image/codecs/tga/
encoder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
use super::header::Header;
use crate::{
    codecs::tga::header::ImageType, error::EncodingError, ColorType, ImageEncoder, ImageError,
    ImageFormat, ImageResult,
};
use std::{error, fmt, io::Write};

/// Errors that can occur during encoding and saving of a TGA image.
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
enum EncoderError {
    /// Invalid TGA width.
    WidthInvalid(u32),

    /// Invalid TGA height.
    HeightInvalid(u32),
}

impl fmt::Display for EncoderError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            EncoderError::WidthInvalid(s) => f.write_fmt(format_args!("Invalid TGA width: {}", s)),
            EncoderError::HeightInvalid(s) => {
                f.write_fmt(format_args!("Invalid TGA height: {}", s))
            }
        }
    }
}

impl From<EncoderError> for ImageError {
    fn from(e: EncoderError) -> ImageError {
        ImageError::Encoding(EncodingError::new(ImageFormat::Tga.into(), e))
    }
}

impl error::Error for EncoderError {}

/// TGA encoder.
pub struct TgaEncoder<W: Write> {
    writer: W,

    /// Run-length encoding
    use_rle: bool,
}

const MAX_RUN_LENGTH: u8 = 128;

#[derive(Debug, Eq, PartialEq)]
enum PacketType {
    Raw,
    Rle,
}

impl<W: Write> TgaEncoder<W> {
    /// Create a new encoder that writes its output to ```w```.
    pub fn new(w: W) -> TgaEncoder<W> {
        TgaEncoder {
            writer: w,
            use_rle: true,
        }
    }

    /// Disables run-length encoding
    pub fn disable_rle(mut self) -> TgaEncoder<W> {
        self.use_rle = false;
        self
    }

    /// Writes a raw packet to the writer
    fn write_raw_packet(&mut self, pixels: &[u8], counter: u8) -> ImageResult<()> {
        // Set high bit = 0 and store counter - 1 (because 0 would be useless)
        // The counter fills 7 bits max, so the high bit is set to 0 implicitly
        let header = counter - 1;
        self.writer.write_all(&[header])?;
        self.writer.write_all(pixels)?;
        Ok(())
    }

    /// Writes a run-length encoded packet to the writer
    fn write_rle_encoded_packet(&mut self, pixel: &[u8], counter: u8) -> ImageResult<()> {
        // Set high bit = 1 and store counter - 1 (because 0 would be useless)
        let header = 0x80 | (counter - 1);
        self.writer.write_all(&[header])?;
        self.writer.write_all(pixel)?;
        Ok(())
    }

    /// Writes the run-length encoded buffer to the writer
    fn run_length_encode(&mut self, image: &[u8], color_type: ColorType) -> ImageResult<()> {
        use PacketType::*;

        let bytes_per_pixel = color_type.bytes_per_pixel();
        let capacity_in_bytes = usize::from(MAX_RUN_LENGTH) * usize::from(bytes_per_pixel);

        // Buffer to temporarily store pixels
        // so we can choose whether to use RLE or not when we need to
        let mut buf = Vec::with_capacity(capacity_in_bytes);

        let mut counter = 0;
        let mut prev_pixel = None;
        let mut packet_type = Rle;

        for pixel in image.chunks(usize::from(bytes_per_pixel)) {
            // Make sure we are not at the first pixel
            if let Some(prev) = prev_pixel {
                if pixel == prev {
                    if packet_type == Raw && counter > 0 {
                        self.write_raw_packet(&buf, counter)?;
                        counter = 0;
                        buf.clear();
                    }

                    packet_type = Rle;
                } else if packet_type == Rle && counter > 0 {
                    self.write_rle_encoded_packet(prev, counter)?;
                    counter = 0;
                    packet_type = Raw;
                    buf.clear();
                }
            }

            counter += 1;
            buf.extend_from_slice(pixel);

            debug_assert!(buf.len() <= capacity_in_bytes);

            if counter == MAX_RUN_LENGTH {
                match packet_type {
                    Rle => self.write_rle_encoded_packet(prev_pixel.unwrap(), counter),
                    Raw => self.write_raw_packet(&buf, counter),
                }?;

                counter = 0;
                packet_type = Rle;
                buf.clear();
            }

            prev_pixel = Some(pixel);
        }

        if counter > 0 {
            match packet_type {
                Rle => self.write_rle_encoded_packet(prev_pixel.unwrap(), counter),
                Raw => self.write_raw_packet(&buf, counter),
            }?;
        }

