#![allow(clippy::too_many_arguments)]
use std::borrow::Cow;
use std::io::{self, Write};
use crate::error::{
ImageError, ImageResult, ParameterError, ParameterErrorKind, UnsupportedError,
UnsupportedErrorKind,
};
use crate::image::{ImageEncoder, ImageFormat};
use crate::utils::clamp;
use crate::{ColorType, GenericImageView, ImageBuffer, Luma, LumaA, Pixel, Rgb, Rgba};
use super::entropy::build_huff_lut_const;
use super::transform;
use crate::traits::PixelWithColorType;
static SOF0: u8 = 0xC0;
static DHT: u8 = 0xC4;
static SOI: u8 = 0xD8;
static EOI: u8 = 0xD9;
static SOS: u8 = 0xDA;
static DQT: u8 = 0xDB;
static APP0: u8 = 0xE0;
#[rustfmt::skip]
static STD_LUMA_QTABLE: [u8; 64] = [
16, 11, 10, 16, 24, 40, 51, 61,
12, 12, 14, 19, 26, 58, 60, 55,
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 56, 68, 109, 103, 77,
24, 35, 55, 64, 81, 104, 113, 92,
49, 64, 78, 87, 103, 121, 120, 101,
72, 92, 95, 98, 112, 100, 103, 99,
];
#[rustfmt::skip]
static STD_CHROMA_QTABLE: [u8; 64] = [
17, 18, 24, 47, 99, 99, 99, 99,
18, 21, 26, 66, 99, 99, 99, 99,
24, 26, 56, 99, 99, 99, 99, 99,
47, 66, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
];
static STD_LUMA_DC_CODE_LENGTHS: [u8; 16] = [
0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
static STD_LUMA_DC_VALUES: [u8; 12] = [
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
];
static STD_LUMA_DC_HUFF_LUT: [(u8, u16); 256] =
build_huff_lut_const(&STD_LUMA_DC_CODE_LENGTHS, &STD_LUMA_DC_VALUES);
static STD_CHROMA_DC_CODE_LENGTHS: [u8; 16] = [
0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
];
static STD_CHROMA_DC_VALUES: [u8; 12] = [
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
];
static STD_CHROMA_DC_HUFF_LUT: [(u8, u16); 256] =
build_huff_lut_const(&STD_CHROMA_DC_CODE_LENGTHS, &STD_CHROMA_DC_VALUES);
static STD_LUMA_AC_CODE_LENGTHS: [u8; 16] = [
0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, 0x7D,
];
static STD_LUMA_AC_VALUES: [u8; 162] = [
0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42, 0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2A, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7,
0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5,
0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1, 0xE2,
0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
0xF9, 0xFA,
];
static STD_LUMA_AC_HUFF_LUT: [(u8, u16); 256] =
build_huff_lut_const(&STD_LUMA_AC_CODE_LENGTHS, &STD_LUMA_AC_VALUES);
static STD_CHROMA_AC_CODE_LENGTHS: [u8; 16] = [
0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, 0x77,
];
static STD_CHROMA_AC_VALUES: [u8; 162] = [
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1, 0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0,
0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24, 0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26,
0x27, 0x28, 0x29, 0x2A, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5,
