jpeg_decoder/
parser.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
use alloc::borrow::ToOwned;
use alloc::{format, vec};
use alloc::vec::Vec;
use core::ops::{self, Range};
use std::io::{self, Read};
use crate::{read_u16_from_be, read_u8};
use crate::error::{Error, Result, UnsupportedFeature};
use crate::huffman::{HuffmanTable, HuffmanTableClass};
use crate::marker::Marker;
use crate::marker::Marker::*;

#[derive(Clone, Copy, Debug, PartialEq)]
pub struct Dimensions {
    pub width: u16,
    pub height: u16,
}

#[derive(Clone, Copy, Debug, PartialEq)]
pub enum EntropyCoding {
    Huffman,
    Arithmetic,
}

/// Represents the coding process of an image.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum CodingProcess {
    /// Sequential Discrete Cosine Transform
    DctSequential,
    /// Progressive Discrete Cosine Transform
    DctProgressive,
    /// Lossless
    Lossless,
}

// Table H.1
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum Predictor {
    NoPrediction,
    Ra,
    Rb,
    Rc,
    RaRbRc1, // Ra + Rb - Rc
    RaRbRc2, // Ra + ((Rb - Rc) >> 1)
    RaRbRc3, // Rb + ((Ra - Rb) >> 1)
    RaRb,    // (Ra + Rb)/2
}


#[derive(Clone)]
pub struct FrameInfo {
    pub is_baseline: bool,
    pub is_differential: bool,
    pub coding_process: CodingProcess,
    pub entropy_coding: EntropyCoding,
    pub precision: u8,

    pub image_size: Dimensions,
    pub output_size: Dimensions,
    pub mcu_size: Dimensions,
    pub components: Vec<Component>,
}

#[derive(Debug)]
pub struct ScanInfo {
    pub component_indices: Vec<usize>,
    pub dc_table_indices: Vec<usize>,
    pub ac_table_indices: Vec<usize>,

    pub spectral_selection: Range<u8>,
    pub predictor_selection: Predictor, // for lossless
    pub successive_approximation_high: u8,
    pub successive_approximation_low: u8,
    pub point_transform: u8, // for lossless
}

#[derive(Clone, Debug)]
pub struct Component {
    pub identifier: u8,

    pub horizontal_sampling_factor: u8,
    pub vertical_sampling_factor: u8,

    pub quantization_table_index: usize,

    pub dct_scale: usize,

    pub size: Dimensions,
    pub block_size: Dimensions,
}

#[derive(Debug)]
pub enum AppData {
    Adobe(AdobeColorTransform),
    Jfif,
    Avi1,
    Icc(IccChunk),
    Exif(Vec<u8>),
    Xmp(Vec<u8>),
    Psir(Vec<u8>),
}

// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
#[allow(clippy::upper_case_acronyms)]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum AdobeColorTransform {
    // RGB or CMYK
    Unknown,
    YCbCr,
    // YCbCrK
    YCCK,
}
#[derive(Debug)]
pub struct IccChunk {
    pub num_markers: u8,
    pub seq_no: u8,
    pub data: Vec<u8>,
}

impl FrameInfo {
    pub(crate) fn update_idct_size(&mut self, idct_size: usize) -> Result<()> {
        for component in &mut self.components {
            component.dct_scale = idct_size;
        }

        update_component_sizes(self.image_size, &mut self.components)?;

        self.output_size = Dimensions {
            width: (self.image_size.width as f32 * idct_size as f32 / 8.0).ceil() as u16,
            height: (self.image_size.height as f32 * idct_size as f32 / 8.0).ceil() as u16
        };

        Ok(())
    }
}

fn read_length<R: Read>(reader: &mut R, marker: Marker) -> Result<usize> {
    assert!(marker.has_length());

    // length is including itself.
    let length = usize::from(read_u16_from_be(reader)?);

    if length < 2 {
        return Err(Error::Format(format!("encountered {:?} with invalid length {}", marker, length)));
    }

