image/imageops/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
//! Image Processing Functions
use std::cmp;
use crate::image::{GenericImage, GenericImageView, SubImage};
use crate::traits::{Lerp, Pixel, Primitive};
pub use self::sample::FilterType;
pub use self::sample::FilterType::{CatmullRom, Gaussian, Lanczos3, Nearest, Triangle};
/// Affine transformations
pub use self::affine::{
flip_horizontal, flip_horizontal_in, flip_horizontal_in_place, flip_vertical, flip_vertical_in,
flip_vertical_in_place, rotate180, rotate180_in, rotate180_in_place, rotate270, rotate270_in,
rotate90, rotate90_in,
};
/// Image sampling
pub use self::sample::{
blur, filter3x3, interpolate_bilinear, interpolate_nearest, resize, sample_bilinear,
sample_nearest, thumbnail, unsharpen,
};
/// Color operations
pub use self::colorops::{
brighten, contrast, dither, grayscale, grayscale_alpha, grayscale_with_type,
grayscale_with_type_alpha, huerotate, index_colors, invert, BiLevel, ColorMap,
};
mod affine;
// Public only because of Rust bug:
// https://github.com/rust-lang/rust/issues/18241
pub mod colorops;
mod sample;
/// Return a mutable view into an image
/// The coordinates set the position of the top left corner of the crop.
pub fn crop<I: GenericImageView>(
image: &mut I,
x: u32,
y: u32,
width: u32,
height: u32,
) -> SubImage<&mut I> {
let (x, y, width, height) = crop_dimms(image, x, y, width, height);
SubImage::new(image, x, y, width, height)
}
/// Return an immutable view into an image
/// The coordinates set the position of the top left corner of the crop.
pub fn crop_imm<I: GenericImageView>(
image: &I,
x: u32,
y: u32,
width: u32,
height: u32,
) -> SubImage<&I> {
let (x, y, width, height) = crop_dimms(image, x, y, width, height);
SubImage::new(image, x, y, width, height)
}
fn crop_dimms<I: GenericImageView>(
image: &I,
x: u32,
y: u32,
width: u32,
height: u32,
) -> (u32, u32, u32, u32) {
let (iwidth, iheight) = image.dimensions();
let x = cmp::min(x, iwidth);
let y = cmp::min(y, iheight);
let height = cmp::min(height, iheight - y);
let width = cmp::min(width, iwidth - x);
(x, y, width, height)
}
/// Calculate the region that can be copied from top to bottom.
///
/// Given image size of bottom and top image, and a point at which we want to place the top image
/// onto the bottom image, how large can we be? Have to wary of the following issues:
/// * Top might be larger than bottom
/// * Overflows in the computation
/// * Coordinates could be completely out of bounds
///
/// The main idea is to make use of inequalities provided by the nature of `saturating_add` and
/// `saturating_sub`. These intrinsically validate that all resulting coordinates will be in bounds
/// for both images.
///
/// We want that all these coordinate accesses are safe:
/// 1. `bottom.get_pixel(x + [0..x_range), y + [0..y_range))`
/// 2. `top.get_pixel([0..x_range), [0..y_range))`
///
/// Proof that the function provides the necessary bounds for width. Note that all unaugmented math
/// operations are to be read in standard arithmetic, not integer arithmetic. Since no direct
/// integer arithmetic occurs in the implementation, this is unambiguous.
///
/// ```text
/// Three short notes/lemmata:
/// - Iff `(a - b) <= 0` then `a.saturating_sub(b) = 0`
/// - Iff `(a - b) >= 0` then `a.saturating_sub(b) = a - b`
/// - If `a <= c` then `a.saturating_sub(b) <= c.saturating_sub(b)`
///
/// 1.1 We show that if `bottom_width <= x`, then `x_range = 0` therefore `x + [0..x_range)` is empty.