0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3,
0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA,
0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
0xF9, 0xFA,
];
static STD_CHROMA_AC_HUFF_LUT: [(u8, u16); 256] =
build_huff_lut_const(&STD_CHROMA_AC_CODE_LENGTHS, &STD_CHROMA_AC_VALUES);
static DCCLASS: u8 = 0;
static ACCLASS: u8 = 1;
static LUMADESTINATION: u8 = 0;
static CHROMADESTINATION: u8 = 1;
static LUMAID: u8 = 1;
static CHROMABLUEID: u8 = 2;
static CHROMAREDID: u8 = 3;
#[rustfmt::skip]
static UNZIGZAG: [u8; 64] = [
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
];
#[derive(Copy, Clone)]
struct Component {
id: u8,
h: u8,
v: u8,
tq: u8,
dc_table: u8,
ac_table: u8,
_dc_pred: i32,
}
pub(crate) struct BitWriter<W> {
w: W,
accumulator: u32,
nbits: u8,
}
impl<W: Write> BitWriter<W> {
fn new(w: W) -> Self {
BitWriter {
w,
accumulator: 0,
nbits: 0,
}
}
fn write_bits(&mut self, bits: u16, size: u8) -> io::Result<()> {
if size == 0 {
return Ok(());
}
self.nbits += size;
self.accumulator |= u32::from(bits) << (32 - self.nbits) as usize;
while self.nbits >= 8 {
let byte = self.accumulator >> 24;
self.w.write_all(&[byte as u8])?;
if byte == 0xFF {
self.w.write_all(&[0x00])?;
}
self.nbits -= 8;
self.accumulator <<= 8;
}
Ok(())
}
fn pad_byte(&mut self) -> io::Result<()> {
self.write_bits(0x7F, 7)
}
fn huffman_encode(&mut self, val: u8, table: &[(u8, u16); 256]) -> io::Result<()> {
let (size, code) = table[val as usize];
if size > 16 {
panic!("bad huffman value");
}
self.write_bits(code, size)
}
fn write_block(
&mut self,
block: &[i32; 64],
prevdc: i32,
dctable: &[(u8, u16); 256],
actable: &[(u8, u16); 256],
) -> io::Result<i32> {
let dcval = block[0];
let diff = dcval - prevdc;
let (size, value) = encode_coefficient(diff);
self.huffman_encode(size, dctable)?;
self.write_bits(value, size)?;
let mut zero_run = 0;
for &k in &UNZIGZAG[1..] {
if block[k as usize] == 0 {
zero_run += 1;
} else {
while zero_run > 15 {
self.huffman_encode(0xF0, actable)?;
zero_run -= 16;
}
let (size, value) = encode_coefficient(block[k as usize]);
let symbol = (zero_run << 4) | size;
self.huffman_encode(symbol, actable)?;
self.write_bits(value, size)?;
zero_run = 0;
}
}
if block[UNZIGZAG[63] as usize] == 0 {
self.huffman_encode(0x00, actable)?;
}
Ok(dcval)
}
fn write_marker(&mut self, marker: u8) -> io::Result<()> {
self.w.write_all(&[0xFF, marker])
}
fn write_segment(&mut self, marker: u8, data: &[u8]) -> io::Result<()> {
self.w.write_all(&[0xFF, marker])?;
self.w.write_all(&(data.len() as u16 + 2).to_be_bytes())?;
self.w.write_all(data)
}
}
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum PixelDensityUnit {
PixelAspectRatio,
Inches,
Centimeters,
}
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct PixelDensity {
pub density: (u16, u16),
pub unit: PixelDensityUnit,
}
impl PixelDensity {
pub fn dpi(density: u16) -> Self {
PixelDensity {
density: (density, density),
