwrap());

            debug_assert_eq!(buf.len(), self.reader.buffer_size());

            // this is only necessary in case the buffer is not zeroed
            for b in blank_top {
                *b = 0;
            }
            // fill the middle section with the frame data
            self.reader
                .read_into_buffer(buf)
                .map_err(ImageError::from_decoding)?;
            // this is only necessary in case the buffer is not zeroed
            for b in blank_bottom {
                *b = 0;
            }
        } else {
            // If the frame does not match the logical screen, read into an extra buffer
            // and 'insert' the frame from left/top to logical screen width/height.
            let buffer_size = (frame.width as usize)
                .checked_mul(frame.height as usize)
                .and_then(|s| s.checked_mul(4))
                .ok_or(ImageError::Limits(LimitError::from_kind(
                    LimitErrorKind::InsufficientMemory,
                )))?;

            self.limits.reserve_usize(buffer_size)?;
            let mut frame_buffer = vec![0; buffer_size];
            self.limits.free_usize(buffer_size);

            self.reader
                .read_into_buffer(&mut frame_buffer[..])
                .map_err(ImageError::from_decoding)?;

            let frame_buffer = ImageBuffer::from_raw(frame.width, frame.height, frame_buffer);
            let image_buffer = ImageBuffer::from_raw(width, height, buf);

            // `buffer_size` uses wrapping arithmetic, thus might not report the
            // correct storage requirement if the result does not fit in `usize`.
            // `ImageBuffer::from_raw` detects overflow and reports by returning `None`.
            if frame_buffer.is_none() || image_buffer.is_none() {
                return Err(ImageError::Unsupported(
                    UnsupportedError::from_format_and_kind(
                        ImageFormat::Gif.into(),
                        UnsupportedErrorKind::GenericFeature(format!(
                            "Image dimensions ({}, {}) are too large",
                            frame.width, frame.height
                        )),
                    ),
                ));
            }

            let frame_buffer = frame_buffer.unwrap();
            let mut image_buffer = image_buffer.unwrap();

            for (x, y, pixel) in image_buffer.enumerate_pixels_mut() {
                let frame_x = x.wrapping_sub(frame.left);
                let frame_y = y.wrapping_sub(frame.top);

                if frame_x < frame.width && frame_y < frame.height {
                    *pixel = *frame_buffer.get_pixel(frame_x, frame_y);
                } else {
                    // this is only necessary in case the buffer is not zeroed
                    *pixel = Rgba([0, 0, 0, 0]);
                }
            }
        }

        Ok(())
    }
}

struct GifFrameIterator<R: Read> {
    reader: gif::Decoder<R>,

    width: u32,
    height: u32,

    non_disposed_frame: Option<ImageBuffer<Rgba<u8>, Vec<u8>>>,
    limits: Limits,
}

impl<R: Read> GifFrameIterator<R> {
    fn new(decoder: GifDecoder<R>) -> GifFrameIterator<R> {
        let (width, height) = decoder.dimensions();
        let limits = decoder.limits.clone();

        // intentionally ignore the background color for web compatibility

        GifFrameIterator {
            reader: decoder.reader,
            width,
            height,
            non_disposed_frame: None,
            limits,
        }
    }
}

impl<R: Read> Iterator for GifFrameIterator<R> {
    type Item = ImageResult<animation::Frame>;

    fn next(&mut self) -> Option<ImageResult<animation::Frame>> {
        // The iterator always produces RGBA8 images
        const COLOR_TYPE: ColorType = ColorType::Rgba8;

        // Allocate the buffer for the previous frame.
        // This is done here and not in the constructor because
        // the constructor cannot return an error when the allocation limit is exceeded.
        if self.non_disposed_frame.is_none() {
            if let Err(e) = self
                .limits
                .reserve_buffer(self.width, self.height, COLOR_TYPE)
            {
                return Some(Err(e));
            }
            self.non_disposed_frame = Some(ImageBuffer::from_pixel(
                self.width,
                self.height,
                Rgba([0, 0, 0, 0]),
            ));
        }
        // Bind to a variable to avoid repeated `.unwrap()` calls
        let non_disposed_frame = self.non_disposed_frame.as_mut().unwrap();

        // begin looping over each frame

        let frame = match self.reader.next_frame_info() {
            Ok(frame_info) => {
                if let Some(frame) = frame_info {
                    FrameInfo::new_from_frame(frame)
                } else {
                    // no more frames
                    return None;
                }
            }
            Err(err) => return Some(Err(ImageError::from_decoding(err))),
        };

