image/codecs/openexr.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
//! Decoding of OpenEXR (.exr) Images
//!
//! OpenEXR is an image format that is widely used, especially in VFX,
//! because it supports lossless and lossy compression for float data.
//!
//! This decoder only supports RGB and RGBA images.
//! If an image does not contain alpha information,
//! it is defaulted to `1.0` (no transparency).
//!
//! # Related Links
//! * <https://www.openexr.com/documentation.html> - The OpenEXR reference.
//!
//!
//! Current limitations (July 2021):
//! - only pixel type `Rgba32F` and `Rgba16F` are supported
//! - only non-deep rgb/rgba files supported, no conversion from/to YCbCr or similar
//! - only the first non-deep rgb layer is used
//! - only the largest mip map level is used
//! - pixels outside display window are lost
//! - meta data is lost
//! - dwaa/dwab compressed images not supported yet by the exr library
//! - (chroma) subsampling not supported yet by the exr library
use exr::prelude::*;
use crate::error::{DecodingError, EncodingError, ImageFormatHint};
use crate::image::decoder_to_vec;
use crate::{
ColorType, ExtendedColorType, ImageDecoder, ImageEncoder, ImageError, ImageFormat, ImageResult,
Progress,
};
use std::io::{Cursor, Read, Seek, Write};
/// An OpenEXR decoder. Immediately reads the meta data from the file.
#[derive(Debug)]
pub struct OpenExrDecoder<R> {
exr_reader: exr::block::reader::Reader<R>,
// select a header that is rgb and not deep
header_index: usize,
// decode either rgb or rgba.
// can be specified to include or discard alpha channels.
// if none, the alpha channel will only be allocated where the file contains data for it.
alpha_preference: Option<bool>,
alpha_present_in_file: bool,
}
impl<R: Read + Seek> OpenExrDecoder<R> {
/// Create a decoder. Consumes the first few bytes of the source to extract image dimensions.
/// Assumes the reader is buffered. In most cases,
/// you should wrap your reader in a `BufReader` for best performance.
/// Loads an alpha channel if the file has alpha samples.
/// Use `with_alpha_preference` if you want to load or not load alpha unconditionally.
pub fn new(source: R) -> ImageResult<Self> {
Self::with_alpha_preference(source, None)
}
/// Create a decoder. Consumes the first few bytes of the source to extract image dimensions.
/// Assumes the reader is buffered. In most cases,
/// you should wrap your reader in a `BufReader` for best performance.
/// If alpha preference is specified, an alpha channel will
/// always be present or always be not present in the returned image.
/// If alpha preference is none, the alpha channel will only be returned if it is found in the file.
pub fn with_alpha_preference(source: R, alpha_preference: Option<bool>) -> ImageResult<Self> {
// read meta data, then wait for further instructions, keeping the file open and ready
let exr_reader = exr::block::read(source, false).map_err(to_image_err)?;
let header_index = exr_reader
.headers()
.iter()
.position(|header| {
// check if r/g/b exists in the channels
let has_rgb = ["R", "G", "B"]
.iter()
.all(|&required| // alpha will be optional
header.channels.find_index_of_channel(&Text::from(required)).is_some());
// we currently dont support deep images, or images with other color spaces than rgb
!header.deep && has_rgb
})
.ok_or_else(|| {
ImageError::Decoding(DecodingError::new(
ImageFormatHint::Exact(ImageFormat::OpenExr),
"image does not contain non-deep rgb channels",
))
})?;
let has_alpha = exr_reader.headers()[header_index]
.channels
.find_index_of_channel(&Text::from("A"))
.is_some();
Ok(Self {
alpha_preference,
exr_reader,
header_index,
alpha_present_in_file: has_alpha,
})
}
// does not leak exrs-specific meta data into public api, just does it for this module
fn selected_exr_header(&self) -> &exr::meta::header::Header {
&self.exr_reader.meta_data().headers[self.header_index]
}
}
impl<'a, R: 'a + Read + Seek> ImageDecoder<'a> for OpenExrDecoder<R> {
type Reader = Cursor<Vec<u8>>;
fn dimensions(&self) -> (u32, u32) {
let size = self
.selected_exr_header()
.shared_attributes
.display_window
.size;
(size.width() as u32, size.height() as u32)
}
fn color_type(&self) -> ColorType {
let returns_alpha = self.alpha_preference.unwrap_or(self.alpha_present_in_file);
if returns_alpha {
ColorType::Rgba32F
} else {
ColorType::Rgb32F
}
}
fn original_color_type(&self) -> ExtendedColorType {
if self.alpha_present_in_file {
ExtendedColorType::Rgba32F
} else {
ExtendedColorType::Rgb32F
}
}
/// Use `read_image` instead if possible,
/// as this method creates a whole new buffer just to contain the entire image.
