image/codecs/hdr/
encoder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
use crate::codecs::hdr::{rgbe8, Rgbe8Pixel, SIGNATURE};
use crate::color::Rgb;
use crate::error::ImageResult;
use std::cmp::Ordering;
use std::io::{Result, Write};

/// Radiance HDR encoder
pub struct HdrEncoder<W: Write> {
    w: W,
}

impl<W: Write> HdrEncoder<W> {
    /// Creates encoder
    pub fn new(w: W) -> HdrEncoder<W> {
        HdrEncoder { w }
    }

    /// Encodes the image ```data```
    /// that has dimensions ```width``` and ```height```
    pub fn encode(mut self, data: &[Rgb<f32>], width: usize, height: usize) -> ImageResult<()> {
        assert!(data.len() >= width * height);
        let w = &mut self.w;
        w.write_all(SIGNATURE)?;
        w.write_all(b"\n")?;
        w.write_all(b"# Rust HDR encoder\n")?;
        w.write_all(b"FORMAT=32-bit_rle_rgbe\n\n")?;
        w.write_all(format!("-Y {} +X {}\n", height, width).as_bytes())?;

        if !(8..=32_768).contains(&width) {
            for &pix in data {
                write_rgbe8(w, to_rgbe8(pix))?;
            }
        } else {
            // new RLE marker contains scanline width
            let marker = rgbe8(2, 2, (width / 256) as u8, (width % 256) as u8);
            // buffers for encoded pixels
            let mut bufr = vec![0; width];
            let mut bufg = vec![0; width];
            let mut bufb = vec![0; width];
            let mut bufe = vec![0; width];
            let mut rle_buf = vec![0; width];
            for scanline in data.chunks(width) {
                for ((((r, g), b), e), &pix) in bufr
                    .iter_mut()
                    .zip(bufg.iter_mut())
                    .zip(bufb.iter_mut())
                    .zip(bufe.iter_mut())
                    .zip(scanline.iter())
                {
                    let cp = to_rgbe8(pix);
                    *r = cp.c[0];
                    *g = cp.c[1];
                    *b = cp.c[2];
                    *e = cp.e;
                }
                write_rgbe8(w, marker)?; // New RLE encoding marker
                rle_buf.clear();
                rle_compress(&bufr[..], &mut rle_buf);
                w.write_all(&rle_buf[..])?;
                rle_buf.clear();
                rle_compress(&bufg[..], &mut rle_buf);
                w.write_all(&rle_buf[..])?;
                rle_buf.clear();
                rle_compress(&bufb[..], &mut rle_buf);
                w.write_all(&rle_buf[..])?;
                rle_buf.clear();
                rle_compress(&bufe[..], &mut rle_buf);
                w.write_all(&rle_buf[..])?;
            }
        }
        Ok(())
    }
}

#[derive(Debug, PartialEq, Eq)]
enum RunOrNot {
    Run(u8, usize),
    Norun(usize, usize),
}
use self::RunOrNot::{Norun, Run};

const RUN_MAX_LEN: usize = 127;
const NORUN_MAX_LEN: usize = 128;

struct RunIterator<'a> {
    data: &'a [u8],
    curidx: usize,
}

impl<'a> RunIterator<'a> {
    fn new(data: &'a [u8]) -> RunIterator<'a> {
        RunIterator { data, curidx: 0 }
    }
}

impl<'a> Iterator for RunIterator<'a> {
    type Item = RunOrNot;

    fn next(&mut self) -> Option<Self::Item> {
        if self.curidx == self.data.len() {
            None
        } else {
            let cv = self.data[self.curidx];
            let crun = self.data[self.curidx..]
                .iter()
                .take_while(|&&v| v == cv)
                .take(RUN_MAX_LEN)
                .count();
            let ret = if crun > 2 {
                Run(cv, crun)
            } else {
                Norun(self.curidx, crun)
            };
            self.curidx += crun;
            Some(ret)
        }
    }
}

struct NorunCombineIterator<'a> {
    runiter: RunIterator<'a>,
    prev: Option<RunOrNot>,
}

impl<'a> NorunCombineIterator<'a> {
    fn new(data: &'a [u8]) -> NorunCombineIterator<'a> {
        NorunCombineIterator {
            runiter: RunIterator::new(data),
            prev: None,
        }
    }
}