unit: PixelDensityUnit::Inches,
}
}
}
impl Default for PixelDensity {
fn default() -> Self {
PixelDensity {
density: (1, 1),
unit: PixelDensityUnit::PixelAspectRatio,
}
}
}
pub struct JpegEncoder<W> {
writer: BitWriter<W>,
components: Vec<Component>,
tables: Vec<[u8; 64]>,
luma_dctable: Cow<'static, [(u8, u16); 256]>,
luma_actable: Cow<'static, [(u8, u16); 256]>,
chroma_dctable: Cow<'static, [(u8, u16); 256]>,
chroma_actable: Cow<'static, [(u8, u16); 256]>,
pixel_density: PixelDensity,
}
impl<W: Write> JpegEncoder<W> {
pub fn new(w: W) -> JpegEncoder<W> {
JpegEncoder::new_with_quality(w, 75)
}
pub fn new_with_quality(w: W, quality: u8) -> JpegEncoder<W> {
let components = vec![
Component {
id: LUMAID,
h: 1,
v: 1,
tq: LUMADESTINATION,
dc_table: LUMADESTINATION,
ac_table: LUMADESTINATION,
_dc_pred: 0,
},
Component {
id: CHROMABLUEID,
h: 1,
v: 1,
tq: CHROMADESTINATION,
dc_table: CHROMADESTINATION,
ac_table: CHROMADESTINATION,
_dc_pred: 0,
},
Component {
id: CHROMAREDID,
h: 1,
v: 1,
tq: CHROMADESTINATION,
dc_table: CHROMADESTINATION,
ac_table: CHROMADESTINATION,
_dc_pred: 0,
},
];
let scale = u32::from(clamp(quality, 1, 100));
let scale = if scale < 50 {
5000 / scale
} else {
200 - scale * 2
};
let mut tables = vec![STD_LUMA_QTABLE, STD_CHROMA_QTABLE];
tables.iter_mut().for_each(|t| {
t.iter_mut().for_each(|v| {
*v = clamp(
(u32::from(*v) * scale + 50) / 100,
1,
u32::from(u8::max_value()),
) as u8;
})
});
JpegEncoder {
writer: BitWriter::new(w),
components,
tables,
luma_dctable: Cow::Borrowed(&STD_LUMA_DC_HUFF_LUT),
luma_actable: Cow::Borrowed(&STD_LUMA_AC_HUFF_LUT),
chroma_dctable: Cow::Borrowed(&STD_CHROMA_DC_HUFF_LUT),
chroma_actable: Cow::Borrowed(&STD_CHROMA_AC_HUFF_LUT),
pixel_density: PixelDensity::default(),
}
}
pub fn set_pixel_density(&mut self, pixel_density: PixelDensity) {
self.pixel_density = pixel_density;
}
#[track_caller]
pub fn encode(
&mut self,
image: &[u8],
width: u32,
height: u32,
color_type: ColorType,
) -> ImageResult<()> {
let expected_buffer_len =
(width as u64 * height as u64).saturating_mul(color_type.bytes_per_pixel() as u64);
assert_eq!(
expected_buffer_len,
image.len() as u64,
"Invalid buffer length: expected {expected_buffer_len} got {} for {width}x{height} image",
image.len(),
);
match color_type {
ColorType::L8 => {
let image: ImageBuffer<Luma<_>, _> =
ImageBuffer::from_raw(width, height, image).unwrap();
self.encode_image(&image)
}
ColorType::La8 => {
let image: ImageBuffer<LumaA<_>, _> =
ImageBuffer::from_raw(width, height, image).unwrap();
self.encode_image(&image)
}
ColorType::Rgb8 => {
let image: ImageBuffer<Rgb<_>, _> =
ImageBuffer::from_raw(width, height, image).unwrap();
self.encode_image(&image)
}
ColorType::Rgba8 => {
let image: ImageBuffer<Rgba<_>, _> =
ImageBuffer::from_raw(width, height, image).unwrap();
self.encode_image(&image)
}
_ => Err(ImageError::Unsupported(
UnsupportedError::from_format_and_kind(
ImageFormat::Jpeg.into(),