fn into_reader(self) -> ImageResult<Self::Reader> {
Ok(Cursor::new(decoder_to_vec(self)?))
}
fn scanline_bytes(&self) -> u64 {
// we cannot always read individual scan lines for every file,
// as the tiles or lines in the file could be in random or reversed order.
// therefore we currently read all lines at once
// Todo: optimize for specific exr.line_order?
self.total_bytes()
}
// reads with or without alpha, depending on `self.alpha_preference` and `self.alpha_present_in_file`
fn read_image_with_progress<F: Fn(Progress)>(
self,
unaligned_bytes: &mut [u8],
progress_callback: F,
) -> ImageResult<()> {
let blocks_in_header = self.selected_exr_header().chunk_count as u64;
let channel_count = self.color_type().channel_count() as usize;
let display_window = self.selected_exr_header().shared_attributes.display_window;
let data_window_offset =
self.selected_exr_header().own_attributes.layer_position - display_window.position;
{
// check whether the buffer is large enough for the dimensions of the file
let (width, height) = self.dimensions();
let bytes_per_pixel = self.color_type().bytes_per_pixel() as usize;
let expected_byte_count = (width as usize)
.checked_mul(height as usize)
.and_then(|size| size.checked_mul(bytes_per_pixel));
// if the width and height does not match the length of the bytes, the arguments are invalid
let has_invalid_size_or_overflowed = expected_byte_count
.map(|expected_byte_count| unaligned_bytes.len() != expected_byte_count)
// otherwise, size calculation overflowed, is bigger than memory,
// therefore data is too small, so it is invalid.
.unwrap_or(true);
if has_invalid_size_or_overflowed {
panic!("byte buffer not large enough for the specified dimensions and f32 pixels");
}
}
let result = read()
.no_deep_data()
.largest_resolution_level()
.rgba_channels(
move |_size, _channels| vec![0_f32; display_window.size.area() * channel_count],
move |buffer, index_in_data_window, (r, g, b, a_or_1): (f32, f32, f32, f32)| {
let index_in_display_window =
index_in_data_window.to_i32() + data_window_offset;
// only keep pixels inside the data window
// TODO filter chunks based on this
if index_in_display_window.x() >= 0
&& index_in_display_window.y() >= 0
&& index_in_display_window.x() < display_window.size.width() as i32
&& index_in_display_window.y() < display_window.size.height() as i32
{
let index_in_display_window =
index_in_display_window.to_usize("index bug").unwrap();
let first_f32_index =
index_in_display_window.flat_index_for_size(display_window.size);
buffer[first_f32_index * channel_count
..(first_f32_index + 1) * channel_count]
.copy_from_slice(&[r, g, b, a_or_1][0..channel_count]);
// TODO white point chromaticities + srgb/linear conversion?
}
},
)
.first_valid_layer() // TODO select exact layer by self.header_index?
.all_attributes()
.on_progress(|progress| {
progress_callback(
Progress::new(
(progress * blocks_in_header as f64) as u64,
blocks_in_header,
), // TODO precision errors?
);
})
.from_chunks(self.exr_reader)
.map_err(to_image_err)?;
// TODO this copy is strictly not necessary, but the exr api is a little too simple for reading into a borrowed target slice
// this cast is safe and works with any alignment, as bytes are copied, and not f32 values.
// note: buffer slice length is checked in the beginning of this function and will be correct at this point
unaligned_bytes.copy_from_slice(bytemuck::cast_slice(
result.layer_data.channel_data.pixels.as_slice(),
));
Ok(())
}
}
/// Write a raw byte buffer of pixels,
/// returning an Error if it has an invalid length.