        // All allocations we do from now on will be freed at the end of this function.
        // Therefore, do not count them towards the persistent limits.
        // Instead, create a local instance of `Limits` for this function alone
        // which will be dropped along with all the buffers when they go out of scope.
        let mut local_limits = self.limits.clone();

        // Check the allocation we're about to perform against the limits
        if let Err(e) = local_limits.reserve_buffer(frame.width, frame.height, COLOR_TYPE) {
            return Some(Err(e));
        }
        // Allocate the buffer now that the limits allowed it
        let mut vec = vec![0; self.reader.buffer_size()];
        if let Err(err) = self.reader.read_into_buffer(&mut vec) {
            return Some(Err(ImageError::from_decoding(err)));
        }

        // create the image buffer from the raw frame.
        // `buffer_size` uses wrapping arithmetic, thus might not report the
        // correct storage requirement if the result does not fit in `usize`.
        // on the other hand, `ImageBuffer::from_raw` detects overflow and
        // reports by returning `None`.
        let mut frame_buffer = match ImageBuffer::from_raw(frame.width, frame.height, vec) {
            Some(frame_buffer) => frame_buffer,
            None => {
                return Some(Err(ImageError::Unsupported(
                    UnsupportedError::from_format_and_kind(
                        ImageFormat::Gif.into(),
                        UnsupportedErrorKind::GenericFeature(format!(
                            "Image dimensions ({}, {}) are too large",
                            frame.width, frame.height
                        )),
                    ),
                )))
            }
        };

        // blend the current frame with the non-disposed frame, then update
        // the non-disposed frame according to the disposal method.
        fn blend_and_dispose_pixel(
            dispose: DisposalMethod,
            previous: &mut Rgba<u8>,
            current: &mut Rgba<u8>,
        ) {
            let pixel_alpha = current.channels()[3];
            if pixel_alpha == 0 {
                *current = *previous;
            }

            match dispose {
                DisposalMethod::Any | DisposalMethod::Keep => {
                    // do not dispose
                    // (keep pixels from this frame)
                    // note: the `Any` disposal method is underspecified in the GIF
                    // spec, but most viewers treat it identically to `Keep`
                    *previous = *current;
                }
                DisposalMethod::Background => {
                    // restore to background color
                    // (background shows through transparent pixels in the next frame)
                    *previous = Rgba([0, 0, 0, 0]);
                }
                DisposalMethod::Previous => {
                    // restore to previous
                    // (dispose frames leaving the last none disposal frame)
                }
            }
        }

        // if `frame_buffer`'s frame exactly matches the entire image, then
        // use it directly, else create a new buffer to hold the composited
        // image.
        let image_buffer = if (frame.left, frame.top) == (0, 0)
            && (self.width, self.height) == frame_buffer.dimensions()
        {
            for (x, y, pixel) in frame_buffer.enumerate_pixels_mut() {
                let previous_pixel = non_disposed_frame.get_pixel_mut(x, y);
                blend_and_dispose_pixel(frame.disposal_method, previous_pixel, pixel);
            }
            frame_buffer
        } else {
            // Check limits before allocating the buffer
            if let Err(e) = local_limits.reserve_buffer(self.width, self.height, COLOR_TYPE) {
                return Some(Err(e));
            }
            ImageBuffer::from_fn(self.width, self.height, |x, y| {
                let frame_x = x.wrapping_sub(frame.left);
                let frame_y = y.wrapping_sub(frame.top);
                let previous_pixel = non_disposed_frame.get_pixel_mut(x, y);

                if frame_x < frame_buffer.width() && frame_y < frame_buffer.height() {
                    let mut pixel = *frame_buffer.get_pixel(frame_x, frame_y);
                    blend_and_dispose_pixel(frame.disposal_method, previous_pixel, &mut pixel);
                    pixel
                } else {
                    // out of bounds, return pixel from previous frame
                    *previous_pixel
                }
            })
        };