        Ok(())
    }

    /// Encodes the image ```buf``` that has dimensions ```width```
    /// and ```height``` and ```ColorType``` ```color_type```.
    ///
    /// The dimensions of the image must be between 0 and 65535 (inclusive) or
    /// an error will be returned.
    ///
    /// # Panics
    ///
    /// Panics if `width * height * color_type.bytes_per_pixel() != data.len()`.
    #[track_caller]
    pub fn encode(
        mut self,
        buf: &[u8],
        width: u32,
        height: u32,
        color_type: ColorType,
    ) -> ImageResult<()> {
        let expected_buffer_len =
            (width as u64 * height as u64).saturating_mul(color_type.bytes_per_pixel() as u64);
        assert_eq!(
            expected_buffer_len,
            buf.len() as u64,
            "Invalid buffer length: expected {expected_buffer_len} got {} for {width}x{height} image",
            buf.len(),
        );

        // Validate dimensions.
        let width = u16::try_from(width)
            .map_err(|_| ImageError::from(EncoderError::WidthInvalid(width)))?;

        let height = u16::try_from(height)
            .map_err(|_| ImageError::from(EncoderError::HeightInvalid(height)))?;

        // Write out TGA header.
        let header = Header::from_pixel_info(color_type, width, height, self.use_rle)?;
        header.write_to(&mut self.writer)?;

        let image_type = ImageType::new(header.image_type);

        match image_type {
            //TODO: support RunColorMap, and change match to image_type.is_encoded()
            ImageType::RunTrueColor | ImageType::RunGrayScale => {
                // Write run-length encoded image data

                match color_type {
                    ColorType::Rgb8 | ColorType::Rgba8 => {
                        let mut image = Vec::from(buf);

                        for pixel in image.chunks_mut(usize::from(color_type.bytes_per_pixel())) {
                            pixel.swap(0, 2);
                        }

                        self.run_length_encode(&image, color_type)?;
                    }
                    _ => {
                        self.run_length_encode(buf, color_type)?;
                    }
                }
            }
            _ => {
                // Write uncompressed image data

                match color_type {
                    ColorType::Rgb8 | ColorType::Rgba8 => {
                        let mut image = Vec::from(buf);

                        for pixel in image.chunks_mut(usize::from(color_type.bytes_per_pixel())) {
                            pixel.swap(0, 2);
                        }

                        self.writer.write_all(&image)?;
                    }
                    _ => {
                        self.writer.write_all(buf)?;
                    }
                }
            }
        }

        Ok(())
    }
}

impl<W: Write> ImageEncoder for TgaEncoder<W> {
    #[track_caller]
    fn write_image(
        self,
        buf: &[u8],
        width: u32,
        height: u32,
        color_type: ColorType,
    ) -> ImageResult<()> {
        self.encode(buf, width, height, color_type)
    }
}

#[cfg(test)]
mod tests {
    use super::{EncoderError, TgaEncoder};
    use crate::{codecs::tga::TgaDecoder, ColorType, ImageDecoder, ImageError};
    use std::{error::Error, io::Cursor};

    #[test]
    fn test_image_width_too_large() {
        // TGA cannot encode images larger than 65,535×65,535
        // create a 65,536×1 8-bit black image buffer
        let size = usize::from(u16::MAX) + 1;
        let dimension = size as u32;
        let img = vec![0u8; size];