///
/// Assumes the writer is buffered. In most cases,
/// you should wrap your writer in a `BufWriter` for best performance.
// private. access via `OpenExrEncoder`
fn write_buffer(
mut buffered_write: impl Write + Seek,
unaligned_bytes: &[u8],
width: u32,
height: u32,
color_type: ColorType,
) -> ImageResult<()> {
let width = width as usize;
let height = height as usize;
{
// check whether the buffer is large enough for the specified dimensions
let expected_byte_count = width
.checked_mul(height)
.and_then(|size| size.checked_mul(color_type.bytes_per_pixel() as usize));
// if the width and height does not match the length of the bytes, the arguments are invalid
let has_invalid_size_or_overflowed = expected_byte_count
.map(|expected_byte_count| unaligned_bytes.len() < expected_byte_count)
// otherwise, size calculation overflowed, is bigger than memory,
// therefore data is too small, so it is invalid.
.unwrap_or(true);
if has_invalid_size_or_overflowed {
return Err(ImageError::Encoding(EncodingError::new(
ImageFormatHint::Exact(ImageFormat::OpenExr),
"byte buffer not large enough for the specified dimensions and f32 pixels",
)));
}
}
let bytes_per_pixel = color_type.bytes_per_pixel() as usize;
match color_type {
ColorType::Rgb32F => {
exr::prelude::Image // TODO compression method zip??
::from_channels(
(width, height),
SpecificChannels::rgb(|pixel: Vec2<usize>| {
let pixel_index = pixel.flat_index_for_size(Vec2(width, height));
let start_byte = pixel_index * bytes_per_pixel;
let [r, g, b]: [f32; 3] = bytemuck::pod_read_unaligned(
&unaligned_bytes[start_byte..start_byte + bytes_per_pixel],
);
(r, g, b)
}),
)
.write()
// .on_progress(|progress| todo!())
.to_buffered(&mut buffered_write)
.map_err(to_image_err)?;
}
ColorType::Rgba32F => {
exr::prelude::Image // TODO compression method zip??
::from_channels(
(width, height),
SpecificChannels::rgba(|pixel: Vec2<usize>| {
let pixel_index = pixel.flat_index_for_size(Vec2(width, height));
let start_byte = pixel_index * bytes_per_pixel;
let [r, g, b, a]: [f32; 4] = bytemuck::pod_read_unaligned(
&unaligned_bytes[start_byte..start_byte + bytes_per_pixel],
);
(r, g, b, a)
}),
)
.write()
// .on_progress(|progress| todo!())
.to_buffered(&mut buffered_write)
.map_err(to_image_err)?;
}
// TODO other color types and channel types
unsupported_color_type => {
return Err(ImageError::Encoding(EncodingError::new(
ImageFormatHint::Exact(ImageFormat::OpenExr),
format!(
"writing color type {:?} not yet supported",
unsupported_color_type
),
)))
}
}
Ok(())
}
// TODO is this struct and trait actually used anywhere?
/// A thin wrapper that implements `ImageEncoder` for OpenEXR images. Will behave like `image::codecs::openexr::write_buffer`.
#[derive(Debug)]
pub struct OpenExrEncoder<W>(W);
impl<W> OpenExrEncoder<W> {
/// Create an `ImageEncoder`. Does not write anything yet. Writing later will behave like `image::codecs::openexr::write_buffer`.
// use constructor, not public field, for future backwards-compatibility
pub fn new(write: W) -> Self {
Self(write)
}
}
impl<W> ImageEncoder for OpenExrEncoder<W>
where
W: Write + Seek,
{
/// Writes the complete image.
///
/// Assumes the writer is buffered. In most cases, you should wrap your writer in a `BufWriter`
/// for best performance.
