image/imageops/
colorops.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
//! Functions for altering and converting the color of pixelbufs

use num_traits::NumCast;
use std::f64::consts::PI;

use crate::color::{FromColor, IntoColor, Luma, LumaA, Rgba};
use crate::image::{GenericImage, GenericImageView};
use crate::traits::{Pixel, Primitive};
use crate::utils::clamp;
use crate::ImageBuffer;

type Subpixel<I> = <<I as GenericImageView>::Pixel as Pixel>::Subpixel;

/// Convert the supplied image to grayscale. Alpha channel is discarded.
pub fn grayscale<I: GenericImageView>(
    image: &I,
) -> ImageBuffer<Luma<Subpixel<I>>, Vec<Subpixel<I>>> {
    grayscale_with_type(image)
}

/// Convert the supplied image to grayscale. Alpha channel is preserved.
pub fn grayscale_alpha<I: GenericImageView>(
    image: &I,
) -> ImageBuffer<LumaA<Subpixel<I>>, Vec<Subpixel<I>>> {
    grayscale_with_type_alpha(image)
}

/// Convert the supplied image to a grayscale image with the specified pixel type. Alpha channel is discarded.
pub fn grayscale_with_type<NewPixel, I: GenericImageView>(
    image: &I,
) -> ImageBuffer<NewPixel, Vec<NewPixel::Subpixel>>
where
    NewPixel: Pixel + FromColor<Luma<Subpixel<I>>>,
{
    let (width, height) = image.dimensions();
    let mut out = ImageBuffer::new(width, height);

    for (x, y, pixel) in image.pixels() {
        let grayscale = pixel.to_luma();
        let new_pixel = grayscale.into_color(); // no-op for luma->luma

        out.put_pixel(x, y, new_pixel);
    }

    out
}

/// Convert the supplied image to a grayscale image with the specified pixel type. Alpha channel is preserved.
pub fn grayscale_with_type_alpha<NewPixel, I: GenericImageView>(
    image: &I,
) -> ImageBuffer<NewPixel, Vec<NewPixel::Subpixel>>
where
    NewPixel: Pixel + FromColor<LumaA<Subpixel<I>>>,
{
    let (width, height) = image.dimensions();
    let mut out = ImageBuffer::new(width, height);

    for (x, y, pixel) in image.pixels() {
        let grayscale = pixel.to_luma_alpha();
        let new_pixel = grayscale.into_color(); // no-op for luma->luma

        out.put_pixel(x, y, new_pixel);
    }

    out
}

/// Invert each pixel within the supplied image.
/// This function operates in place.
pub fn invert<I: GenericImage>(image: &mut I) {
    // TODO find a way to use pixels?
    let (width, height) = image.dimensions();

    for y in 0..height {
        for x in 0..width {
            let mut p = image.get_pixel(x, y);
            p.invert();

            image.put_pixel(x, y, p);
        }
    }
}

/// Adjust the contrast of the supplied image.
/// ```contrast``` is the amount to adjust the contrast by.
/// Negative values decrease the contrast and positive values increase the contrast.
///
/// *[See also `contrast_in_place`.][contrast_in_place]*
pub fn contrast<I, P, S>(image: &I, contrast: f32) -> ImageBuffer<P, Vec<S>>
where
    I: GenericImageView<Pixel = P>,
    P: Pixel<Subpixel = S> + 'static,
    S: Primitive + 'static,
{
    let (width, height) = image.dimensions();
    let mut out = ImageBuffer::new(width, height);

    let max = S::DEFAULT_MAX_VALUE;
    let max: f32 = NumCast::from(max).unwrap();

    let percent = ((100.0 + contrast) / 100.0).powi(2);

    for (x, y, pixel) in image.pixels() {
        let f = pixel.map(|b| {
            let c: f32 = NumCast::from(b).unwrap();

            let d = ((c / max - 0.5) * percent + 0.5) * max;
            let e = clamp(d, 0.0, max);