        Some(Ok(animation::Frame::from_parts(
            image_buffer,
            0,
            0,
            frame.delay,
        )))
    }
}

impl<'a, R: Read + 'a> AnimationDecoder<'a> for GifDecoder<R> {
    fn into_frames(self) -> animation::Frames<'a> {
        animation::Frames::new(Box::new(GifFrameIterator::new(self)))
    }
}

struct FrameInfo {
    left: u32,
    top: u32,
    width: u32,
    height: u32,
    disposal_method: DisposalMethod,
    delay: animation::Delay,
}

impl FrameInfo {
    fn new_from_frame(frame: &Frame) -> FrameInfo {
        FrameInfo {
            left: u32::from(frame.left),
            top: u32::from(frame.top),
            width: u32::from(frame.width),
            height: u32::from(frame.height),
            disposal_method: frame.dispose,
            // frame.delay is in units of 10ms so frame.delay*10 is in ms
            delay: animation::Delay::from_ratio(Ratio::new(u32::from(frame.delay) * 10, 1)),
        }
    }
}

/// Number of repetitions for a GIF animation
#[derive(Clone, Copy, Debug)]
pub enum Repeat {
    /// Finite number of repetitions
    Finite(u16),
    /// Looping GIF
    Infinite,
}

impl Repeat {
    pub(crate) fn to_gif_enum(&self) -> gif::Repeat {
        match self {
            Repeat::Finite(n) => gif::Repeat::Finite(*n),
            Repeat::Infinite => gif::Repeat::Infinite,
        }
    }
}

/// GIF encoder.
pub struct GifEncoder<W: Write> {
    w: Option<W>,
    gif_encoder: Option<gif::Encoder<W>>,
    speed: i32,
    repeat: Option<Repeat>,
}

impl<W: Write> GifEncoder<W> {
    /// Creates a new GIF encoder with a speed of 1. This prioritizes quality over performance at any cost.
    pub fn new(w: W) -> GifEncoder<W> {
        Self::new_with_speed(w, 1)
    }

    /// Create a new GIF encoder, and has the speed parameter `speed`. See
    /// [`Frame::from_rgba_speed`](https://docs.rs/gif/latest/gif/struct.Frame.html#method.from_rgba_speed)
    /// for more information.
    pub fn new_with_speed(w: W, speed: i32) -> GifEncoder<W> {
        assert!(
            (1..=30).contains(&speed),
            "speed needs to be in the range [1, 30]"
        );
        GifEncoder {
            w: Some(w),
            gif_encoder: None,
            speed,
            repeat: None,
        }
    }

    /// Set the repeat behaviour of the encoded GIF
    pub fn set_repeat(&mut self, repeat: Repeat) -> ImageResult<()> {
        if let Some(ref mut encoder) = self.gif_encoder {
            encoder
                .set_repeat(repeat.to_gif_enum())
                .map_err(ImageError::from_encoding)?;
        }
        self.repeat = Some(repeat);
        Ok(())
    }

    /// Encode a single image.
    pub fn encode(
        &mut self,
        data: &[u8],
        width: u32,
        height: u32,
        color: ColorType,
    ) -> ImageResult<()> {
        let (width, height) = self.gif_dimensions(width, height)?;
        match color {
            ColorType::Rgb8 => self.encode_gif(Frame::from_rgb(width, height, data)),
            ColorType::Rgba8 => {
                self.encode_gif(Frame::from_rgba(width, height, &mut data.to_owned()))
            }
            _ => Err(ImageError::Unsupported(
                UnsupportedError::from_format_and_kind(
                    ImageFormat::Gif.into(),
                    UnsupportedErrorKind::Color(color.into()),
                ),
            )),
        }
    }

    /// Encode one frame of animation.
    pub fn encode_frame(&mut self, img_frame: animation::Frame) -> ImageResult<()> {
        let frame = self.convert_frame(img_frame)?;
        self.encode_gif(frame)
    }

    /// Encodes Frames.
    /// Consider using `try_encode_frames` instead to encode an `animation::Frames` like iterator.
    pub fn encode_frames<F>(&mut self, frames: F) -> ImageResult<()>
    where
        F: IntoIterator<Item = animation::Frame>,
    {
        for img_frame in frames {
            self.encode_frame(img_frame)?;
        }
        Ok(())
    }

    /// Try to encode a collection of `ImageResult<animation::Frame>` objects.
    /// Use this function to encode an `animation::Frames` like iterator.
    /// Whenever an `Err` item is encountered, that value is returned without further actions.
    pub fn try_encode_frames<F>(&mut self, frames: F) -> ImageResult<()>
    where
        F: IntoIterator<Item = ImageResult<animation::Frame>>,
    {
        for img_frame in frames {
            self.encode_frame(img_frame?)?;
        }
        Ok(())
    }

    pub(crate) fn convert_frame(
        &mut self,
        img_frame: animation::Frame,
    ) -> ImageResult<Frame<'static>> {
        // get the delay before converting img_frame
        let frame_delay = img_frame.delay().into_ratio().to_integer();
        // convert img_frame into RgbaImage
        let mut rbga_frame = img_frame.into_buffer();
        let (width, height) = self.gif_dimensions(rbga_frame.width(), rbga_frame.height())?;