UnsupportedErrorKind::Color(color_type.into()),
),
)),
}
}
pub fn encode_image<I: GenericImageView>(&mut self, image: &I) -> ImageResult<()>
where
I::Pixel: PixelWithColorType,
{
let n = I::Pixel::CHANNEL_COUNT;
let color_type = I::Pixel::COLOR_TYPE;
let num_components = if n == 1 || n == 2 { 1 } else { 3 };
self.writer.write_marker(SOI)?;
let mut buf = Vec::new();
build_jfif_header(&mut buf, self.pixel_density);
self.writer.write_segment(APP0, &buf)?;
build_frame_header(
&mut buf,
8,
u16::try_from(image.width()).map_err(|_| {
ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::DimensionMismatch,
))
})?,
u16::try_from(image.height()).map_err(|_| {
ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::DimensionMismatch,
))
})?,
&self.components[..num_components],
);
self.writer.write_segment(SOF0, &buf)?;
assert_eq!(self.tables.len(), 2);
let numtables = if num_components == 1 { 1 } else { 2 };
for (i, table) in self.tables[..numtables].iter().enumerate() {
build_quantization_segment(&mut buf, 8, i as u8, table);
self.writer.write_segment(DQT, &buf)?;
}
build_huffman_segment(
&mut buf,
DCCLASS,
LUMADESTINATION,
&STD_LUMA_DC_CODE_LENGTHS,
&STD_LUMA_DC_VALUES,
);
self.writer.write_segment(DHT, &buf)?;
build_huffman_segment(
&mut buf,
ACCLASS,
LUMADESTINATION,
&STD_LUMA_AC_CODE_LENGTHS,
&STD_LUMA_AC_VALUES,
);
self.writer.write_segment(DHT, &buf)?;
if num_components == 3 {
build_huffman_segment(
&mut buf,
DCCLASS,
CHROMADESTINATION,
&STD_CHROMA_DC_CODE_LENGTHS,
&STD_CHROMA_DC_VALUES,
);
self.writer.write_segment(DHT, &buf)?;
build_huffman_segment(
&mut buf,
ACCLASS,
CHROMADESTINATION,
&STD_CHROMA_AC_CODE_LENGTHS,
&STD_CHROMA_AC_VALUES,
);
self.writer.write_segment(DHT, &buf)?;
}
build_scan_header(&mut buf, &self.components[..num_components]);
self.writer.write_segment(SOS, &buf)?;
if color_type.has_color() {
self.encode_rgb(image)
} else {
self.encode_gray(image)
}?;
self.writer.pad_byte()?;
self.writer.write_marker(EOI)?;
Ok(())
}
fn encode_gray<I: GenericImageView>(&mut self, image: &I) -> io::Result<()> {
let mut yblock = [0u8; 64];
let mut y_dcprev = 0;
let mut dct_yblock = [0i32; 64];
for y in (0..image.height()).step_by(8) {
for x in (0..image.width()).step_by(8) {
copy_blocks_gray(image, x, y, &mut yblock);
transform::fdct(&yblock, &mut dct_yblock);
for (i, dct) in dct_yblock.iter_mut().enumerate() {
*dct = ((*dct / 8) as f32 / f32::from(self.tables[0][i])).round() as i32;
}
let la = &*self.luma_actable;
let ld = &*self.luma_dctable;
y_dcprev = self.writer.write_block(&dct_yblock, y_dcprev, ld, la)?;
}
}
Ok(())
}
fn encode_rgb<I: GenericImageView>(&mut self, image: &I) -> io::Result<()> {
let mut y_dcprev = 0;
let mut cb_dcprev = 0;
let mut cr_dcprev = 0;
let mut dct_yblock = [0i32; 64];
let mut dct_cb_block = [0i32; 64];
let mut dct_cr_block = [0i32; 64];
let mut yblock = [0u8; 64];
let mut cb_block = [0u8; 64];
let mut cr_block = [0u8; 64];