    Ok(length - 2)
}

fn skip_bytes<R: Read>(reader: &mut R, length: usize) -> Result<()> {
    let length = length as u64;
    let to_skip = &mut reader.by_ref().take(length);
    let copied = io::copy(to_skip, &mut io::sink())?;
    if copied < length {
        Err(Error::Io(io::ErrorKind::UnexpectedEof.into()))
    } else {
        Ok(())
    }
}

// Section B.2.2
pub fn parse_sof<R: Read>(reader: &mut R, marker: Marker) -> Result<FrameInfo> {
    let length = read_length(reader, marker)?;

    if length <= 6 {
        return Err(Error::Format("invalid length in SOF".to_owned()));
    }

    let is_baseline = marker == SOF(0);
    let is_differential = match marker {
        SOF(0 ..= 3) | SOF(9 ..= 11)  => false,
        SOF(5 ..= 7) | SOF(13 ..= 15) => true,
        _ => panic!(),
    };
    let coding_process = match marker {
        SOF(0) | SOF(1) | SOF(5) | SOF(9) | SOF(13) => CodingProcess::DctSequential,
        SOF(2) | SOF(6) | SOF(10) | SOF(14)         => CodingProcess::DctProgressive,
        SOF(3) | SOF(7) | SOF(11) | SOF(15)         => CodingProcess::Lossless,
        _ => panic!(),
    };
    let entropy_coding = match marker {
        SOF(0 ..= 3) | SOF(5 ..= 7)     => EntropyCoding::Huffman,
        SOF(9 ..= 11) | SOF(13 ..= 15)  => EntropyCoding::Arithmetic,
        _ => panic!(),
    };

    let precision = read_u8(reader)?;

    match precision {
        8 => {},
        12 => {
            if is_baseline {
                return Err(Error::Format("12 bit sample precision is not allowed in baseline".to_owned()));
            }
        },
        _ => {
            if coding_process != CodingProcess::Lossless || precision > 16 {
                return Err(Error::Format(format!("invalid precision {} in frame header", precision)))
            }
        },
    }

    let height = read_u16_from_be(reader)?;
    let width = read_u16_from_be(reader)?;

    // height:
    // "Value 0 indicates that the number of lines shall be defined by the DNL marker and
    //     parameters at the end of the first scan (see B.2.5)."
    if height == 0 {
        return Err(Error::Unsupported(UnsupportedFeature::DNL));
    }

    if width == 0 {
        return Err(Error::Format("zero width in frame header".to_owned()));
    }

    let component_count = read_u8(reader)?;

    if component_count == 0 {
        return Err(Error::Format("zero component count in frame header".to_owned()));
    }
    if coding_process == CodingProcess::DctProgressive && component_count > 4 {
        return Err(Error::Format("progressive frame with more than 4 components".to_owned()));
    }

    if length != 6 + 3 * component_count as usize {
        return Err(Error::Format("invalid length in SOF".to_owned()));
    }

    let mut components: Vec<Component> = Vec::with_capacity(component_count as usize);

    for _ in 0 .. component_count {
        let identifier = read_u8(reader)?;

        // Each component's identifier must be unique.
        if components.iter().any(|c| c.identifier == identifier) {
            return Err(Error::Format(format!("duplicate frame component identifier {}", identifier)));
        }

        let byte = read_u8(reader)?;
        let horizontal_sampling_factor = byte >> 4;
        let vertical_sampling_factor = byte & 0x0f;

        if horizontal_sampling_factor == 0 || horizontal_sampling_factor > 4 {
            return Err(Error::Format(format!("invalid horizontal sampling factor {}", horizontal_sampling_factor)));
        }
        if vertical_sampling_factor == 0 || vertical_sampling_factor > 4 {
            return Err(Error::Format(format!("invalid vertical sampling factor {}", vertical_sampling_factor)));
        }

        let quantization_table_index = read_u8(reader)?;

        if quantization_table_index > 3 || (coding_process == CodingProcess::Lossless && quantization_table_index != 0) {
            return Err(Error::Format(format!("invalid quantization table index {}", quantization_table_index)));
        }

        components.push(Component {
            identifier,
            horizontal_sampling_factor,
            vertical_sampling_factor,
            quantization_table_index: quantization_table_index as usize,
            dct_scale: 8,
            size: Dimensions {width: 0, height: 0},
            block_size: Dimensions {width: 0, height: 0},
        });
    }

    let mcu_size = update_component_sizes(Dimensions { width, height }, &mut components)?;