// Combines sequential noruns produced by RunIterator
impl<'a> Iterator for NorunCombineIterator<'a> {
    type Item = RunOrNot;
    fn next(&mut self) -> Option<Self::Item> {
        loop {
            match self.prev.take() {
                Some(Run(c, len)) => {
                    // Just return stored run
                    return Some(Run(c, len));
                }
                Some(Norun(idx, len)) => {
                    // Let's see if we need to continue norun
                    match self.runiter.next() {
                        Some(Norun(_, len1)) => {
                            // norun continues
                            let clen = len + len1; // combined length
                            match clen.cmp(&NORUN_MAX_LEN) {
                                Ordering::Equal => return Some(Norun(idx, clen)),
                                Ordering::Greater => {
                                    // combined norun exceeds maximum length. store extra part of norun
                                    self.prev =
                                        Some(Norun(idx + NORUN_MAX_LEN, clen - NORUN_MAX_LEN));
                                    // then return maximal norun
                                    return Some(Norun(idx, NORUN_MAX_LEN));
                                }
                                Ordering::Less => {
                                    // len + len1 < NORUN_MAX_LEN
                                    self.prev = Some(Norun(idx, len + len1));
                                    // combine and continue loop
                                }
                            }
                        }
                        Some(Run(c, len1)) => {
                            // Run encountered. Store it
                            self.prev = Some(Run(c, len1));
                            return Some(Norun(idx, len)); // and return combined norun
                        }
                        None => {
                            // End of sequence
                            return Some(Norun(idx, len)); // return combined norun
                        }
                    }
                } // End match self.prev.take() == Some(NoRun())
                None => {
                    // No norun to combine
                    match self.runiter.next() {
                        Some(Norun(idx, len)) => {
                            self.prev = Some(Norun(idx, len));
                            // store for combine and continue the loop
                        }
                        Some(Run(c, len)) => {
                            // Some run. Just return it
                            return Some(Run(c, len));
                        }
                        None => {
                            // That's all, folks
                            return None;
                        }
                    }
                } // End match self.prev.take() == None
            } // End match
        } // End loop
    }
}

// Appends RLE compressed ```data``` to ```rle```
fn rle_compress(data: &[u8], rle: &mut Vec<u8>) {
    rle.clear();
    if data.is_empty() {
        rle.push(0); // Technically correct. It means read next 0 bytes.
        return;
    }
    // Task: split data into chunks of repeating (max 127) and non-repeating bytes (max 128)
    // Prepend non-repeating chunk with its length
    // Replace repeating byte with (run length + 128) and the byte
    for rnr in NorunCombineIterator::new(data) {
        match rnr {
            Run(c, len) => {
                assert!(len <= 127);
                rle.push(128u8 + len as u8);
                rle.push(c);
            }
            Norun(idx, len) => {
                assert!(len <= 128);
                rle.push(len as u8);
                rle.extend_from_slice(&data[idx..idx + len]);
            }
        }
    }
}

fn write_rgbe8<W: Write>(w: &mut W, v: Rgbe8Pixel) -> Result<()> {
    w.write_all(&[v.c[0], v.c[1], v.c[2], v.e])
}

/// Converts ```Rgb<f32>``` into ```Rgbe8Pixel```
pub fn to_rgbe8(pix: Rgb<f32>) -> Rgbe8Pixel {
    let pix = pix.0;
    let mx = f32::max(pix[0], f32::max(pix[1], pix[2]));
    if mx <= 0.0 {
        Rgbe8Pixel { c: [0, 0, 0], e: 0 }
    } else {
        // let (frac, exp) = mx.frexp(); // unstable yet
        let exp = mx.log2().floor() as i32 + 1;
        let mul = f32::powi(2.0, exp);
        let mut conv = [0u8; 3];
        for (cv, &sv) in conv.iter_mut().zip(pix.iter()) {
            *cv = f32::trunc(sv / mul * 256.0) as u8;
        }
        Rgbe8Pixel {
            c: conv,
            e: (exp + 128) as u8,
        }
    }
}