            NumCast::from(e).unwrap()
        });
        out.put_pixel(x, y, f);
    }

    out
}

/// Adjust the contrast of the supplied image in place.
/// ```contrast``` is the amount to adjust the contrast by.
/// Negative values decrease the contrast and positive values increase the contrast.
///
/// *[See also `contrast`.][contrast]*
pub fn contrast_in_place<I>(image: &mut I, contrast: f32)
where
    I: GenericImage,
{
    let (width, height) = image.dimensions();

    let max = <I::Pixel as Pixel>::Subpixel::DEFAULT_MAX_VALUE;
    let max: f32 = NumCast::from(max).unwrap();

    let percent = ((100.0 + contrast) / 100.0).powi(2);

    // TODO find a way to use pixels?
    for y in 0..height {
        for x in 0..width {
            let f = image.get_pixel(x, y).map(|b| {
                let c: f32 = NumCast::from(b).unwrap();

                let d = ((c / max - 0.5) * percent + 0.5) * max;
                let e = clamp(d, 0.0, max);

                NumCast::from(e).unwrap()
            });

            image.put_pixel(x, y, f);
        }
    }
}

/// Brighten the supplied image.
/// ```value``` is the amount to brighten each pixel by.
/// Negative values decrease the brightness and positive values increase it.
///
/// *[See also `brighten_in_place`.][brighten_in_place]*
pub fn brighten<I, P, S>(image: &I, value: i32) -> ImageBuffer<P, Vec<S>>
where
    I: GenericImageView<Pixel = P>,
    P: Pixel<Subpixel = S> + 'static,
    S: Primitive + 'static,
{
    let (width, height) = image.dimensions();
    let mut out = ImageBuffer::new(width, height);

    let max = S::DEFAULT_MAX_VALUE;
    let max: i32 = NumCast::from(max).unwrap();

    for (x, y, pixel) in image.pixels() {
        let e = pixel.map_with_alpha(
            |b| {
                let c: i32 = NumCast::from(b).unwrap();
                let d = clamp(c + value, 0, max);

                NumCast::from(d).unwrap()
            },
            |alpha| alpha,
        );
        out.put_pixel(x, y, e);
    }

    out
}

/// Brighten the supplied image in place.
/// ```value``` is the amount to brighten each pixel by.
/// Negative values decrease the brightness and positive values increase it.
///
/// *[See also `brighten`.][brighten]*
pub fn brighten_in_place<I>(image: &mut I, value: i32)
where
    I: GenericImage,
{
    let (width, height) = image.dimensions();

    let max = <I::Pixel as Pixel>::Subpixel::DEFAULT_MAX_VALUE;
    let max: i32 = NumCast::from(max).unwrap(); // TODO what does this do for f32? clamp at 1??

    // TODO find a way to use pixels?
    for y in 0..height {
        for x in 0..width {
            let e = image.get_pixel(x, y).map_with_alpha(
                |b| {
                    let c: i32 = NumCast::from(b).unwrap();
                    let d = clamp(c + value, 0, max);

                    NumCast::from(d).unwrap()
                },
                |alpha| alpha,
            );

            image.put_pixel(x, y, e);
        }
    }
}

/// Hue rotate the supplied image.
/// `value` is the degrees to rotate each pixel by.
/// 0 and 360 do nothing, the rest rotates by the given degree value.
/// just like the css webkit filter hue-rotate(180)
///
/// *[See also `huerotate_in_place`.][huerotate_in_place]*
pub fn huerotate<I, P, S>(image: &I, value: i32) -> ImageBuffer<P, Vec<S>>
where
    I: GenericImageView<Pixel = P>,
    P: Pixel<Subpixel = S> + 'static,
    S: Primitive + 'static,
{
    let (width, height) = image.dimensions();
    let mut out = ImageBuffer::new(width, height);