        // Try to encode an image that is too large
        let mut encoded = Vec::new();
        let encoder = TgaEncoder::new(&mut encoded);
        let result = encoder.encode(&img, dimension, 1, ColorType::L8);

        match result {
            Err(ImageError::Encoding(err)) => {
                let err = err
                    .source()
                    .unwrap()
                    .downcast_ref::<EncoderError>()
                    .unwrap();
                assert_eq!(*err, EncoderError::WidthInvalid(dimension));
            }
            other => panic!(
                "Encoding an image that is too wide should return a InvalidWidth \
                it returned {:?} instead",
                other
            ),
        }
    }

    #[test]
    fn test_image_height_too_large() {
        // TGA cannot encode images larger than 65,535×65,535
        // create a 65,536×1 8-bit black image buffer
        let size = usize::from(u16::MAX) + 1;
        let dimension = size as u32;
        let img = vec![0u8; size];

        // Try to encode an image that is too large
        let mut encoded = Vec::new();
        let encoder = TgaEncoder::new(&mut encoded);
        let result = encoder.encode(&img, 1, dimension, ColorType::L8);

        match result {
            Err(ImageError::Encoding(err)) => {
                let err = err
                    .source()
                    .unwrap()
                    .downcast_ref::<EncoderError>()
                    .unwrap();
                assert_eq!(*err, EncoderError::HeightInvalid(dimension));
            }
            other => panic!(
                "Encoding an image that is too tall should return a InvalidHeight \
                it returned {:?} instead",
                other
            ),
        }
    }

    #[test]
    fn test_compression_diff() {
        let image = [0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2];

        let uncompressed_bytes = {
            let mut encoded_data = Vec::new();
            let encoder = TgaEncoder::new(&mut encoded_data).disable_rle();
            encoder
                .encode(&image, 5, 1, ColorType::Rgb8)
                .expect("could not encode image");

            encoded_data
        };

        let compressed_bytes = {
            let mut encoded_data = Vec::new();
            let encoder = TgaEncoder::new(&mut encoded_data);
            encoder
                .encode(&image, 5, 1, ColorType::Rgb8)
                .expect("could not encode image");

            encoded_data
        };

        assert!(uncompressed_bytes.len() > compressed_bytes.len());
    }

    mod compressed {
        use super::*;

        fn round_trip_image(image: &[u8], width: u32, height: u32, c: ColorType) -> Vec<u8> {
            let mut encoded_data = Vec::new();
            {
                let encoder = TgaEncoder::new(&mut encoded_data);
                encoder
                    .encode(image, width, height, c)
                    .expect("could not encode image");
            }
            let decoder = TgaDecoder::new(Cursor::new(&encoded_data)).expect("failed to decode");

            let mut buf = vec![0; decoder.total_bytes() as usize];
            decoder.read_image(&mut buf).expect("failed to decode");
            buf
        }

        #[test]
        fn mixed_packets() {
            let image = [
                255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255,
            ];
            let decoded = round_trip_image(&image, 5, 1, ColorType::Rgb8);
            assert_eq!(decoded.len(), image.len());
            assert_eq!(decoded.as_slice(), image);
        }

        #[test]
        fn round_trip_gray() {
            let image = [0, 1, 2];
            let decoded = round_trip_image(&image, 3, 1, ColorType::L8);
            assert_eq!(decoded.len(), image.len());
            assert_eq!(decoded.as_slice(), image);
        }

        #[test]
        fn round_trip_graya() {
            let image = [0, 1, 2, 3, 4, 5];
            let decoded = round_trip_image(&image, 1, 3, ColorType::La8);
            assert_eq!(decoded.len(), image.len());
            assert_eq!(decoded.as_slice(), image);
        }

        #[test]
        fn round_trip_single_pixel_rgb() {
            let image = [0, 1, 2];
            let decoded = round_trip_image(&image, 1, 1, ColorType::Rgb8);
            assert_eq!(decoded.len(), image.len());
            assert_eq!(decoded.as_slice(), image);
        }

        #[test]
        fn round_trip_three_pixel_rgb() {
            let image = [0, 1, 2, 0, 1, 2, 0, 1, 2];
            let decoded = round_trip_image(&image, 3, 1, ColorType::Rgb8);
            assert_eq!(decoded.len(), image.len());
            assert_eq!(decoded.as_slice(), image);
        }