///
/// x_range
/// = (top_width.saturating_add(x).min(bottom_width)).saturating_sub(x)
/// <= bottom_width.saturating_sub(x)
///
/// bottom_width <= x
/// <==> bottom_width - x <= 0
/// <==> bottom_width.saturating_sub(x) = 0
/// ==> x_range <= 0
/// ==> x_range = 0
///
/// 1.2 If `x < bottom_width` then `x + x_range < bottom_width`
///
/// x + x_range
/// <= x + bottom_width.saturating_sub(x)
/// = x + (bottom_width - x)
/// = bottom_width
///
/// 2. We show that `x_range <= top_width`
///
/// x_range
/// = (top_width.saturating_add(x).min(bottom_width)).saturating_sub(x)
/// <= top_width.saturating_add(x).saturating_sub(x)
/// <= (top_wdith + x).saturating_sub(x)
/// = top_width (due to `top_width >= 0` and `x >= 0`)
/// ```
///
/// Proof is the same for height.
pub fn overlay_bounds(
(bottom_width, bottom_height): (u32, u32),
(top_width, top_height): (u32, u32),
x: u32,
y: u32,
) -> (u32, u32) {
let x_range = top_width
.saturating_add(x) // Calculate max coordinate
.min(bottom_width) // Restrict to lower width
.saturating_sub(x); // Determinate length from start `x`
let y_range = top_height
.saturating_add(y)
.min(bottom_height)
.saturating_sub(y);
(x_range, y_range)
}
/// Calculate the region that can be copied from top to bottom.
///
/// Given image size of bottom and top image, and a point at which we want to place the top image
/// onto the bottom image, how large can we be? Have to wary of the following issues:
/// * Top might be larger than bottom
/// * Overflows in the computation
/// * Coordinates could be completely out of bounds
///
/// The returned value is of the form:
///
/// `(origin_bottom_x, origin_bottom_y, origin_top_x, origin_top_y, x_range, y_range)`
///
/// The main idea is to do computations on i64's and then clamp to image dimensions.
/// In particular, we want to ensure that all these coordinate accesses are safe:
/// 1. `bottom.get_pixel(origin_bottom_x + [0..x_range), origin_bottom_y + [0..y_range))`
/// 2. `top.get_pixel(origin_top_y + [0..x_range), origin_top_y + [0..y_range))`
///
fn overlay_bounds_ext(
(bottom_width, bottom_height): (u32, u32),
(top_width, top_height): (u32, u32),
x: i64,
y: i64,
) -> (u32, u32, u32, u32, u32, u32) {
// Return a predictable value if the two images don't overlap at all.
if x > i64::from(bottom_width)
|| y > i64::from(bottom_height)
|| x.saturating_add(i64::from(top_width)) <= 0
|| y.saturating_add(i64::from(top_height)) <= 0
{
return (0, 0, 0, 0, 0, 0);
}
// Find the maximum x and y coordinates in terms of the bottom image.
let max_x = x.saturating_add(i64::from(top_width));
let max_y = y.saturating_add(i64::from(top_height));
// Clip the origin and maximum coordinates to the bounds of the bottom image.
// Casting to a u32 is safe because both 0 and `bottom_{width,height}` fit
// into 32-bits.
let max_inbounds_x = max_x.clamp(0, i64::from(bottom_width)) as u32;
let max_inbounds_y = max_y.clamp(0, i64::from(bottom_height)) as u32;
let origin_bottom_x = x.clamp(0, i64::from(bottom_width)) as u32;
let origin_bottom_y = y.clamp(0, i64::from(bottom_height)) as u32;
// The range is the difference between the maximum inbounds coordinates and
// the clipped origin. Unchecked subtraction is safe here because both are
// always positive and `max_inbounds_{x,y}` >= `origin_{x,y}` due to
// `top_{width,height}` being >= 0.
let x_range = max_inbounds_x - origin_bottom_x;
let y_range = max_inbounds_y - origin_bottom_y;
// If x (or y) is negative, then the origin of the top image is shifted by -x (or -y).
