image/codecs/
openexr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
//! Decoding of OpenEXR (.exr) Images
//!
//! OpenEXR is an image format that is widely used, especially in VFX,
//! because it supports lossless and lossy compression for float data.
//!
//! This decoder only supports RGB and RGBA images.
//! If an image does not contain alpha information,
//! it is defaulted to `1.0` (no transparency).
//!
//! # Related Links
//! * <https://www.openexr.com/documentation.html> - The OpenEXR reference.
//!
//!
//! Current limitations (July 2021):
//!     - only pixel type `Rgba32F` and `Rgba16F` are supported
//!     - only non-deep rgb/rgba files supported, no conversion from/to YCbCr or similar
//!     - only the first non-deep rgb layer is used
//!     - only the largest mip map level is used
//!     - pixels outside display window are lost
//!     - meta data is lost
//!     - dwaa/dwab compressed images not supported yet by the exr library
//!     - (chroma) subsampling not supported yet by the exr library
use exr::prelude::*;

use crate::error::{DecodingError, EncodingError, ImageFormatHint};
use crate::image::decoder_to_vec;
use crate::{
    ColorType, ExtendedColorType, ImageDecoder, ImageEncoder, ImageError, ImageFormat, ImageResult,
    Progress,
};
use std::io::{Cursor, Read, Seek, Write};

/// An OpenEXR decoder. Immediately reads the meta data from the file.
#[derive(Debug)]
pub struct OpenExrDecoder<R> {
    exr_reader: exr::block::reader::Reader<R>,

    // select a header that is rgb and not deep
    header_index: usize,

    // decode either rgb or rgba.
    // can be specified to include or discard alpha channels.
    // if none, the alpha channel will only be allocated where the file contains data for it.
    alpha_preference: Option<bool>,

    alpha_present_in_file: bool,
}

impl<R: Read + Seek> OpenExrDecoder<R> {
    /// Create a decoder. Consumes the first few bytes of the source to extract image dimensions.
    /// Assumes the reader is buffered. In most cases,
    /// you should wrap your reader in a `BufReader` for best performance.
    /// Loads an alpha channel if the file has alpha samples.
    /// Use `with_alpha_preference` if you want to load or not load alpha unconditionally.
    pub fn new(source: R) -> ImageResult<Self> {
        Self::with_alpha_preference(source, None)
    }

    /// Create a decoder. Consumes the first few bytes of the source to extract image dimensions.
    /// Assumes the reader is buffered. In most cases,
    /// you should wrap your reader in a `BufReader` for best performance.
    /// If alpha preference is specified, an alpha channel will
    /// always be present or always be not present in the returned image.
    /// If alpha preference is none, the alpha channel will only be returned if it is found in the file.
    pub fn with_alpha_preference(source: R, alpha_preference: Option<bool>) -> ImageResult<Self> {
        // read meta data, then wait for further instructions, keeping the file open and ready
        let exr_reader = exr::block::read(source, false).map_err(to_image_err)?;

        let header_index = exr_reader
            .headers()
            .iter()
            .position(|header| {
                // check if r/g/b exists in the channels
                let has_rgb = ["R", "G", "B"]
                    .iter()
                    .all(|&required|  // alpha will be optional
                    header.channels.find_index_of_channel(&Text::from(required)).is_some());

                // we currently dont support deep images, or images with other color spaces than rgb
                !header.deep && has_rgb
            })
            .ok_or_else(|| {
                ImageError::Decoding(DecodingError::new(
                    ImageFormatHint::Exact(ImageFormat::OpenExr),
                    "image does not contain non-deep rgb channels",
                ))
            })?;

        let has_alpha = exr_reader.headers()[header_index]
            .channels
            .find_index_of_channel(&Text::from("A"))
            .is_some();

        Ok(Self {
            alpha_preference,
            exr_reader,
            header_index,
            alpha_present_in_file: has_alpha,
        })
    }

    // does not leak exrs-specific meta data into public api, just does it for this module
    fn selected_exr_header(&self) -> &exr::meta::header::Header {
        &self.exr_reader.meta_data().headers[self.header_index]
    }
}

impl<'a, R: 'a + Read + Seek> ImageDecoder<'a> for OpenExrDecoder<R> {
    type Reader = Cursor<Vec<u8>>;

    fn dimensions(&self) -> (u32, u32) {
        let size = self
            .selected_exr_header()
            .shared_attributes
            .display_window
            .size;
        (size.width() as u32, size.height() as u32)
    }

    fn color_type(&self) -> ColorType {
        let returns_alpha = self.alpha_preference.unwrap_or(self.alpha_present_in_file);
        if returns_alpha {
            ColorType::Rgba32F
        } else {
            ColorType::Rgb32F
        }
    }

    fn original_color_type(&self) -> ExtendedColorType {
        if self.alpha_present_in_file {
            ExtendedColorType::Rgba32F
        } else {
            ExtendedColorType::Rgb32F
        }
    }