    Ok(FrameInfo {
        is_baseline,
        is_differential,
        coding_process,
        entropy_coding,
        precision,
        image_size: Dimensions { width, height },
        output_size: Dimensions { width, height },
        mcu_size,
        components,
    })
}

/// Returns ceil(x/y), requires x>0
fn ceil_div(x: u32, y: u32) -> Result<u16> {
    if x == 0 || y == 0 {
        // TODO Determine how this error is reached. Can we validate input
        // earlier and error out then?
        return Err(Error::Format("invalid dimensions".to_owned()));
    }
    Ok((1 + ((x - 1) / y)) as u16)
}

fn update_component_sizes(size: Dimensions, components: &mut [Component]) -> Result<Dimensions> {
    let h_max = components.iter().map(|c| c.horizontal_sampling_factor).max().unwrap() as u32;
    let v_max = components.iter().map(|c| c.vertical_sampling_factor).max().unwrap() as u32;

    let mcu_size = Dimensions {
        width: ceil_div(size.width as u32, h_max * 8)?,
        height: ceil_div(size.height as u32, v_max * 8)?,
    };

    for component in components {
        component.size.width = ceil_div(size.width as u32 * component.horizontal_sampling_factor as u32 * component.dct_scale as u32, h_max * 8)?;
        component.size.height = ceil_div(size.height as u32 * component.vertical_sampling_factor as u32 * component.dct_scale as u32, v_max * 8)?;

        component.block_size.width = mcu_size.width * component.horizontal_sampling_factor as u16;
        component.block_size.height = mcu_size.height * component.vertical_sampling_factor as u16;
    }

    Ok(mcu_size)
}

#[test]
fn test_update_component_sizes() {
    let mut components = [Component {
        identifier: 1,
        horizontal_sampling_factor: 2,
        vertical_sampling_factor: 2,
        quantization_table_index: 0,
        dct_scale: 8,
        size: Dimensions { width: 0, height: 0 },
        block_size: Dimensions { width: 0, height: 0 },
    }];
    let mcu = update_component_sizes(
        Dimensions { width: 800, height: 280 },
        &mut components).unwrap();
    assert_eq!(mcu, Dimensions { width: 50, height: 18 });
    assert_eq!(components[0].block_size, Dimensions { width: 100, height: 36 });
    assert_eq!(components[0].size, Dimensions { width: 800, height: 280 });
}

// Section B.2.3
pub fn parse_sos<R: Read>(reader: &mut R, frame: &FrameInfo) -> Result<ScanInfo> {
    let length = read_length(reader, SOS)?;
    if 0 == length {
        return Err(Error::Format("zero length in SOS".to_owned()));
    }

    let component_count = read_u8(reader)?;

    if component_count == 0 || component_count > 4 {
        return Err(Error::Format(format!("invalid component count {} in scan header", component_count)));
    }

    if length != 4 + 2 * component_count as usize {
        return Err(Error::Format("invalid length in SOS".to_owned()));
    }

    let mut component_indices = Vec::with_capacity(component_count as usize);
    let mut dc_table_indices = Vec::with_capacity(component_count as usize);
    let mut ac_table_indices = Vec::with_capacity(component_count as usize);

    for _ in 0 .. component_count {
        let identifier = read_u8(reader)?;

        let component_index = match frame.components.iter().position(|c| c.identifier == identifier) {
            Some(value) => value,
            None => return Err(Error::Format(format!("scan component identifier {} does not match any of the component identifiers defined in the frame", identifier))),
        };

