image/codecs/webp/
lossless_transform.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
use super::lossless::subsample_size;
use super::lossless::DecoderError;

#[derive(Debug, Clone)]
pub(crate) enum TransformType {
    PredictorTransform {
        size_bits: u8,
        predictor_data: Vec<u32>,
    },
    ColorTransform {
        size_bits: u8,
        transform_data: Vec<u32>,
    },
    SubtractGreen,
    ColorIndexingTransform {
        table_size: u16,
        table_data: Vec<u32>,
    },
}

impl TransformType {
    /// Applies a transform to the image data
    pub(crate) fn apply_transform(
        &self,
        image_data: &mut Vec<u32>,
        width: u16,
        height: u16,
    ) -> Result<(), DecoderError> {
        match self {
            TransformType::PredictorTransform {
                size_bits,
                predictor_data,
            } => {
                let block_xsize = usize::from(subsample_size(width, *size_bits));
                let width = usize::from(width);
                let height = usize::from(height);

                if image_data.len() < width * height {
                    return Err(DecoderError::TransformError);
                }

                //handle top and left borders specially
                //this involves ignoring mode and just setting prediction values like this
                image_data[0] = add_pixels(image_data[0], 0xff000000);

                for x in 1..width {
                    image_data[x] = add_pixels(image_data[x], get_left(image_data, x, 0, width));
                }

                for y in 1..height {
                    image_data[y * width] =
                        add_pixels(image_data[y * width], get_top(image_data, 0, y, width));
                }

                for y in 1..height {
                    for x in 1..width {
                        let block_index = (y >> size_bits) * block_xsize + (x >> size_bits);

                        let index = y * width + x;

                        let green = (predictor_data[block_index] >> 8) & 0xff;

                        match green {
                            0 => image_data[index] = add_pixels(image_data[index], 0xff000000),
                            1 => {
                                image_data[index] =
                                    add_pixels(image_data[index], get_left(image_data, x, y, width))
                            }
                            2 => {
                                image_data[index] =
                                    add_pixels(image_data[index], get_top(image_data, x, y, width))
                            }
                            3 => {
                                image_data[index] = add_pixels(
                                    image_data[index],
                                    get_top_right(image_data, x, y, width),
                                )
                            }
                            4 => {
                                image_data[index] = add_pixels(
                                    image_data[index],
                                    get_top_left(image_data, x, y, width),
                                )
                            }
                            5 => {
                                image_data[index] = add_pixels(image_data[index], {
                                    let first = average2(
                                        get_left(image_data, x, y, width),
                                        get_top_right(image_data, x, y, width),
                                    );
                                    average2(first, get_top(image_data, x, y, width))
                                })
                            }
                            6 => {
                                image_data[index] = add_pixels(
                                    image_data[index],
                                    average2(
                                        get_left(image_data, x, y, width),
                                        get_top_left(image_data, x, y, width),
                                    ),
                                )
                            }
                            7 => {
                                image_data[index] = add_pixels(
                                    image_data[index],
                                    average2(
                                        get_left(image_data, x, y, width),
                                        get_top(image_data, x, y, width),
                                    ),
                                )
                            }
                            8 => {
                                image_data[index] = add_pixels(
                                    image_data[index],
                                    average2(
                                        get_top_left(image_data, x, y, width),
                                        get_top(image_data, x, y, width),
                                    ),
                                )
                            }
                            9 => {
                                image_data[index] = add_pixels(
                                    image_data[index],
                                    average2(
                                        get_top(image_data, x, y, width),
                                        get_top_right(image_data, x, y, width),
                                    ),
                                )
                            }
                            10 => {
                                image_data[index] = add_pixels(image_data[index], {
                                    let first = average2(
                                        get_left(image_data, x, y, width),
                                        get_top_left(image_data, x, y, width),
                                    );
                                    let second = average2(
                                        get_top(image_data, x, y, width),
                                        get_top_right(image_data, x, y, width),
                                    );
                                    average2(first, second)
                                })
                            }
                            11 => {
                                image_data[index] = add_pixels(
                                    image_data[index],
                                    select(
                                        get_left(image_data, x, y, width),
                                        get_top(image_data, x, y, width),
                                        get_top_left(image_data, x, y, width),
                                    ),
                                )
                            }
                            12 => {
                                image_data[index] = add_pixels(
                                    image_data[index],
                                    clamp_add_subtract_full(
                                        get_left(image_data, x, y, width),
                                        get_top(image_data, x, y, width),
                                        get_top_left(image_data, x, y, width),
                                    ),
                                )
                            }
                            13 => {
                                image_data[index] = add_pixels(image_data[index], {
                                    let first = average2(
                                        get_left(image_data, x, y, width),
                                        get_top(image_data, x, y, width),
                                    );
                                    clamp_add_subtract_half(
                                        first,
                                        get_top_left(image_data, x, y, width),
                                    )
                                })
                            }
                            _ => {}
                        }
                    }
                }
            }
            TransformType::ColorTransform {
                size_bits,
                transform_data,
            } => {
                let block_xsize = usize::from(subsample_size(width, *size_bits));
                let width = usize::from(width);
                let height = usize::from(height);

                for y in 0..height {
                    for x in 0..width {
                        let block_index = (y >> size_bits) * block_xsize + (x >> size_bits);