        // Create the gif::Frame from the animation::Frame
        let mut frame = Frame::from_rgba_speed(width, height, &mut rbga_frame, self.speed);
        // Saturate the conversion to u16::MAX instead of returning an error as that
        // would require a new special cased variant in ParameterErrorKind which most
        // likely couldn't be reused for other cases. This isn't a bad trade-off given
        // that the current algorithm is already lossy.
        frame.delay = (frame_delay / 10).try_into().unwrap_or(std::u16::MAX);

        Ok(frame)
    }

    fn gif_dimensions(&self, width: u32, height: u32) -> ImageResult<(u16, u16)> {
        fn inner_dimensions(width: u32, height: u32) -> Option<(u16, u16)> {
            let width = u16::try_from(width).ok()?;
            let height = u16::try_from(height).ok()?;
            Some((width, height))
        }

        // TODO: this is not very idiomatic yet. Should return an EncodingError.
        inner_dimensions(width, height).ok_or_else(|| {
            ImageError::Parameter(ParameterError::from_kind(
                ParameterErrorKind::DimensionMismatch,
            ))
        })
    }

    pub(crate) fn encode_gif(&mut self, mut frame: Frame) -> ImageResult<()> {
        let gif_encoder;
        if let Some(ref mut encoder) = self.gif_encoder {
            gif_encoder = encoder;
        } else {
            let writer = self.w.take().unwrap();
            let mut encoder = gif::Encoder::new(writer, frame.width, frame.height, &[])
                .map_err(ImageError::from_encoding)?;
            if let Some(ref repeat) = self.repeat {
                encoder
                    .set_repeat(repeat.to_gif_enum())
                    .map_err(ImageError::from_encoding)?;
            }
            self.gif_encoder = Some(encoder);
            gif_encoder = self.gif_encoder.as_mut().unwrap()
        }

        frame.dispose = gif::DisposalMethod::Background;

        gif_encoder
            .write_frame(&frame)
            .map_err(ImageError::from_encoding)
    }
}

impl ImageError {
    fn from_decoding(err: gif::DecodingError) -> ImageError {
        use gif::DecodingError::*;
        match err {
            err @ Format(_) => {
                ImageError::Decoding(DecodingError::new(ImageFormat::Gif.into(), err))
            }
            Io(io_err) => ImageError::IoError(io_err),
        }
    }

    fn from_encoding(err: gif::EncodingError) -> ImageError {
        use gif::EncodingError::*;
        match err {
            err @ Format(_) => {
                ImageError::Encoding(EncodingError::new(ImageFormat::Gif.into(), err))
            }
            Io(io_err) => ImageError::IoError(io_err),
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn frames_exceeding_logical_screen_size() {
        // This is a gif with 10x10 logical screen, but a 16x16 frame + 6px offset inside.
        let data = vec![
            0x47, 0x49, 0x46, 0x38, 0x39, 0x61, 0x0A, 0x00, 0x0A, 0x00, 0xF0, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x0E, 0xFF, 0x1F, 0x21, 0xF9, 0x04, 0x09, 0x64, 0x00, 0x00, 0x00, 0x2C,
            0x06, 0x00, 0x06, 0x00, 0x10, 0x00, 0x10, 0x00, 0x00, 0x02, 0x23, 0x84, 0x8F, 0xA9,
            0xBB, 0xE1, 0xE8, 0x42, 0x8A, 0x0F, 0x50, 0x79, 0xAE, 0xD1, 0xF9, 0x7A, 0xE8, 0x71,
            0x5B, 0x48, 0x81, 0x64, 0xD5, 0x91, 0xCA, 0x89, 0x4D, 0x21, 0x63, 0x89, 0x4C, 0x09,
            0x77, 0xF5, 0x6D, 0x14, 0x00, 0x3B,
        ];

        let decoder = GifDecoder::new(Cursor::new(data)).unwrap();
        let mut buf = vec![0u8; decoder.total_bytes() as usize];

        assert!(decoder.read_image(&mut buf).is_ok());
    }
}