    let angle: f64 = NumCast::from(value).unwrap();

    let cosv = (angle * PI / 180.0).cos();
    let sinv = (angle * PI / 180.0).sin();
    let matrix: [f64; 9] = [
        // Reds
        0.213 + cosv * 0.787 - sinv * 0.213,
        0.715 - cosv * 0.715 - sinv * 0.715,
        0.072 - cosv * 0.072 + sinv * 0.928,
        // Greens
        0.213 - cosv * 0.213 + sinv * 0.143,
        0.715 + cosv * 0.285 + sinv * 0.140,
        0.072 - cosv * 0.072 - sinv * 0.283,
        // Blues
        0.213 - cosv * 0.213 - sinv * 0.787,
        0.715 - cosv * 0.715 + sinv * 0.715,
        0.072 + cosv * 0.928 + sinv * 0.072,
    ];
    for (x, y, pixel) in out.enumerate_pixels_mut() {
        let p = image.get_pixel(x, y);

        #[allow(deprecated)]
        let (k1, k2, k3, k4) = p.channels4();
        let vec: (f64, f64, f64, f64) = (
            NumCast::from(k1).unwrap(),
            NumCast::from(k2).unwrap(),
            NumCast::from(k3).unwrap(),
            NumCast::from(k4).unwrap(),
        );

        let r = vec.0;
        let g = vec.1;
        let b = vec.2;

        let new_r = matrix[0] * r + matrix[1] * g + matrix[2] * b;
        let new_g = matrix[3] * r + matrix[4] * g + matrix[5] * b;
        let new_b = matrix[6] * r + matrix[7] * g + matrix[8] * b;
        let max = 255f64;

        #[allow(deprecated)]
        let outpixel = Pixel::from_channels(
            NumCast::from(clamp(new_r, 0.0, max)).unwrap(),
            NumCast::from(clamp(new_g, 0.0, max)).unwrap(),
            NumCast::from(clamp(new_b, 0.0, max)).unwrap(),
            NumCast::from(clamp(vec.3, 0.0, max)).unwrap(),
        );
        *pixel = outpixel;
    }
    out
}

/// Hue rotate the supplied image in place.
/// `value` is the degrees to rotate each pixel by.
/// 0 and 360 do nothing, the rest rotates by the given degree value.
/// just like the css webkit filter hue-rotate(180)
///
/// *[See also `huerotate`.][huerotate]*
pub fn huerotate_in_place<I>(image: &mut I, value: i32)
where
    I: GenericImage,
{
    let (width, height) = image.dimensions();

    let angle: f64 = NumCast::from(value).unwrap();

    let cosv = (angle * PI / 180.0).cos();
    let sinv = (angle * PI / 180.0).sin();
    let matrix: [f64; 9] = [
        // Reds
        0.213 + cosv * 0.787 - sinv * 0.213,
        0.715 - cosv * 0.715 - sinv * 0.715,
        0.072 - cosv * 0.072 + sinv * 0.928,
        // Greens
        0.213 - cosv * 0.213 + sinv * 0.143,
        0.715 + cosv * 0.285 + sinv * 0.140,
        0.072 - cosv * 0.072 - sinv * 0.283,
        // Blues
        0.213 - cosv * 0.213 - sinv * 0.787,
        0.715 - cosv * 0.715 + sinv * 0.715,
        0.072 + cosv * 0.928 + sinv * 0.072,
    ];

    // TODO find a way to use pixels?
    for y in 0..height {
        for x in 0..width {
            let pixel = image.get_pixel(x, y);

            #[allow(deprecated)]
            let (k1, k2, k3, k4) = pixel.channels4();

            let vec: (f64, f64, f64, f64) = (
                NumCast::from(k1).unwrap(),
                NumCast::from(k2).unwrap(),
                NumCast::from(k3).unwrap(),
                NumCast::from(k4).unwrap(),
            );

            let r = vec.0;
            let g = vec.1;
            let b = vec.2;

            let new_r = matrix[0] * r + matrix[1] * g + matrix[2] * b;
            let new_g = matrix[3] * r + matrix[4] * g + matrix[5] * b;
            let new_b = matrix[6] * r + matrix[7] * g + matrix[8] * b;
            let max = 255f64;