    /// Use `read_image` instead if possible,
    /// as this method creates a whole new buffer just to contain the entire image.
    fn into_reader(self) -> ImageResult<Self::Reader> {
        Ok(Cursor::new(decoder_to_vec(self)?))
    }

    fn scanline_bytes(&self) -> u64 {
        // we cannot always read individual scan lines for every file,
        // as the tiles or lines in the file could be in random or reversed order.
        // therefore we currently read all lines at once
        // Todo: optimize for specific exr.line_order?
        self.total_bytes()
    }

    // reads with or without alpha, depending on `self.alpha_preference` and `self.alpha_present_in_file`
    fn read_image_with_progress<F: Fn(Progress)>(
        self,
        unaligned_bytes: &mut [u8],
        progress_callback: F,
    ) -> ImageResult<()> {
        let blocks_in_header = self.selected_exr_header().chunk_count as u64;
        let channel_count = self.color_type().channel_count() as usize;

        let display_window = self.selected_exr_header().shared_attributes.display_window;
        let data_window_offset =
            self.selected_exr_header().own_attributes.layer_position - display_window.position;

        {
            // check whether the buffer is large enough for the dimensions of the file
            let (width, height) = self.dimensions();
            let bytes_per_pixel = self.color_type().bytes_per_pixel() as usize;
            let expected_byte_count = (width as usize)
                .checked_mul(height as usize)
                .and_then(|size| size.checked_mul(bytes_per_pixel));

            // if the width and height does not match the length of the bytes, the arguments are invalid
            let has_invalid_size_or_overflowed = expected_byte_count
                .map(|expected_byte_count| unaligned_bytes.len() != expected_byte_count)
                // otherwise, size calculation overflowed, is bigger than memory,
                // therefore data is too small, so it is invalid.
                .unwrap_or(true);

            if has_invalid_size_or_overflowed {
                panic!("byte buffer not large enough for the specified dimensions and f32 pixels");
            }
        }

        let result = read()
            .no_deep_data()
            .largest_resolution_level()
            .rgba_channels(
                move |_size, _channels| vec![0_f32; display_window.size.area() * channel_count],
                move |buffer, index_in_data_window, (r, g, b, a_or_1): (f32, f32, f32, f32)| {
                    let index_in_display_window =
                        index_in_data_window.to_i32() + data_window_offset;

                    // only keep pixels inside the data window
                    // TODO filter chunks based on this
                    if index_in_display_window.x() >= 0
                        && index_in_display_window.y() >= 0
                        && index_in_display_window.x() < display_window.size.width() as i32
                        && index_in_display_window.y() < display_window.size.height() as i32
                    {
                        let index_in_display_window =
                            index_in_display_window.to_usize("index bug").unwrap();
                        let first_f32_index =
                            index_in_display_window.flat_index_for_size(display_window.size);

                        buffer[first_f32_index * channel_count
                            ..(first_f32_index + 1) * channel_count]
                            .copy_from_slice(&[r, g, b, a_or_1][0..channel_count]);

                        // TODO white point chromaticities + srgb/linear conversion?
                    }
                },
            )
            .first_valid_layer() // TODO select exact layer by self.header_index?
            .all_attributes()
            .on_progress(|progress| {
                progress_callback(
                    Progress::new(
                        (progress * blocks_in_header as f64) as u64,
                        blocks_in_header,
                    ), // TODO precision errors?
                );
            })
            .from_chunks(self.exr_reader)
            .map_err(to_image_err)?;

        // TODO this copy is strictly not necessary, but the exr api is a little too simple for reading into a borrowed target slice

        // this cast is safe and works with any alignment, as bytes are copied, and not f32 values.
        // note: buffer slice length is checked in the beginning of this function and will be correct at this point
        unaligned_bytes.copy_from_slice(bytemuck::cast_slice(
            result.layer_data.channel_data.pixels.as_slice(),
        ));
        Ok(())
    }
}