                        let index = y * width + x;

                        let multiplier =
                            ColorTransformElement::from_color_code(transform_data[block_index]);

                        image_data[index] = transform_color(&multiplier, image_data[index]);
                    }
                }
            }
            TransformType::SubtractGreen => {
                let width = usize::from(width);
                for y in 0..usize::from(height) {
                    for x in 0..width {
                        image_data[y * width + x] = add_green(image_data[y * width + x]);
                    }
                }
            }
            TransformType::ColorIndexingTransform {
                table_size,
                table_data,
            } => {
                let mut new_image_data =
                    Vec::with_capacity(usize::from(width) * usize::from(height));

                let table_size = *table_size;
                let width_bits: u8 = if table_size <= 2 {
                    3
                } else if table_size <= 4 {
                    2
                } else if table_size <= 16 {
                    1
                } else {
                    0
                };

                let bits_per_pixel = 8 >> width_bits;
                let mask = (1 << bits_per_pixel) - 1;

                let mut src = 0;
                let width = usize::from(width);

                let pixels_per_byte = 1 << width_bits;
                let count_mask = pixels_per_byte - 1;
                let mut packed_pixels = 0;

                for _y in 0..usize::from(height) {
                    for x in 0..width {
                        if (x & count_mask) == 0 {
                            packed_pixels = (image_data[src] >> 8) & 0xff;
                            src += 1;
                        }

                        let pixels: usize = (packed_pixels & mask).try_into().unwrap();
                        let new_val = if pixels >= table_size.into() {
                            0x00000000
                        } else {
                            table_data[pixels]
                        };

                        new_image_data.push(new_val);

                        packed_pixels >>= bits_per_pixel;
                    }
                }

                *image_data = new_image_data;
            }
        }

        Ok(())
    }
}

//predictor functions

/// Adds 2 pixels mod 256 for each pixel
pub(crate) fn add_pixels(a: u32, b: u32) -> u32 {
    let new_alpha = ((a >> 24) + (b >> 24)) & 0xff;
    let new_red = (((a >> 16) & 0xff) + ((b >> 16) & 0xff)) & 0xff;
    let new_green = (((a >> 8) & 0xff) + ((b >> 8) & 0xff)) & 0xff;
    let new_blue = ((a & 0xff) + (b & 0xff)) & 0xff;

    (new_alpha << 24) + (new_red << 16) + (new_green << 8) + new_blue
}

/// Get left pixel
fn get_left(data: &[u32], x: usize, y: usize, width: usize) -> u32 {
    data[y * width + x - 1]
}

/// Get top pixel
fn get_top(data: &[u32], x: usize, y: usize, width: usize) -> u32 {
    data[(y - 1) * width + x]
}

/// Get pixel to top right
fn get_top_right(data: &[u32], x: usize, y: usize, width: usize) -> u32 {
    // if x == width - 1 this gets the left most pixel of the current row
    // as described in the specification
    data[(y - 1) * width + x + 1]
}

/// Get pixel to top left
fn get_top_left(data: &[u32], x: usize, y: usize, width: usize) -> u32 {
    data[(y - 1) * width + x - 1]
}

/// Get average of 2 pixels
fn average2(a: u32, b: u32) -> u32 {
    let mut avg = 0u32;
    for i in 0..4 {
        let sub_a: u8 = ((a >> (i * 8)) & 0xff).try_into().unwrap();
        let sub_b: u8 = ((b >> (i * 8)) & 0xff).try_into().unwrap();
        avg |= u32::from(sub_average2(sub_a, sub_b)) << (i * 8);
    }
    avg
}

/// Get average of 2 bytes
fn sub_average2(a: u8, b: u8) -> u8 {
    ((u16::from(a) + u16::from(b)) / 2).try_into().unwrap()
}

/// Get a specific byte from argb pixel
fn get_byte(val: u32, byte: u8) -> u8 {
    ((val >> (byte * 8)) & 0xff).try_into().unwrap()
}

/// Get byte as i32 for convenience
fn get_byte_i32(val: u32, byte: u8) -> i32 {
    i32::from(get_byte(val, byte))
}