            #[allow(deprecated)]
            let outpixel = Pixel::from_channels(
                NumCast::from(clamp(new_r, 0.0, max)).unwrap(),
                NumCast::from(clamp(new_g, 0.0, max)).unwrap(),
                NumCast::from(clamp(new_b, 0.0, max)).unwrap(),
                NumCast::from(clamp(vec.3, 0.0, max)).unwrap(),
            );

            image.put_pixel(x, y, outpixel);
        }
    }
}

/// A color map
pub trait ColorMap {
    /// The color type on which the map operates on
    type Color;
    /// Returns the index of the closest match of `color`
    /// in the color map.
    fn index_of(&self, color: &Self::Color) -> usize;
    /// Looks up color by index in the color map.  If `idx` is out of range for the color map, or
    /// ColorMap doesn't implement `lookup` `None` is returned.
    fn lookup(&self, index: usize) -> Option<Self::Color> {
        let _ = index;
        None
    }
    /// Determine if this implementation of ColorMap overrides the default `lookup`.
    fn has_lookup(&self) -> bool {
        false
    }
    /// Maps `color` to the closest color in the color map.
    fn map_color(&self, color: &mut Self::Color);
}

/// A bi-level color map
///
/// # Examples
/// ```
/// use image::imageops::colorops::{index_colors, BiLevel, ColorMap};
/// use image::{ImageBuffer, Luma};
///
/// let (w, h) = (16, 16);
/// // Create an image with a smooth horizontal gradient from black (0) to white (255).
/// let gray = ImageBuffer::from_fn(w, h, |x, y| -> Luma<u8> { [(255 * x / w) as u8].into() });
/// // Mapping the gray image through the `BiLevel` filter should map gray pixels less than half
/// // intensity (127) to black (0), and anything greater to white (255).
/// let cmap = BiLevel;
/// let palletized = index_colors(&gray, &cmap);
/// let mapped = ImageBuffer::from_fn(w, h, |x, y| {
///     let p = palletized.get_pixel(x, y);
///     cmap.lookup(p.0[0] as usize)
///         .expect("indexed color out-of-range")
/// });
/// // Create an black and white image of expected output.
/// let bw = ImageBuffer::from_fn(w, h, |x, y| -> Luma<u8> {
///     if x <= (w / 2) {
///         [0].into()
///     } else {
///         [255].into()
///     }
/// });
/// assert_eq!(mapped, bw);
/// ```
#[derive(Clone, Copy)]
pub struct BiLevel;

impl ColorMap for BiLevel {
    type Color = Luma<u8>;

    #[inline(always)]
    fn index_of(&self, color: &Luma<u8>) -> usize {
        let luma = color.0;
        if luma[0] > 127 {
            1
        } else {
            0
        }
    }

    #[inline(always)]
    fn lookup(&self, idx: usize) -> Option<Self::Color> {
        match idx {
            0 => Some([0].into()),
            1 => Some([255].into()),
            _ => None,
        }
    }

    /// Indicate NeuQuant implements `lookup`.
    fn has_lookup(&self) -> bool {
        true
    }

    #[inline(always)]
    fn map_color(&self, color: &mut Luma<u8>) {
        let new_color = 0xFF * self.index_of(color) as u8;
        let luma = &mut color.0;
        luma[0] = new_color;
    }
}

impl ColorMap for color_quant::NeuQuant {
    type Color = Rgba<u8>;

    #[inline(always)]
    fn index_of(&self, color: &Rgba<u8>) -> usize {
        self.index_of(color.channels())
    }