/// Write a raw byte buffer of pixels,
/// returning an Error if it has an invalid length.
///
/// Assumes the writer is buffered. In most cases,
/// you should wrap your writer in a `BufWriter` for best performance.
// private. access via `OpenExrEncoder`
fn write_buffer(
    mut buffered_write: impl Write + Seek,
    unaligned_bytes: &[u8],
    width: u32,
    height: u32,
    color_type: ColorType,
) -> ImageResult<()> {
    let width = width as usize;
    let height = height as usize;

    {
        // check whether the buffer is large enough for the specified dimensions
        let expected_byte_count = width
            .checked_mul(height)
            .and_then(|size| size.checked_mul(color_type.bytes_per_pixel() as usize));

        // if the width and height does not match the length of the bytes, the arguments are invalid
        let has_invalid_size_or_overflowed = expected_byte_count
            .map(|expected_byte_count| unaligned_bytes.len() < expected_byte_count)
            // otherwise, size calculation overflowed, is bigger than memory,
            // therefore data is too small, so it is invalid.
            .unwrap_or(true);

        if has_invalid_size_or_overflowed {
            return Err(ImageError::Encoding(EncodingError::new(
                ImageFormatHint::Exact(ImageFormat::OpenExr),
                "byte buffer not large enough for the specified dimensions and f32 pixels",
            )));
        }
    }

    let bytes_per_pixel = color_type.bytes_per_pixel() as usize;

    match color_type {
        ColorType::Rgb32F => {
            exr::prelude::Image // TODO compression method zip??
                ::from_channels(
                (width, height),
                SpecificChannels::rgb(|pixel: Vec2<usize>| {
                    let pixel_index = pixel.flat_index_for_size(Vec2(width, height));
                    let start_byte = pixel_index * bytes_per_pixel;

                    let [r, g, b]: [f32; 3] = bytemuck::pod_read_unaligned(
                        &unaligned_bytes[start_byte..start_byte + bytes_per_pixel],
                    );

                    (r, g, b)
                }),
            )
            .write()
            // .on_progress(|progress| todo!())
            .to_buffered(&mut buffered_write)
            .map_err(to_image_err)?;
        }

        ColorType::Rgba32F => {
            exr::prelude::Image // TODO compression method zip??
                ::from_channels(
                (width, height),
                SpecificChannels::rgba(|pixel: Vec2<usize>| {
                    let pixel_index = pixel.flat_index_for_size(Vec2(width, height));
                    let start_byte = pixel_index * bytes_per_pixel;

                    let [r, g, b, a]: [f32; 4] = bytemuck::pod_read_unaligned(
                        &unaligned_bytes[start_byte..start_byte + bytes_per_pixel],
                    );

                    (r, g, b, a)
                }),
            )
            .write()
            // .on_progress(|progress| todo!())
            .to_buffered(&mut buffered_write)
            .map_err(to_image_err)?;
        }

        // TODO other color types and channel types
        unsupported_color_type => {
            return Err(ImageError::Encoding(EncodingError::new(
                ImageFormatHint::Exact(ImageFormat::OpenExr),
                format!(
                    "writing color type {:?} not yet supported",
                    unsupported_color_type
                ),
            )))
        }
    }

    Ok(())
}

// TODO is this struct and trait actually used anywhere?
/// A thin wrapper that implements `ImageEncoder` for OpenEXR images. Will behave like `image::codecs::openexr::write_buffer`.
#[derive(Debug)]
pub struct OpenExrEncoder<W>(W);

impl<W> OpenExrEncoder<W> {
    /// Create an `ImageEncoder`. Does not write anything yet. Writing later will behave like `image::codecs::openexr::write_buffer`.
    // use constructor, not public field, for future backwards-compatibility
    pub fn new(write: W) -> Self {
        Self(write)
    }
}

impl<W> ImageEncoder for OpenExrEncoder<W>
where
    W: Write + Seek,
{
    /// Writes the complete image.
    ///
    /// Assumes the writer is buffered. In most cases, you should wrap your writer in a `BufWriter`
    /// for best performance.
    #[track_caller]
    fn write_image(
        self,
        buf: &[u8],
        width: u32,
        height: u32,
        color_type: ColorType,
    ) -> ImageResult<()> {
        let expected_buffer_len =
            (width as u64 * height as u64).saturating_mul(color_type.bytes_per_pixel() as u64);
        assert_eq!(
            expected_buffer_len,
            buf.len() as u64,
            "Invalid buffer length: expected {expected_buffer_len} got {} for {width}x{height} image",
            buf.len(),
        );

        write_buffer(self.0, buf, width, height, color_type)
    }
}

fn to_image_err(exr_error: Error) -> ImageError {
    ImageError::Decoding(DecodingError::new(
        ImageFormatHint::Exact(ImageFormat::OpenExr),
        exr_error.to_string(),
    ))
}