        #[test]
        fn round_trip_3px_rgb() {
            let image = [0; 3 * 3 * 3]; // 3x3 pixels, 3 bytes per pixel
            let decoded = round_trip_image(&image, 3, 3, ColorType::Rgb8);
            assert_eq!(decoded.len(), image.len());
            assert_eq!(decoded.as_slice(), image);
        }

        #[test]
        fn round_trip_different() {
            let image = [0, 1, 2, 0, 1, 3, 0, 1, 4];
            let decoded = round_trip_image(&image, 3, 1, ColorType::Rgb8);
            assert_eq!(decoded.len(), image.len());
            assert_eq!(decoded.as_slice(), image);
        }

        #[test]
        fn round_trip_different_2() {
            let image = [0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 4];
            let decoded = round_trip_image(&image, 4, 1, ColorType::Rgb8);
            assert_eq!(decoded.len(), image.len());
            assert_eq!(decoded.as_slice(), image);
        }

        #[test]
        fn round_trip_different_3() {
            let image = [0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 4, 0, 1, 2];
            let decoded = round_trip_image(&image, 5, 1, ColorType::Rgb8);
            assert_eq!(decoded.len(), image.len());
            assert_eq!(decoded.as_slice(), image);
        }

        #[test]
        fn round_trip_bw() {
            // This example demonstrates the run-length counter being saturated
            // It should never overflow and can be 128 max
            let image = crate::open("tests/images/tga/encoding/black_white.tga").unwrap();
            let (width, height) = (image.width(), image.height());
            let image = image.as_rgb8().unwrap().to_vec();

            let decoded = round_trip_image(&image, width, height, ColorType::Rgb8);
            assert_eq!(decoded.len(), image.len());
            assert_eq!(decoded.as_slice(), image);
        }
    }

    mod uncompressed {
        use super::*;

        fn round_trip_image(image: &[u8], width: u32, height: u32, c: ColorType) -> Vec<u8> {
            let mut encoded_data = Vec::new();
            {
                let encoder = TgaEncoder::new(&mut encoded_data).disable_rle();
                encoder
                    .encode(image, width, height, c)
                    .expect("could not encode image");
            }

            let decoder = TgaDecoder::new(Cursor::new(&encoded_data)).expect("failed to decode");

            let mut buf = vec![0; decoder.total_bytes() as usize];
            decoder.read_image(&mut buf).expect("failed to decode");
            buf
        }

        #[test]
        fn round_trip_single_pixel_rgb() {
            let image = [0, 1, 2];
            let decoded = round_trip_image(&image, 1, 1, ColorType::Rgb8);
            assert_eq!(decoded.len(), image.len());
            assert_eq!(decoded.as_slice(), image);
        }

        #[test]
        fn round_trip_single_pixel_rgba() {
            let image = [0, 1, 2, 3];
            let decoded = round_trip_image(&image, 1, 1, ColorType::Rgba8);
            assert_eq!(decoded.len(), image.len());
            assert_eq!(decoded.as_slice(), image);
        }

        #[test]
        fn round_trip_gray() {
            let image = [0, 1, 2];
            let decoded = round_trip_image(&image, 3, 1, ColorType::L8);
            assert_eq!(decoded.len(), image.len());
            assert_eq!(decoded.as_slice(), image);
        }

        #[test]
        fn round_trip_graya() {
            let image = [0, 1, 2, 3, 4, 5];
            let decoded = round_trip_image(&image, 1, 3, ColorType::La8);
            assert_eq!(decoded.len(), image.len());
            assert_eq!(decoded.as_slice(), image);
        }

        #[test]
        fn round_trip_3px_rgb() {
            let image = [0; 3 * 3 * 3]; // 3x3 pixels, 3 bytes per pixel
            let decoded = round_trip_image(&image, 3, 3, ColorType::Rgb8);
            assert_eq!(decoded.len(), image.len());
            assert_eq!(decoded.as_slice(), image);
        }
    }
}