    #[inline(always)]
    fn lookup(&self, idx: usize) -> Option<Self::Color> {
        self.lookup(idx).map(|p| p.into())
    }

    /// Indicate NeuQuant implements `lookup`.
    fn has_lookup(&self) -> bool {
        true
    }

    #[inline(always)]
    fn map_color(&self, color: &mut Rgba<u8>) {
        self.map_pixel(color.channels_mut())
    }
}

/// Floyd-Steinberg error diffusion
fn diffuse_err<P: Pixel<Subpixel = u8>>(pixel: &mut P, error: [i16; 3], factor: i16) {
    for (e, c) in error.iter().zip(pixel.channels_mut().iter_mut()) {
        *c = match <i16 as From<_>>::from(*c) + e * factor / 16 {
            val if val < 0 => 0,
            val if val > 0xFF => 0xFF,
            val => val as u8,
        }
    }
}

macro_rules! do_dithering(
    ($map:expr, $image:expr, $err:expr, $x:expr, $y:expr) => (
        {
            let old_pixel = $image[($x, $y)];
            let new_pixel = $image.get_pixel_mut($x, $y);
            $map.map_color(new_pixel);
            for ((e, &old), &new) in $err.iter_mut()
                                        .zip(old_pixel.channels().iter())
                                        .zip(new_pixel.channels().iter())
            {
                *e = <i16 as From<_>>::from(old) - <i16 as From<_>>::from(new)
            }
        }
    )
);

/// Reduces the colors of the image using the supplied `color_map` while applying
/// Floyd-Steinberg dithering to improve the visual conception
pub fn dither<Pix, Map>(image: &mut ImageBuffer<Pix, Vec<u8>>, color_map: &Map)
where
    Map: ColorMap<Color = Pix> + ?Sized,
    Pix: Pixel<Subpixel = u8> + 'static,
{
    let (width, height) = image.dimensions();
    let mut err: [i16; 3] = [0; 3];
    for y in 0..height - 1 {
        let x = 0;
        do_dithering!(color_map, image, err, x, y);
        diffuse_err(image.get_pixel_mut(x + 1, y), err, 7);
        diffuse_err(image.get_pixel_mut(x, y + 1), err, 5);
        diffuse_err(image.get_pixel_mut(x + 1, y + 1), err, 1);
        for x in 1..width - 1 {
            do_dithering!(color_map, image, err, x, y);
            diffuse_err(image.get_pixel_mut(x + 1, y), err, 7);
            diffuse_err(image.get_pixel_mut(x - 1, y + 1), err, 3);
            diffuse_err(image.get_pixel_mut(x, y + 1), err, 5);
            diffuse_err(image.get_pixel_mut(x + 1, y + 1), err, 1);
        }
        let x = width - 1;
        do_dithering!(color_map, image, err, x, y);
        diffuse_err(image.get_pixel_mut(x - 1, y + 1), err, 3);
        diffuse_err(image.get_pixel_mut(x, y + 1), err, 5);
    }
    let y = height - 1;
    let x = 0;
    do_dithering!(color_map, image, err, x, y);
    diffuse_err(image.get_pixel_mut(x + 1, y), err, 7);
    for x in 1..width - 1 {
        do_dithering!(color_map, image, err, x, y);
        diffuse_err(image.get_pixel_mut(x + 1, y), err, 7);
    }
    let x = width - 1;
    do_dithering!(color_map, image, err, x, y);
}

/// Reduces the colors using the supplied `color_map` and returns an image of the indices
pub fn index_colors<Pix, Map>(
    image: &ImageBuffer<Pix, Vec<u8>>,
    color_map: &Map,
) -> ImageBuffer<Luma<u8>, Vec<u8>>
where
    Map: ColorMap<Color = Pix> + ?Sized,
    Pix: Pixel<Subpixel = u8> + 'static,
{
    let mut indices = ImageBuffer::new(image.width(), image.height());
    for (pixel, idx) in image.pixels().zip(indices.pixels_mut()) {
        *idx = Luma([color_map.index_of(pixel) as u8])
    }
    indices
}