/// Select left or top byte
fn select(left: u32, top: u32, top_left: u32) -> u32 {
    let predict_alpha = get_byte_i32(left, 3) + get_byte_i32(top, 3) - get_byte_i32(top_left, 3);
    let predict_red = get_byte_i32(left, 2) + get_byte_i32(top, 2) - get_byte_i32(top_left, 2);
    let predict_green = get_byte_i32(left, 1) + get_byte_i32(top, 1) - get_byte_i32(top_left, 1);
    let predict_blue = get_byte_i32(left, 0) + get_byte_i32(top, 0) - get_byte_i32(top_left, 0);

    let predict_left = i32::abs(predict_alpha - get_byte_i32(left, 3))
        + i32::abs(predict_red - get_byte_i32(left, 2))
        + i32::abs(predict_green - get_byte_i32(left, 1))
        + i32::abs(predict_blue - get_byte_i32(left, 0));
    let predict_top = i32::abs(predict_alpha - get_byte_i32(top, 3))
        + i32::abs(predict_red - get_byte_i32(top, 2))
        + i32::abs(predict_green - get_byte_i32(top, 1))
        + i32::abs(predict_blue - get_byte_i32(top, 0));

    if predict_left < predict_top {
        left
    } else {
        top
    }
}

/// Clamp a to [0, 255]
fn clamp(a: i32) -> i32 {
    if a < 0 {
        0
    } else if a > 255 {
        255
    } else {
        a
    }
}

/// Clamp add subtract full on one part
fn clamp_add_subtract_full_sub(a: i32, b: i32, c: i32) -> i32 {
    clamp(a + b - c)
}

/// Clamp add subtract half on one part
fn clamp_add_subtract_half_sub(a: i32, b: i32) -> i32 {
    clamp(a + (a - b) / 2)
}

/// Clamp add subtract full on 3 pixels
fn clamp_add_subtract_full(a: u32, b: u32, c: u32) -> u32 {
    let mut value: u32 = 0;
    for i in 0..4u8 {
        let sub_a: i32 = ((a >> (i * 8)) & 0xff).try_into().unwrap();
        let sub_b: i32 = ((b >> (i * 8)) & 0xff).try_into().unwrap();
        let sub_c: i32 = ((c >> (i * 8)) & 0xff).try_into().unwrap();
        value |=
            u32::try_from(clamp_add_subtract_full_sub(sub_a, sub_b, sub_c)).unwrap() << (i * 8);
    }
    value
}

/// Clamp add subtract half on 2 pixels
fn clamp_add_subtract_half(a: u32, b: u32) -> u32 {
    let mut value = 0;
    for i in 0..4u8 {
        let sub_a: i32 = ((a >> (i * 8)) & 0xff).try_into().unwrap();
        let sub_b: i32 = ((b >> (i * 8)) & 0xff).try_into().unwrap();
        value |= u32::try_from(clamp_add_subtract_half_sub(sub_a, sub_b)).unwrap() << (i * 8);
    }

    value
}

//color transform

#[derive(Debug, Clone, Copy)]
struct ColorTransformElement {
    green_to_red: u8,
    green_to_blue: u8,
    red_to_blue: u8,
}

impl ColorTransformElement {
    fn from_color_code(color_code: u32) -> ColorTransformElement {
        ColorTransformElement {
            green_to_red: (color_code & 0xff).try_into().unwrap(),
            green_to_blue: ((color_code >> 8) & 0xff).try_into().unwrap(),
            red_to_blue: ((color_code >> 16) & 0xff).try_into().unwrap(),
        }
    }
}

/// Does color transform on red and blue transformed by green
fn color_transform(red: u8, blue: u8, green: u8, trans: &ColorTransformElement) -> (u8, u8) {
    let mut temp_red = u32::from(red);
    let mut temp_blue = u32::from(blue);

    //as does the conversion from u8 to signed two's complement i8 required
    temp_red += color_transform_delta(trans.green_to_red as i8, green as i8);
    temp_blue += color_transform_delta(trans.green_to_blue as i8, green as i8);
    temp_blue += color_transform_delta(trans.red_to_blue as i8, temp_red as i8);

    (
        (temp_red & 0xff).try_into().unwrap(),
        (temp_blue & 0xff).try_into().unwrap(),
    )
}

/// Does color transform on 2 numbers
fn color_transform_delta(t: i8, c: i8) -> u32 {
    ((i16::from(t) * i16::from(c)) as u32) >> 5
}

// Does color transform on a pixel with a color transform element
fn transform_color(multiplier: &ColorTransformElement, color_value: u32) -> u32 {
    let alpha = get_byte(color_value, 3);
    let red = get_byte(color_value, 2);
    let green = get_byte(color_value, 1);
    let blue = get_byte(color_value, 0);

    let (new_red, new_blue) = color_transform(red, blue, green, multiplier);

    (u32::from(alpha) << 24)
        + (u32::from(new_red) << 16)
        + (u32::from(green) << 8)
        + u32::from(new_blue)
}

//subtract green function

/// Adds green to red and blue of a pixel
fn add_green(argb: u32) -> u32 {
    let red = (argb >> 16) & 0xff;
    let green = (argb >> 8) & 0xff;
    let blue = argb & 0xff;

    let new_red = (red + green) & 0xff;
    let new_blue = (blue + green) & 0xff;

    (argb & 0xff00ff00) | (new_red << 16) | (new_blue)
}