#[test]
fn to_rgbe8_test() {
    use crate::codecs::hdr::rgbe8;
    let test_cases = vec![rgbe8(0, 0, 0, 0), rgbe8(1, 1, 128, 128)];
    for &pix in &test_cases {
        assert_eq!(pix, to_rgbe8(pix.to_hdr()));
    }
    for mc in 128..255 {
        // TODO: use inclusive range when stable
        let pix = rgbe8(mc, mc, mc, 100);
        assert_eq!(pix, to_rgbe8(pix.to_hdr()));
        let pix = rgbe8(mc, 0, mc, 130);
        assert_eq!(pix, to_rgbe8(pix.to_hdr()));
        let pix = rgbe8(0, 0, mc, 140);
        assert_eq!(pix, to_rgbe8(pix.to_hdr()));
        let pix = rgbe8(1, 0, mc, 150);
        assert_eq!(pix, to_rgbe8(pix.to_hdr()));
        let pix = rgbe8(1, mc, 10, 128);
        assert_eq!(pix, to_rgbe8(pix.to_hdr()));
        for c in 0..255 {
            // Radiance HDR seems to be pre IEEE 754.
            // exponent can be -128 (represented as 0u8), so some colors cannot be represented in normalized f32
            // Let's exclude exponent value of -128 (0u8) from testing
            let pix = rgbe8(1, mc, c, if c == 0 { 1 } else { c });
            assert_eq!(pix, to_rgbe8(pix.to_hdr()));
        }
    }
    fn relative_dist(a: Rgb<f32>, b: Rgb<f32>) -> f32 {
        // maximal difference divided by maximal value
        let max_diff =
            a.0.iter()
                .zip(b.0.iter())
                .fold(0.0, |diff, (&a, &b)| f32::max(diff, (a - b).abs()));
        let max_val =
            a.0.iter()
                .chain(b.0.iter())
                .fold(0.0, |maxv, &a| f32::max(maxv, a));
        if max_val == 0.0 {
            0.0
        } else {
            max_diff / max_val
        }
    }
    let test_values = vec![
        0.000_001, 0.000_02, 0.000_3, 0.004, 0.05, 0.6, 7.0, 80.0, 900.0, 1_000.0, 20_000.0,
        300_000.0,
    ];
    for &r in &test_values {
        for &g in &test_values {
            for &b in &test_values {
                let c1 = Rgb([r, g, b]);
                let c2 = to_rgbe8(c1).to_hdr();
                let rel_dist = relative_dist(c1, c2);
                // Maximal value is normalized to the range 128..256, thus we have 1/128 precision
                assert!(
                    rel_dist <= 1.0 / 128.0,
                    "Relative distance ({}) exceeds 1/128 for {:?} and {:?}",
                    rel_dist,
                    c1,
                    c2
                );
            }
        }
    }
}

#[test]
fn runiterator_test() {
    let data = [];
    let mut run_iter = RunIterator::new(&data[..]);
    assert_eq!(run_iter.next(), None);
    let data = [5];
    let mut run_iter = RunIterator::new(&data[..]);
    assert_eq!(run_iter.next(), Some(Norun(0, 1)));
    assert_eq!(run_iter.next(), None);
    let data = [1, 1];
    let mut run_iter = RunIterator::new(&data[..]);
    assert_eq!(run_iter.next(), Some(Norun(0, 2)));
    assert_eq!(run_iter.next(), None);
    let data = [0, 0, 0];
    let mut run_iter = RunIterator::new(&data[..]);
    assert_eq!(run_iter.next(), Some(Run(0u8, 3)));
    assert_eq!(run_iter.next(), None);
    let data = [0, 0, 1, 1];
    let mut run_iter = RunIterator::new(&data[..]);
    assert_eq!(run_iter.next(), Some(Norun(0, 2)));
    assert_eq!(run_iter.next(), Some(Norun(2, 2)));
    assert_eq!(run_iter.next(), None);
    let data = [0, 0, 0, 1, 1];
    let mut run_iter = RunIterator::new(&data[..]);
    assert_eq!(run_iter.next(), Some(Run(0u8, 3)));
    assert_eq!(run_iter.next(), Some(Norun(3, 2)));
    assert_eq!(run_iter.next(), None);
    let data = [1, 2, 2, 2];
    let mut run_iter = RunIterator::new(&data[..]);
    assert_eq!(run_iter.next(), Some(Norun(0, 1)));
    assert_eq!(run_iter.next(), Some(Run(2u8, 3)));
    assert_eq!(run_iter.next(), None);
    let data = [1, 1, 2, 2, 2];
    let mut run_iter = RunIterator::new(&data[..]);
    assert_eq!(run_iter.next(), Some(Norun(0, 2)));
    assert_eq!(run_iter.next(), Some(Run(2u8, 3)));
    assert_eq!(run_iter.next(), None);
    let data = [2; 128];
    let mut run_iter = RunIterator::new(&data[..]);
    assert_eq!(run_iter.next(), Some(Run(2u8, 127)));
    assert_eq!(run_iter.next(), Some(Norun(127, 1)));
    assert_eq!(run_iter.next(), None);
    let data = [2; 129];
    let mut run_iter = RunIterator::new(&data[..]);
    assert_eq!(run_iter.next(), Some(Run(2u8, 127)));
    assert_eq!(run_iter.next(), Some(Norun(127, 2)));
    assert_eq!(run_iter.next(), None);
    let data = [2; 130];
    let mut run_iter = RunIterator::new(&data[..]);
    assert_eq!(run_iter.next(), Some(Run(2u8, 127)));
    assert_eq!(run_iter.next(), Some(Run(2u8, 3)));
    assert_eq!(run_iter.next(), None);
}