        // Each of the scan's components must be unique.
        if component_indices.contains(&component_index) {
            return Err(Error::Format(format!("duplicate scan component identifier {}", identifier)));
        }

        // "... the ordering in the scan header shall follow the ordering in the frame header."
        if component_index < *component_indices.iter().max().unwrap_or(&0) {
            return Err(Error::Format("the scan component order does not follow the order in the frame header".to_owned()));
        }

        let byte = read_u8(reader)?;
        let dc_table_index = byte >> 4;
        let ac_table_index = byte & 0x0f;

        if dc_table_index > 3 || (frame.is_baseline && dc_table_index > 1) {
            return Err(Error::Format(format!("invalid dc table index {}", dc_table_index)));
        }
        if ac_table_index > 3 || (frame.is_baseline && ac_table_index > 1) {
            return Err(Error::Format(format!("invalid ac table index {}", ac_table_index)));
        }

        component_indices.push(component_index);
        dc_table_indices.push(dc_table_index as usize);
        ac_table_indices.push(ac_table_index as usize);
    }

    let blocks_per_mcu = component_indices.iter().map(|&i| {
        frame.components[i].horizontal_sampling_factor as u32 * frame.components[i].vertical_sampling_factor as u32
    }).fold(0, ops::Add::add);

    if component_count > 1 && blocks_per_mcu > 10 {
        return Err(Error::Format("scan with more than one component and more than 10 blocks per MCU".to_owned()));
    }

    // Also utilized as 'Predictor' in lossless coding, as MEAN in JPEG-LS etc.
    let spectral_selection_start = read_u8(reader)?;
    // Also utilized as ILV parameter in JPEG-LS.
    let mut spectral_selection_end = read_u8(reader)?;

    let byte = read_u8(reader)?;
    let successive_approximation_high = byte >> 4;
    let successive_approximation_low = byte & 0x0f;

    // The Differential Pulse-Mode prediction used (similar to png). Only utilized in Lossless
    // coding. Don't confuse with the JPEG-LS parameter coded using the same scan info portion.
    let predictor_selection;
    let point_transform = successive_approximation_low;

    if frame.coding_process == CodingProcess::DctProgressive {
        predictor_selection = Predictor::NoPrediction;
        if spectral_selection_end > 63 || spectral_selection_start > spectral_selection_end ||
                (spectral_selection_start == 0 && spectral_selection_end != 0) {
            return Err(Error::Format(format!("invalid spectral selection parameters: ss={}, se={}", spectral_selection_start, spectral_selection_end)));
        }
        if spectral_selection_start != 0 && component_count != 1 {
            return Err(Error::Format("spectral selection scan with AC coefficients can't have more than one component".to_owned()));
        }

        if successive_approximation_high > 13 || successive_approximation_low > 13 {
            return Err(Error::Format(format!("invalid successive approximation parameters: ah={}, al={}", successive_approximation_high, successive_approximation_low)));
        }

        // Section G.1.1.1.2
        // "Each scan which follows the first scan for a given band progressively improves
        //     the precision of the coefficients by one bit, until full precision is reached."
        if successive_approximation_high != 0 && successive_approximation_high != successive_approximation_low + 1 {
            return Err(Error::Format("successive approximation scan with more than one bit of improvement".to_owned()));
        }
    }
    else if frame.coding_process == CodingProcess::Lossless {
        if spectral_selection_end != 0 {
            return Err(Error::Format("spectral selection end shall be zero in lossless scan".to_owned()));
        }
        if successive_approximation_high != 0 {
            return Err(Error::Format("successive approximation high shall be zero in lossless scan".to_owned()));
        }
        predictor_selection = match spectral_selection_start {
            0 => Predictor::NoPrediction,
            1 => Predictor::Ra,
            2 => Predictor::Rb,
            3 => Predictor::Rc,
            4 => Predictor::RaRbRc1,
            5 => Predictor::RaRbRc2,
            6 => Predictor::RaRbRc3,
            7 => Predictor::RaRb,
            _ => {
                return Err(Error::Format(format!("invalid predictor selection value: {}", spectral_selection_start)));
            },
        };
    }
    else {
        predictor_selection = Predictor::NoPrediction;
        if spectral_selection_end == 0 {
            spectral_selection_end = 63;
        }
        if spectral_selection_start != 0 || spectral_selection_end != 63 {
            return Err(Error::Format("spectral selection is not allowed in non-progressive scan".to_owned()));
        }
        if successive_approximation_high != 0 || successive_approximation_low != 0 {
            return Err(Error::Format("successive approximation is not allowed in non-progressive scan".to_owned()));
        }
    }