#[track_caller]
fn write_image(
self,
buf: &[u8],
width: u32,
height: u32,
color_type: ColorType,
) -> ImageResult<()> {
let expected_buffer_len =
(width as u64 * height as u64).saturating_mul(color_type.bytes_per_pixel() as u64);
assert_eq!(
expected_buffer_len,
buf.len() as u64,
"Invalid buffer length: expected {expected_buffer_len} got {} for {width}x{height} image",
buf.len(),
);
write_buffer(self.0, buf, width, height, color_type)
}
}
fn to_image_err(exr_error: Error) -> ImageError {
ImageError::Decoding(DecodingError::new(
ImageFormatHint::Exact(ImageFormat::OpenExr),
exr_error.to_string(),
))
}
#[cfg(test)]
mod test {
use super::*;
use std::io::BufReader;
use std::path::{Path, PathBuf};
use crate::buffer_::{Rgb32FImage, Rgba32FImage};
use crate::error::{LimitError, LimitErrorKind};
use crate::{ImageBuffer, Rgb, Rgba};
const BASE_PATH: &[&str] = &[".", "tests", "images", "exr"];
/// Write an `Rgb32FImage`.
/// Assumes the writer is buffered. In most cases,
/// you should wrap your writer in a `BufWriter` for best performance.
fn write_rgb_image(write: impl Write + Seek, image: &Rgb32FImage) -> ImageResult<()> {
write_buffer(
write,
bytemuck::cast_slice(image.as_raw().as_slice()),
image.width(),
image.height(),
ColorType::Rgb32F,
)
}
/// Write an `Rgba32FImage`.
/// Assumes the writer is buffered. In most cases,
/// you should wrap your writer in a `BufWriter` for best performance.
fn write_rgba_image(write: impl Write + Seek, image: &Rgba32FImage) -> ImageResult<()> {
write_buffer(
write,
bytemuck::cast_slice(image.as_raw().as_slice()),
image.width(),
image.height(),
ColorType::Rgba32F,
)
}
/// Read the file from the specified path into an `Rgba32FImage`.
fn read_as_rgba_image_from_file(path: impl AsRef<Path>) -> ImageResult<Rgba32FImage> {
read_as_rgba_image(BufReader::new(std::fs::File::open(path)?))
}
/// Read the file from the specified path into an `Rgb32FImage`.
fn read_as_rgb_image_from_file(path: impl AsRef<Path>) -> ImageResult<Rgb32FImage> {
read_as_rgb_image(BufReader::new(std::fs::File::open(path)?))
}
/// Read the file from the specified path into an `Rgb32FImage`.
fn read_as_rgb_image(read: impl Read + Seek) -> ImageResult<Rgb32FImage> {
let decoder = OpenExrDecoder::with_alpha_preference(read, Some(false))?;
let (width, height) = decoder.dimensions();
let buffer: Vec<f32> = decoder_to_vec(decoder)?;
ImageBuffer::from_raw(width, height, buffer)
// this should be the only reason for the "from raw" call to fail,
// even though such a large allocation would probably cause an error much earlier
.ok_or_else(|| {
ImageError::Limits(LimitError::from_kind(LimitErrorKind::InsufficientMemory))
})
}
/// Read the file from the specified path into an `Rgba32FImage`.
fn read_as_rgba_image(read: impl Read + Seek) -> ImageResult<Rgba32FImage> {
let decoder = OpenExrDecoder::with_alpha_preference(read, Some(true))?;
let (width, height) = decoder.dimensions();
let buffer: Vec<f32> = decoder_to_vec(decoder)?;
ImageBuffer::from_raw(width, height, buffer)
// this should be the only reason for the "from raw" call to fail,
// even though such a large allocation would probably cause an error much earlier
.ok_or_else(|| {
ImageError::Limits(LimitError::from_kind(LimitErrorKind::InsufficientMemory))
})
}
#[test]
fn compare_exr_hdr() {
if cfg!(not(feature = "hdr")) {
eprintln!("warning: to run all the openexr tests, activate the hdr feature flag");
}
#[cfg(feature = "hdr")]
{
let folder = BASE_PATH.iter().collect::<PathBuf>();
let reference_path = folder.clone().join("overexposed gradient.hdr");
let exr_path = folder
.clone()
.join("overexposed gradient - data window equals display window.exr");
let hdr: Vec<Rgb<f32>> = crate::codecs::hdr::HdrDecoder::new(std::io::BufReader::new(
std::fs::File::open(reference_path).unwrap(),