let origin_top_x = x.saturating_mul(-1).clamp(0, i64::from(top_width)) as u32;
let origin_top_y = y.saturating_mul(-1).clamp(0, i64::from(top_height)) as u32;
(
origin_bottom_x,
origin_bottom_y,
origin_top_x,
origin_top_y,
x_range,
y_range,
)
}
/// Overlay an image at a given coordinate (x, y)
pub fn overlay<I, J>(bottom: &mut I, top: &J, x: i64, y: i64)
where
I: GenericImage,
J: GenericImageView<Pixel = I::Pixel>,
{
let bottom_dims = bottom.dimensions();
let top_dims = top.dimensions();
// Crop our top image if we're going out of bounds
let (origin_bottom_x, origin_bottom_y, origin_top_x, origin_top_y, range_width, range_height) =
overlay_bounds_ext(bottom_dims, top_dims, x, y);
for y in 0..range_height {
for x in 0..range_width {
let p = top.get_pixel(origin_top_x + x, origin_top_y + y);
let mut bottom_pixel = bottom.get_pixel(origin_bottom_x + x, origin_bottom_y + y);
bottom_pixel.blend(&p);
bottom.put_pixel(origin_bottom_x + x, origin_bottom_y + y, bottom_pixel);
}
}
}
/// Tile an image by repeating it multiple times
///
/// # Examples
/// ```no_run
/// use image::{RgbaImage};
///
/// let mut img = RgbaImage::new(1920, 1080);
/// let tile = image::open("tile.png").unwrap();
///
/// image::imageops::tile(&mut img, &tile);
/// img.save("tiled_wallpaper.png").unwrap();
/// ```
pub fn tile<I, J>(bottom: &mut I, top: &J)
where
I: GenericImage,
J: GenericImageView<Pixel = I::Pixel>,
{
for x in (0..bottom.width()).step_by(top.width() as usize) {
for y in (0..bottom.height()).step_by(top.height() as usize) {
overlay(bottom, top, i64::from(x), i64::from(y));
}
}
}
/// Fill the image with a linear vertical gradient
///
/// This function assumes a linear color space.
///
/// # Examples
/// ```no_run
/// use image::{Rgba, RgbaImage, Pixel};
///
/// let mut img = RgbaImage::new(100, 100);
/// let start = Rgba::from_slice(&[0, 128, 0, 0]);
/// let end = Rgba::from_slice(&[255, 255, 255, 255]);
///
/// image::imageops::vertical_gradient(&mut img, start, end);
/// img.save("vertical_gradient.png").unwrap();
pub fn vertical_gradient<S, P, I>(img: &mut I, start: &P, stop: &P)
where
I: GenericImage<Pixel = P>,
P: Pixel<Subpixel = S> + 'static,
S: Primitive + Lerp + 'static,
{
for y in 0..img.height() {
let pixel = start.map2(stop, |a, b| {
let y = <S::Ratio as num_traits::NumCast>::from(y).unwrap();
let height = <S::Ratio as num_traits::NumCast>::from(img.height() - 1).unwrap();
S::lerp(a, b, y / height)
});
for x in 0..img.width() {
img.put_pixel(x, y, pixel);
}
}
}
/// Fill the image with a linear horizontal gradient
///
/// This function assumes a linear color space.
///
/// # Examples
/// ```no_run
/// use image::{Rgba, RgbaImage, Pixel};
///
/// let mut img = RgbaImage::new(100, 100);
/// let start = Rgba::from_slice(&[0, 128, 0, 0]);
/// let end = Rgba::from_slice(&[255, 255, 255, 255]);
///
/// image::imageops::horizontal_gradient(&mut img, start, end);
/// img.save("horizontal_gradient.png").unwrap();
pub fn horizontal_gradient<S, P, I>(img: &mut I, start: &P, stop: &P)
where
I: GenericImage<Pixel = P>,
P: Pixel<Subpixel = S> + 'static,
S: Primitive + Lerp + 'static,
{
for x in 0..img.width() {
let pixel = start.map2(stop, |a, b| {
let x = <S::Ratio as num_traits::NumCast>::from(x).unwrap();
let width = <S::Ratio as num_traits::NumCast>::from(img.width() - 1).unwrap();
S::lerp(a, b, x / width)
});
for y in 0..img.height() {
img.put_pixel(x, y, pixel);
}
}
}
/// Replace the contents of an image at a given coordinate (x, y)
pub fn replace<I, J>(bottom: &mut I, top: &J, x: i64, y: i64)
where
I: GenericImage,
J: GenericImageView<Pixel = I::Pixel>,
{
let bottom_dims = bottom.dimensions();
let top_dims = top.dimensions();
// Crop our top image if we're going out of bounds
let (origin_bottom_x, origin_bottom_y, origin_top_x, origin_top_y, range_width, range_height) =
overlay_bounds_ext(bottom_dims, top_dims, x, y);
for y in 0..range_height {