for y in (0..image.height()).step_by(8) {
for x in (0..image.width()).step_by(8) {
copy_blocks_ycbcr(image, x, y, &mut yblock, &mut cb_block, &mut cr_block);
transform::fdct(&yblock, &mut dct_yblock);
transform::fdct(&cb_block, &mut dct_cb_block);
transform::fdct(&cr_block, &mut dct_cr_block);
for i in 0usize..64 {
dct_yblock[i] =
((dct_yblock[i] / 8) as f32 / f32::from(self.tables[0][i])).round() as i32;
dct_cb_block[i] = ((dct_cb_block[i] / 8) as f32 / f32::from(self.tables[1][i]))
.round() as i32;
dct_cr_block[i] = ((dct_cr_block[i] / 8) as f32 / f32::from(self.tables[1][i]))
.round() as i32;
}
let la = &*self.luma_actable;
let ld = &*self.luma_dctable;
let cd = &*self.chroma_dctable;
let ca = &*self.chroma_actable;
y_dcprev = self.writer.write_block(&dct_yblock, y_dcprev, ld, la)?;
cb_dcprev = self.writer.write_block(&dct_cb_block, cb_dcprev, cd, ca)?;
cr_dcprev = self.writer.write_block(&dct_cr_block, cr_dcprev, cd, ca)?;
}
}
Ok(())
}
}
impl<W: Write> ImageEncoder for JpegEncoder<W> {
#[track_caller]
fn write_image(
mut self,
buf: &[u8],
width: u32,
height: u32,
color_type: ColorType,
) -> ImageResult<()> {
self.encode(buf, width, height, color_type)
}
}
fn build_jfif_header(m: &mut Vec<u8>, density: PixelDensity) {
m.clear();
m.extend_from_slice(b"JFIF");
m.extend_from_slice(&[
0,
0x01,
0x02,
match density.unit {
PixelDensityUnit::PixelAspectRatio => 0x00,
PixelDensityUnit::Inches => 0x01,
PixelDensityUnit::Centimeters => 0x02,
},
]);
m.extend_from_slice(&density.density.0.to_be_bytes());
m.extend_from_slice(&density.density.1.to_be_bytes());
m.extend_from_slice(&[0, 0]);
}
fn build_frame_header(
m: &mut Vec<u8>,
precision: u8,
width: u16,
height: u16,
components: &[Component],
) {
m.clear();
m.push(precision);
m.extend_from_slice(&height.to_be_bytes());
m.extend_from_slice(&width.to_be_bytes());
m.push(components.len() as u8);
for &comp in components.iter() {
let hv = (comp.h << 4) | comp.v;
m.extend_from_slice(&[comp.id, hv, comp.tq]);
}
}
fn build_scan_header(m: &mut Vec<u8>, components: &[Component]) {
m.clear();
m.push(components.len() as u8);
for &comp in components.iter() {
let tables = (comp.dc_table << 4) | comp.ac_table;
m.extend_from_slice(&[comp.id, tables]);
}
m.extend_from_slice(&[0, 63, 0]);
}
fn build_huffman_segment(
m: &mut Vec<u8>,
class: u8,
destination: u8,
numcodes: &[u8; 16],
values: &[u8],
) {
m.clear();
let tcth = (class << 4) | destination;
m.push(tcth);
m.extend_from_slice(numcodes);
let sum: usize = numcodes.iter().map(|&x| x as usize).sum();
assert_eq!(sum, values.len());
m.extend_from_slice(values);
}
fn build_quantization_segment(m: &mut Vec<u8>, precision: u8, identifier: u8, qtable: &[u8; 64]) {
m.clear();
let p = if precision == 8 { 0 } else { 1 };
let pqtq = (p << 4) | identifier;
m.push(pqtq);
for &i in &UNZIGZAG[..] {
m.push(qtable[i as usize]);
}
}
fn encode_coefficient(coefficient: i32) -> (u8, u16) {