    Ok(ScanInfo {
        component_indices,
        dc_table_indices,
        ac_table_indices,
        spectral_selection: Range {
            start: spectral_selection_start,
            end: spectral_selection_end + 1,
        },
        predictor_selection,
        successive_approximation_high,
        successive_approximation_low,
        point_transform,
    })
}

// Section B.2.4.1
pub fn parse_dqt<R: Read>(reader: &mut R) -> Result<[Option<[u16; 64]>; 4]> {
    let mut length = read_length(reader, DQT)?;
    let mut tables = [None; 4];

    // Each DQT segment may contain multiple quantization tables.
    while length > 0 {
        let byte = read_u8(reader)?;
        let precision = (byte >> 4) as usize;
        let index = (byte & 0x0f) as usize;

        // The combination of 8-bit sample precision and 16-bit quantization tables is explicitly
        // disallowed by the JPEG spec:
        //     "An 8-bit DCT-based process shall not use a 16-bit precision quantization table."
        //     "Pq: Quantization table element precision – Specifies the precision of the Qk
        //      values. Value 0 indicates 8-bit Qk values; value 1 indicates 16-bit Qk values. Pq
        //      shall be zero for 8 bit sample precision P (see B.2.2)."
        // libjpeg allows this behavior though, and there are images in the wild using it. So to
        // match libjpeg's behavior we are deviating from the JPEG spec here.
        if precision > 1 {
            return Err(Error::Format(format!("invalid precision {} in DQT", precision)));
        }
        if index > 3 {
            return Err(Error::Format(format!("invalid destination identifier {} in DQT", index)));
        }
        if length < 65 + 64 * precision {
            return Err(Error::Format("invalid length in DQT".to_owned()));
        }

        let mut table = [0u16; 64];

        for item in table.iter_mut() {
            *item = match precision {
                0 => u16::from(read_u8(reader)?),
                1 => read_u16_from_be(reader)?,
                _ => unreachable!(),
            };
        }

        if table.iter().any(|&val| val == 0) {
            return Err(Error::Format("quantization table contains element with a zero value".to_owned()));
        }

        tables[index] = Some(table);
        length -= 65 + 64 * precision;
    }

    Ok(tables)
}

// Section B.2.4.2
#[allow(clippy::type_complexity)]
pub fn parse_dht<R: Read>(reader: &mut R, is_baseline: Option<bool>) -> Result<(Vec<Option<HuffmanTable>>, Vec<Option<HuffmanTable>>)> {
    let mut length = read_length(reader, DHT)?;
    let mut dc_tables = vec![None, None, None, None];
    let mut ac_tables = vec![None, None, None, None];

    // Each DHT segment may contain multiple huffman tables.
    while length > 17 {
        let byte = read_u8(reader)?;
        let class = byte >> 4;
        let index = (byte & 0x0f) as usize;

        if class != 0 && class != 1 {
            return Err(Error::Format(format!("invalid class {} in DHT", class)));
        }
        if is_baseline == Some(true) && index > 1 {
            return Err(Error::Format("a maximum of two huffman tables per class are allowed in baseline".to_owned()));
        }
        if index > 3 {
            return Err(Error::Format(format!("invalid destination identifier {} in DHT", index)));
        }