#[cfg(test)]
mod test {
    use super::*;

    use std::io::BufReader;
    use std::path::{Path, PathBuf};

    use crate::buffer_::{Rgb32FImage, Rgba32FImage};
    use crate::error::{LimitError, LimitErrorKind};
    use crate::{ImageBuffer, Rgb, Rgba};

    const BASE_PATH: &[&str] = &[".", "tests", "images", "exr"];

    /// Write an `Rgb32FImage`.
    /// Assumes the writer is buffered. In most cases,
    /// you should wrap your writer in a `BufWriter` for best performance.
    fn write_rgb_image(write: impl Write + Seek, image: &Rgb32FImage) -> ImageResult<()> {
        write_buffer(
            write,
            bytemuck::cast_slice(image.as_raw().as_slice()),
            image.width(),
            image.height(),
            ColorType::Rgb32F,
        )
    }

    /// Write an `Rgba32FImage`.
    /// Assumes the writer is buffered. In most cases,
    /// you should wrap your writer in a `BufWriter` for best performance.
    fn write_rgba_image(write: impl Write + Seek, image: &Rgba32FImage) -> ImageResult<()> {
        write_buffer(
            write,
            bytemuck::cast_slice(image.as_raw().as_slice()),
            image.width(),
            image.height(),
            ColorType::Rgba32F,
        )
    }

    /// Read the file from the specified path into an `Rgba32FImage`.
    fn read_as_rgba_image_from_file(path: impl AsRef<Path>) -> ImageResult<Rgba32FImage> {
        read_as_rgba_image(BufReader::new(std::fs::File::open(path)?))
    }

    /// Read the file from the specified path into an `Rgb32FImage`.
    fn read_as_rgb_image_from_file(path: impl AsRef<Path>) -> ImageResult<Rgb32FImage> {
        read_as_rgb_image(BufReader::new(std::fs::File::open(path)?))
    }

    /// Read the file from the specified path into an `Rgb32FImage`.
    fn read_as_rgb_image(read: impl Read + Seek) -> ImageResult<Rgb32FImage> {
        let decoder = OpenExrDecoder::with_alpha_preference(read, Some(false))?;
        let (width, height) = decoder.dimensions();
        let buffer: Vec<f32> = decoder_to_vec(decoder)?;

        ImageBuffer::from_raw(width, height, buffer)
            // this should be the only reason for the "from raw" call to fail,
            // even though such a large allocation would probably cause an error much earlier
            .ok_or_else(|| {
                ImageError::Limits(LimitError::from_kind(LimitErrorKind::InsufficientMemory))
            })
    }

    /// Read the file from the specified path into an `Rgba32FImage`.
    fn read_as_rgba_image(read: impl Read + Seek) -> ImageResult<Rgba32FImage> {
        let decoder = OpenExrDecoder::with_alpha_preference(read, Some(true))?;
        let (width, height) = decoder.dimensions();
        let buffer: Vec<f32> = decoder_to_vec(decoder)?;

        ImageBuffer::from_raw(width, height, buffer)
            // this should be the only reason for the "from raw" call to fail,
            // even though such a large allocation would probably cause an error much earlier
            .ok_or_else(|| {
                ImageError::Limits(LimitError::from_kind(LimitErrorKind::InsufficientMemory))
            })
    }

    #[test]
    fn compare_exr_hdr() {
        if cfg!(not(feature = "hdr")) {
            eprintln!("warning: to run all the openexr tests, activate the hdr feature flag");
        }

        #[cfg(feature = "hdr")]
        {
            let folder = BASE_PATH.iter().collect::<PathBuf>();
            let reference_path = folder.clone().join("overexposed gradient.hdr");
            let exr_path = folder
                .clone()
                .join("overexposed gradient - data window equals display window.exr");

            let hdr: Vec<Rgb<f32>> = crate::codecs::hdr::HdrDecoder::new(std::io::BufReader::new(
                std::fs::File::open(reference_path).unwrap(),
            ))
            .unwrap()
            .read_image_hdr()
            .unwrap();

            let exr_pixels: Rgb32FImage = read_as_rgb_image_from_file(exr_path).unwrap();
            assert_eq!(
                exr_pixels.dimensions().0 * exr_pixels.dimensions().1,
                hdr.len() as u32
            );

            for (expected, found) in hdr.iter().zip(exr_pixels.pixels()) {
                for (expected, found) in expected.0.iter().zip(found.0.iter()) {
                    // the large tolerance seems to be caused by
                    // the RGBE u8x4 pixel quantization of the hdr image format
                    assert!(
                        (expected - found).abs() < 0.1,
                        "expected {}, found {}",
                        expected,
                        found
                    );
                }
            }
        }
    }