for x in 0..range_width {
let p = top.get_pixel(origin_top_x + x, origin_top_y + y);
bottom.put_pixel(origin_bottom_x + x, origin_bottom_y + y, p);
}
}
}
#[cfg(test)]
mod tests {
use super::{overlay, overlay_bounds_ext};
use crate::color::Rgb;
use crate::ImageBuffer;
use crate::RgbaImage;
#[test]
fn test_overlay_bounds_ext() {
assert_eq!(
overlay_bounds_ext((10, 10), (10, 10), 0, 0),
(0, 0, 0, 0, 10, 10)
);
assert_eq!(
overlay_bounds_ext((10, 10), (10, 10), 1, 0),
(1, 0, 0, 0, 9, 10)
);
assert_eq!(
overlay_bounds_ext((10, 10), (10, 10), 0, 11),
(0, 0, 0, 0, 0, 0)
);
assert_eq!(
overlay_bounds_ext((10, 10), (10, 10), -1, 0),
(0, 0, 1, 0, 9, 10)
);
assert_eq!(
overlay_bounds_ext((10, 10), (10, 10), -10, 0),
(0, 0, 0, 0, 0, 0)
);
assert_eq!(
overlay_bounds_ext((10, 10), (10, 10), 1i64 << 50, 0),
(0, 0, 0, 0, 0, 0)
);
assert_eq!(
overlay_bounds_ext((10, 10), (10, 10), -(1i64 << 50), 0),
(0, 0, 0, 0, 0, 0)
);
assert_eq!(
overlay_bounds_ext((10, 10), (u32::MAX, 10), 10 - i64::from(u32::MAX), 0),
(0, 0, u32::MAX - 10, 0, 10, 10)
);
}
#[test]
/// Test that images written into other images works
fn test_image_in_image() {
let mut target = ImageBuffer::new(32, 32);
let source = ImageBuffer::from_pixel(16, 16, Rgb([255u8, 0, 0]));
overlay(&mut target, &source, 0, 0);
assert!(*target.get_pixel(0, 0) == Rgb([255u8, 0, 0]));
assert!(*target.get_pixel(15, 0) == Rgb([255u8, 0, 0]));
assert!(*target.get_pixel(16, 0) == Rgb([0u8, 0, 0]));
assert!(*target.get_pixel(0, 15) == Rgb([255u8, 0, 0]));
assert!(*target.get_pixel(0, 16) == Rgb([0u8, 0, 0]));
}
#[test]
/// Test that images written outside of a frame doesn't blow up
fn test_image_in_image_outside_of_bounds() {
let mut target = ImageBuffer::new(32, 32);
let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
overlay(&mut target, &source, 1, 1);
assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
assert!(*target.get_pixel(1, 1) == Rgb([255u8, 0, 0]));
assert!(*target.get_pixel(31, 31) == Rgb([255u8, 0, 0]));
}
#[test]
/// Test that images written to coordinates out of the frame doesn't blow up
/// (issue came up in #848)
fn test_image_outside_image_no_wrap_around() {
let mut target = ImageBuffer::new(32, 32);
let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
overlay(&mut target, &source, 33, 33);
assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
assert!(*target.get_pixel(1, 1) == Rgb([0, 0, 0]));
assert!(*target.get_pixel(31, 31) == Rgb([0, 0, 0]));
}
#[test]
/// Test that images written to coordinates with overflow works
fn test_image_coordinate_overflow() {
let mut target = ImageBuffer::new(16, 16);
let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
// Overflows to 'sane' coordinates but top is larger than bot.
overlay(
&mut target,
&source,
i64::from(u32::max_value() - 31),
i64::from(u32::max_value() - 31),
);
assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
assert!(*target.get_pixel(1, 1) == Rgb([0, 0, 0]));
assert!(*target.get_pixel(15, 15) == Rgb([0, 0, 0]));
}
use super::{horizontal_gradient, vertical_gradient};
#[test]
/// Test that horizontal gradients are correctly generated
fn test_image_horizontal_gradient_limits() {
let mut img = ImageBuffer::new(100, 1);
let start = Rgb([0u8, 128, 0]);
let end = Rgb([255u8, 255, 255]);
horizontal_gradient(&mut img, &start, &end);
assert_eq!(img.get_pixel(0, 0), &start);
assert_eq!(img.get_pixel(img.width() - 1, 0), &end);
}
#[test]
/// Test that vertical gradients are correctly generated
fn test_image_vertical_gradient_limits() {
let mut img = ImageBuffer::new(1, 100);
let start = Rgb([0u8, 128, 0]);
let end = Rgb([255u8, 255, 255]);
vertical_gradient(&mut img, &start, &end);
assert_eq!(img.get_pixel(0, 0), &start);
assert_eq!(img.get_pixel(0, img.height() - 1), &end);
}
#[test]
/// Test blur doesn't panick when passed 0.0
fn test_blur_zero() {
let image = RgbaImage::new(50, 50);
let _ = super::blur(&image, 0.0);
}
}