let mut magnitude = coefficient.unsigned_abs() as u16;
let mut num_bits = 0u8;
while magnitude > 0 {
magnitude >>= 1;
num_bits += 1;
}
let mask = (1 << num_bits as usize) - 1;
let val = if coefficient < 0 {
(coefficient - 1) as u16 & mask
} else {
coefficient as u16 & mask
};
(num_bits, val)
}
#[inline]
fn rgb_to_ycbcr<P: Pixel>(pixel: P) -> (u8, u8, u8) {
use crate::traits::Primitive;
use num_traits::cast::ToPrimitive;
let [r, g, b] = pixel.to_rgb().0;
let max: f32 = P::Subpixel::DEFAULT_MAX_VALUE.to_f32().unwrap();
let r: f32 = r.to_f32().unwrap();
let g: f32 = g.to_f32().unwrap();
let b: f32 = b.to_f32().unwrap();
let y = 76.245 / max * r + 149.685 / max * g + 29.07 / max * b;
let cb = -43.0185 / max * r - 84.4815 / max * g + 127.5 / max * b + 128.;
let cr = 127.5 / max * r - 106.7685 / max * g - 20.7315 / max * b + 128.;
(y as u8, cb as u8, cr as u8)
}
#[inline]
fn pixel_at_or_near<I: GenericImageView>(source: &I, x: u32, y: u32) -> I::Pixel {
if source.in_bounds(x, y) {
source.get_pixel(x, y)
} else {
source.get_pixel(x.min(source.width() - 1), y.min(source.height() - 1))
}
}
fn copy_blocks_ycbcr<I: GenericImageView>(
source: &I,
x0: u32,
y0: u32,
yb: &mut [u8; 64],
cbb: &mut [u8; 64],
crb: &mut [u8; 64],
) {
for y in 0..8 {
for x in 0..8 {
let pixel = pixel_at_or_near(source, x + x0, y + y0);
let (yc, cb, cr) = rgb_to_ycbcr(pixel);
yb[(y * 8 + x) as usize] = yc;
cbb[(y * 8 + x) as usize] = cb;
crb[(y * 8 + x) as usize] = cr;
}
}
}
fn copy_blocks_gray<I: GenericImageView>(source: &I, x0: u32, y0: u32, gb: &mut [u8; 64]) {
use num_traits::cast::ToPrimitive;
for y in 0..8 {
for x in 0..8 {
let pixel = pixel_at_or_near(source, x0 + x, y0 + y);
let [luma] = pixel.to_luma().0;
gb[(y * 8 + x) as usize] = luma.to_u8().unwrap();
}
}
}
#[cfg(test)]
mod tests {
use std::io::Cursor;
#[cfg(feature = "benchmarks")]
extern crate test;
#[cfg(feature = "benchmarks")]
use test::Bencher;
use crate::color::ColorType;
use crate::error::ParameterErrorKind::DimensionMismatch;
use crate::image::ImageDecoder;
use crate::{ImageEncoder, ImageError};
use super::super::JpegDecoder;
use super::{
build_frame_header, build_huffman_segment, build_jfif_header, build_quantization_segment,
build_scan_header, Component, JpegEncoder, PixelDensity, DCCLASS, LUMADESTINATION,
STD_LUMA_DC_CODE_LENGTHS, STD_LUMA_DC_VALUES,
};
fn decode(encoded: &[u8]) -> Vec<u8> {
let decoder = JpegDecoder::new(Cursor::new(encoded)).expect("Could not decode image");
let mut decoded = vec![0; decoder.total_bytes() as usize];
decoder
.read_image(&mut decoded)
.expect("Could not decode image");
decoded
}
#[test]
fn roundtrip_sanity_check() {
let img = [255u8, 0, 0];
let mut encoded_img = Vec::new();
{
let encoder = JpegEncoder::new_with_quality(&mut encoded_img, 100);
encoder
.write_image(&img, 1, 1, ColorType::Rgb8)
.expect("Could not encode image");
}
{
let decoded = decode(&encoded_img);
assert_eq!(3, decoded.len());
assert!(decoded[0] > 0x80);