#[cfg(test)]
mod test {

    use super::*;
    use crate::GrayImage;

    macro_rules! assert_pixels_eq {
        ($actual:expr, $expected:expr) => {{
            let actual_dim = $actual.dimensions();
            let expected_dim = $expected.dimensions();

            if actual_dim != expected_dim {
                panic!(
                    "dimensions do not match. \
                     actual: {:?}, expected: {:?}",
                    actual_dim, expected_dim
                )
            }

            let diffs = pixel_diffs($actual, $expected);

            if !diffs.is_empty() {
                let mut err = "".to_string();

                let diff_messages = diffs
                    .iter()
                    .take(5)
                    .map(|d| format!("\nactual: {:?}, expected {:?} ", d.0, d.1))
                    .collect::<Vec<_>>()
                    .join("");

                err.push_str(&diff_messages);
                panic!("pixels do not match. {:?}", err)
            }
        }};
    }

    #[test]
    fn test_dither() {
        let mut image = ImageBuffer::from_raw(2, 2, vec![127, 127, 127, 127]).unwrap();
        let cmap = BiLevel;
        dither(&mut image, &cmap);
        assert_eq!(&*image, &[0, 0xFF, 0xFF, 0]);
        assert_eq!(index_colors(&image, &cmap).into_raw(), vec![0, 1, 1, 0])
    }

    #[test]
    fn test_grayscale() {
        let image: GrayImage =
            ImageBuffer::from_raw(3, 2, vec![0u8, 1u8, 2u8, 10u8, 11u8, 12u8]).unwrap();

        let expected: GrayImage =
            ImageBuffer::from_raw(3, 2, vec![0u8, 1u8, 2u8, 10u8, 11u8, 12u8]).unwrap();

        assert_pixels_eq!(&grayscale(&image), &expected);
    }

    #[test]
    fn test_invert() {
        let mut image: GrayImage =
            ImageBuffer::from_raw(3, 2, vec![0u8, 1u8, 2u8, 10u8, 11u8, 12u8]).unwrap();

        let expected: GrayImage =
            ImageBuffer::from_raw(3, 2, vec![255u8, 254u8, 253u8, 245u8, 244u8, 243u8]).unwrap();

        invert(&mut image);
        assert_pixels_eq!(&image, &expected);
    }
    #[test]
    fn test_brighten() {
        let image: GrayImage =
            ImageBuffer::from_raw(3, 2, vec![0u8, 1u8, 2u8, 10u8, 11u8, 12u8]).unwrap();

        let expected: GrayImage =
            ImageBuffer::from_raw(3, 2, vec![10u8, 11u8, 12u8, 20u8, 21u8, 22u8]).unwrap();

        assert_pixels_eq!(&brighten(&image, 10), &expected);
    }

    #[test]
    fn test_brighten_place() {
        let mut image: GrayImage =
            ImageBuffer::from_raw(3, 2, vec![0u8, 1u8, 2u8, 10u8, 11u8, 12u8]).unwrap();

        let expected: GrayImage =
            ImageBuffer::from_raw(3, 2, vec![10u8, 11u8, 12u8, 20u8, 21u8, 22u8]).unwrap();

        brighten_in_place(&mut image, 10);
        assert_pixels_eq!(&image, &expected);
    }

    #[allow(clippy::type_complexity)]
    fn pixel_diffs<I, J, P>(left: &I, right: &J) -> Vec<((u32, u32, P), (u32, u32, P))>
    where
        I: GenericImage<Pixel = P>,
        J: GenericImage<Pixel = P>,
        P: Pixel + Eq,
    {
        left.pixels()
            .zip(right.pixels())
            .filter(|&(p, q)| p != q)
            .collect::<Vec<_>>()
    }
}