#[test]
fn noruncombine_test() {
    fn a<T>(mut v: Vec<T>, mut other: Vec<T>) -> Vec<T> {
        v.append(&mut other);
        v
    }

    let v = [];
    let mut rsi = NorunCombineIterator::new(&v[..]);
    assert_eq!(rsi.next(), None);

    let v = [1];
    let mut rsi = NorunCombineIterator::new(&v[..]);
    assert_eq!(rsi.next(), Some(Norun(0, 1)));
    assert_eq!(rsi.next(), None);

    let v = [2, 2];
    let mut rsi = NorunCombineIterator::new(&v[..]);
    assert_eq!(rsi.next(), Some(Norun(0, 2)));
    assert_eq!(rsi.next(), None);

    let v = [3, 3, 3];
    let mut rsi = NorunCombineIterator::new(&v[..]);
    assert_eq!(rsi.next(), Some(Run(3, 3)));
    assert_eq!(rsi.next(), None);

    let v = [4, 4, 3, 3, 3];
    let mut rsi = NorunCombineIterator::new(&v[..]);
    assert_eq!(rsi.next(), Some(Norun(0, 2)));
    assert_eq!(rsi.next(), Some(Run(3, 3)));
    assert_eq!(rsi.next(), None);

    let v = vec![40; 400];
    let mut rsi = NorunCombineIterator::new(&v[..]);
    assert_eq!(rsi.next(), Some(Run(40, 127)));
    assert_eq!(rsi.next(), Some(Run(40, 127)));
    assert_eq!(rsi.next(), Some(Run(40, 127)));
    assert_eq!(rsi.next(), Some(Run(40, 19)));
    assert_eq!(rsi.next(), None);

    let v = a(a(vec![5; 3], vec![6; 129]), vec![7, 3, 7, 10, 255]);
    let mut rsi = NorunCombineIterator::new(&v[..]);
    assert_eq!(rsi.next(), Some(Run(5, 3)));
    assert_eq!(rsi.next(), Some(Run(6, 127)));
    assert_eq!(rsi.next(), Some(Norun(130, 7)));
    assert_eq!(rsi.next(), None);

    let v = a(a(vec![5; 2], vec![6; 129]), vec![7, 3, 7, 7, 255]);
    let mut rsi = NorunCombineIterator::new(&v[..]);
    assert_eq!(rsi.next(), Some(Norun(0, 2)));
    assert_eq!(rsi.next(), Some(Run(6, 127)));
    assert_eq!(rsi.next(), Some(Norun(129, 7)));
    assert_eq!(rsi.next(), None);

    let v: Vec<_> = ::std::iter::repeat(())
        .flat_map(|_| (0..2))
        .take(257)
        .collect();
    let mut rsi = NorunCombineIterator::new(&v[..]);
    assert_eq!(rsi.next(), Some(Norun(0, 128)));
    assert_eq!(rsi.next(), Some(Norun(128, 128)));
    assert_eq!(rsi.next(), Some(Norun(256, 1)));
    assert_eq!(rsi.next(), None);
}