    #[test]
    fn roundtrip_rgba() {
        let mut next_random = vec![1.0, 0.0, -1.0, -3.15, 27.0, 11.0, 31.0]
            .into_iter()
            .cycle();
        let mut next_random = move || next_random.next().unwrap();

        let generated_image: Rgba32FImage = ImageBuffer::from_fn(9, 31, |_x, _y| {
            Rgba([next_random(), next_random(), next_random(), next_random()])
        });

        let mut bytes = vec![];
        write_rgba_image(Cursor::new(&mut bytes), &generated_image).unwrap();
        let decoded_image = read_as_rgba_image(Cursor::new(bytes)).unwrap();

        debug_assert_eq!(generated_image, decoded_image);
    }

    #[test]
    fn roundtrip_rgb() {
        let mut next_random = vec![1.0, 0.0, -1.0, -3.15, 27.0, 11.0, 31.0]
            .into_iter()
            .cycle();
        let mut next_random = move || next_random.next().unwrap();

        let generated_image: Rgb32FImage = ImageBuffer::from_fn(9, 31, |_x, _y| {
            Rgb([next_random(), next_random(), next_random()])
        });

        let mut bytes = vec![];
        write_rgb_image(Cursor::new(&mut bytes), &generated_image).unwrap();
        let decoded_image = read_as_rgb_image(Cursor::new(bytes)).unwrap();

        debug_assert_eq!(generated_image, decoded_image);
    }

    #[test]
    fn compare_rgba_rgb() {
        let exr_path = BASE_PATH
            .iter()
            .collect::<PathBuf>()
            .join("overexposed gradient - data window equals display window.exr");

        let rgb: Rgb32FImage = read_as_rgb_image_from_file(&exr_path).unwrap();
        let rgba: Rgba32FImage = read_as_rgba_image_from_file(&exr_path).unwrap();

        assert_eq!(rgba.dimensions(), rgb.dimensions());

        for (Rgb(rgb), Rgba(rgba)) in rgb.pixels().zip(rgba.pixels()) {
            assert_eq!(rgb, &rgba[..3]);
        }
    }

    #[test]
    fn compare_cropped() {
        // like in photoshop, exr images may have layers placed anywhere in a canvas.
        // we don't want to load the pixels from the layer, but we want to load the pixels from the canvas.
        // a layer might be smaller than the canvas, in that case the canvas should be transparent black
        // where no layer was covering it. a layer might also be larger than the canvas,
        // these pixels should be discarded.
        //
        // in this test we want to make sure that an
        // auto-cropped image will be reproduced to the original.

        let exr_path = BASE_PATH.iter().collect::<PathBuf>();
        let original = exr_path.clone().join("cropping - uncropped original.exr");
        let cropped = exr_path
            .clone()
            .join("cropping - data window differs display window.exr");

        // smoke-check that the exr files are actually not the same
        {
            let original_exr = read_first_flat_layer_from_file(&original).unwrap();
            let cropped_exr = read_first_flat_layer_from_file(&cropped).unwrap();
            assert_eq!(
                original_exr.attributes.display_window,
                cropped_exr.attributes.display_window
            );
            assert_ne!(
                original_exr.layer_data.attributes.layer_position,
                cropped_exr.layer_data.attributes.layer_position
            );
            assert_ne!(original_exr.layer_data.size, cropped_exr.layer_data.size);
        }

        // check that they result in the same image
        let original: Rgba32FImage = read_as_rgba_image_from_file(&original).unwrap();
        let cropped: Rgba32FImage = read_as_rgba_image_from_file(&cropped).unwrap();
        assert_eq!(original.dimensions(), cropped.dimensions());

        // the following is not a simple assert_eq, as in case of an error,
        // the whole image would be printed to the console, which takes forever
        assert!(original.pixels().zip(cropped.pixels()).all(|(a, b)| a == b));
    }
}