assert!(decoded[1] < 0x80);
assert!(decoded[2] < 0x80);
}
}
#[test]
fn grayscale_roundtrip_sanity_check() {
let img = [255u8, 0, 0, 255];
let mut encoded_img = Vec::new();
{
let encoder = JpegEncoder::new_with_quality(&mut encoded_img, 100);
encoder
.write_image(&img[..], 2, 2, ColorType::L8)
.expect("Could not encode image");
}
{
let decoded = decode(&encoded_img);
assert_eq!(4, decoded.len());
assert!(decoded[0] > 0x80);
assert!(decoded[1] < 0x80);
assert!(decoded[2] < 0x80);
assert!(decoded[3] > 0x80);
}
}
#[test]
fn jfif_header_density_check() {
let mut buffer = Vec::new();
build_jfif_header(&mut buffer, PixelDensity::dpi(300));
assert_eq!(
buffer,
vec![
b'J',
b'F',
b'I',
b'F',
0,
1,
2, 1, 300u16.to_be_bytes()[0],
300u16.to_be_bytes()[1],
300u16.to_be_bytes()[0],
300u16.to_be_bytes()[1],
0,
0, ]
);
}
#[test]
fn test_image_too_large() {
let img = [0; 65_536];
let mut encoded = Vec::new();
let encoder = JpegEncoder::new_with_quality(&mut encoded, 100);
let result = encoder.write_image(&img, 65_536, 1, ColorType::L8);
match result {
Err(ImageError::Parameter(err)) => {
assert_eq!(err.kind(), DimensionMismatch)
}
other => {
panic!(
"Encoding an image that is too large should return a DimensionError \
it returned {:?} instead",
other
)
}
}
}
#[test]
fn test_build_jfif_header() {
let mut buf = vec![];
let density = PixelDensity::dpi(100);
build_jfif_header(&mut buf, density);
assert_eq!(
buf,
[0x4A, 0x46, 0x49, 0x46, 0x00, 0x01, 0x02, 0x01, 0, 100, 0, 100, 0, 0]
);
}
#[test]
fn test_build_frame_header() {
let mut buf = vec![];
let components = vec![
Component {
id: 1,
h: 1,
v: 1,
tq: 5,
dc_table: 5,
ac_table: 5,
_dc_pred: 0,
},
Component {
id: 2,
h: 1,
v: 1,
tq: 4,
dc_table: 4,
ac_table: 4,
_dc_pred: 0,
},
];
build_frame_header(&mut buf, 5, 100, 150, &components);
assert_eq!(
buf,
[5, 0, 150, 0, 100, 2, 1, 1 << 4 | 1, 5, 2, 1 << 4 | 1, 4]
);
}
#[test]
fn test_build_scan_header() {
let mut buf = vec![];
let components = vec![
Component {
id: 1,
h: 1,
v: 1,
tq: 5,
dc_table: 5,
ac_table: 5,
_dc_pred: 0,
},
Component {
id: 2,
h: 1,
v: 1,
tq: 4,
dc_table: 4,
ac_table: 4,
_dc_pred: 0,
},
];
build_scan_header(&mut buf, &components);
assert_eq!(buf, [2, 1, 5 << 4 | 5, 2, 4 << 4 | 4, 0, 63, 0]);
}
#[test]
fn test_build_huffman_segment() {
let mut buf = vec![];
build_huffman_segment(
&mut buf,
DCCLASS,
LUMADESTINATION,
&STD_LUMA_DC_CODE_LENGTHS,
&STD_LUMA_DC_VALUES,
);
assert_eq!(
buf,
vec![
0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11
]
);
}
#[test]
fn test_build_quantization_segment() {
let mut buf = vec![];
let qtable = [0u8; 64];
build_quantization_segment(&mut buf, 8, 1, &qtable);
let mut expected = vec![];
expected.push(1);
expected.extend_from_slice(&[0; 64]);
assert_eq!(buf, expected)
}
#[cfg(feature = "benchmarks")]
#[bench]
fn bench_jpeg_encoder_new(b: &mut Bencher) {
b.iter(|| {
let mut y = vec![];
let _x = JpegEncoder::new(&mut y);
})
}
}