))
.unwrap()
.read_image_hdr()
.unwrap();
let exr_pixels: Rgb32FImage = read_as_rgb_image_from_file(exr_path).unwrap();
assert_eq!(
exr_pixels.dimensions().0 * exr_pixels.dimensions().1,
hdr.len() as u32
);
for (expected, found) in hdr.iter().zip(exr_pixels.pixels()) {
for (expected, found) in expected.0.iter().zip(found.0.iter()) {
// the large tolerance seems to be caused by
// the RGBE u8x4 pixel quantization of the hdr image format
assert!(
(expected - found).abs() < 0.1,
"expected {}, found {}",
expected,
found
);
}
}
}
}
#[test]
fn roundtrip_rgba() {
let mut next_random = vec![1.0, 0.0, -1.0, -3.15, 27.0, 11.0, 31.0]
.into_iter()
.cycle();
let mut next_random = move || next_random.next().unwrap();
let generated_image: Rgba32FImage = ImageBuffer::from_fn(9, 31, |_x, _y| {
Rgba([next_random(), next_random(), next_random(), next_random()])
});
let mut bytes = vec![];
write_rgba_image(Cursor::new(&mut bytes), &generated_image).unwrap();
let decoded_image = read_as_rgba_image(Cursor::new(bytes)).unwrap();
debug_assert_eq!(generated_image, decoded_image);
}
#[test]
fn roundtrip_rgb() {
let mut next_random = vec![1.0, 0.0, -1.0, -3.15, 27.0, 11.0, 31.0]
.into_iter()
.cycle();
let mut next_random = move || next_random.next().unwrap();
let generated_image: Rgb32FImage = ImageBuffer::from_fn(9, 31, |_x, _y| {
Rgb([next_random(), next_random(), next_random()])
});
let mut bytes = vec![];
write_rgb_image(Cursor::new(&mut bytes), &generated_image).unwrap();
let decoded_image = read_as_rgb_image(Cursor::new(bytes)).unwrap();
debug_assert_eq!(generated_image, decoded_image);
}
#[test]
fn compare_rgba_rgb() {
let exr_path = BASE_PATH
.iter()
.collect::<PathBuf>()
.join("overexposed gradient - data window equals display window.exr");
let rgb: Rgb32FImage = read_as_rgb_image_from_file(&exr_path).unwrap();
let rgba: Rgba32FImage = read_as_rgba_image_from_file(&exr_path).unwrap();
assert_eq!(rgba.dimensions(), rgb.dimensions());
for (Rgb(rgb), Rgba(rgba)) in rgb.pixels().zip(rgba.pixels()) {
assert_eq!(rgb, &rgba[..3]);
}
}
#[test]
fn compare_cropped() {
// like in photoshop, exr images may have layers placed anywhere in a canvas.
// we don't want to load the pixels from the layer, but we want to load the pixels from the canvas.
// a layer might be smaller than the canvas, in that case the canvas should be transparent black
// where no layer was covering it. a layer might also be larger than the canvas,
// these pixels should be discarded.
//
// in this test we want to make sure that an
// auto-cropped image will be reproduced to the original.
let exr_path = BASE_PATH.iter().collect::<PathBuf>();
let original = exr_path.clone().join("cropping - uncropped original.exr");
let cropped = exr_path
.clone()
.join("cropping - data window differs display window.exr");
// smoke-check that the exr files are actually not the same
{
let original_exr = read_first_flat_layer_from_file(&original).unwrap();
let cropped_exr = read_first_flat_layer_from_file(&cropped).unwrap();
assert_eq!(
original_exr.attributes.display_window,
cropped_exr.attributes.display_window
);
assert_ne!(
original_exr.layer_data.attributes.layer_position,
cropped_exr.layer_data.attributes.layer_position
);
assert_ne!(original_exr.layer_data.size, cropped_exr.layer_data.size);
}
// check that they result in the same image
let original: Rgba32FImage = read_as_rgba_image_from_file(&original).unwrap();
let cropped: Rgba32FImage = read_as_rgba_image_from_file(&cropped).unwrap();
assert_eq!(original.dimensions(), cropped.dimensions());
// the following is not a simple assert_eq, as in case of an error,
// the whole image would be printed to the console, which takes forever
assert!(original.pixels().zip(cropped.pixels()).all(|(a, b)| a == b));
}
}