        let mut counts = [0u8; 16];
        reader.read_exact(&mut counts)?;

        let size = counts.iter().map(|&val| val as usize).fold(0, ops::Add::add);

        if size == 0 {
            return Err(Error::Format("encountered table with zero length in DHT".to_owned()));
        }
        else if size > 256 {
            return Err(Error::Format("encountered table with excessive length in DHT".to_owned()));
        }
        else if size > length - 17 {
            return Err(Error::Format("invalid length in DHT".to_owned()));
        }

        let mut values = vec![0u8; size];
        reader.read_exact(&mut values)?;

        match class {
            0 => dc_tables[index] = Some(HuffmanTable::new(&counts, &values, HuffmanTableClass::DC)?),
            1 => ac_tables[index] = Some(HuffmanTable::new(&counts, &values, HuffmanTableClass::AC)?),
            _ => unreachable!(),
        }

        length -= 17 + size;
    }

    if length != 0 {
        return Err(Error::Format("invalid length in DHT".to_owned()));
    }

    Ok((dc_tables, ac_tables))
}

// Section B.2.4.4
pub fn parse_dri<R: Read>(reader: &mut R) -> Result<u16> {
    let length = read_length(reader, DRI)?;

    if length != 2 {
        return Err(Error::Format("DRI with invalid length".to_owned()));
    }

    Ok(read_u16_from_be(reader)?)
}

// Section B.2.4.5
pub fn parse_com<R: Read>(reader: &mut R) -> Result<Vec<u8>> {
    let length = read_length(reader, COM)?;
    let mut buffer = vec![0u8; length];

    reader.read_exact(&mut buffer)?;

    Ok(buffer)
}

// Section B.2.4.6
pub fn parse_app<R: Read>(reader: &mut R, marker: Marker) -> Result<Option<AppData>> {
    let length = read_length(reader, marker)?;
    let mut bytes_read = 0;
    let mut result = None;

    match marker {
        APP(0) => {
            if length >= 5 {
                let mut buffer = [0u8; 5];
                reader.read_exact(&mut buffer)?;
                bytes_read = buffer.len();

                // http://www.w3.org/Graphics/JPEG/jfif3.pdf
                if buffer[0..5] == *b"JFIF\0" {
                    result = Some(AppData::Jfif);
                // https://sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#AVI1
                } else if buffer[0..5] == *b"AVI1\0" {
                    result = Some(AppData::Avi1);
                }
            }
        }
        APP(1) => {
            let mut buffer = vec![0u8; length];
            reader.read_exact(&mut buffer)?;
            bytes_read = buffer.len();

            // https://web.archive.org/web/20190624045241if_/http://www.cipa.jp:80/std/documents/e/DC-008-Translation-2019-E.pdf
            // 4.5.4 Basic Structure of JPEG Compressed Data
            if length >= 6 && buffer[0..6] == *b"Exif\x00\x00" {
                result = Some(AppData::Exif(buffer[6..].to_vec()));
            }
            // XMP packet
            // https://github.com/adobe/XMP-Toolkit-SDK/blob/main/docs/XMPSpecificationPart3.pdf
            else if length >= 29 && buffer[0..29] == *b"http://ns.adobe.com/xap/1.0/\0" {
                result = Some(AppData::Xmp(buffer[29..].to_vec()));
            }
        }
        APP(2) => {
            if length > 14 {
                let mut buffer = [0u8; 14];
                reader.read_exact(&mut buffer)?;
                bytes_read = buffer.len();

                // http://www.color.org/ICC_Minor_Revision_for_Web.pdf
                // B.4 Embedding ICC profiles in JFIF files
                if buffer[0..12] == *b"ICC_PROFILE\0" {
                    let mut data = vec![0; length - bytes_read];
                    reader.read_exact(&mut data)?;
                    bytes_read += data.len();
                    result = Some(AppData::Icc(IccChunk {
                        seq_no: buffer[12],
                        num_markers: buffer[13],
                        data,
                    }));
                }
            }
        }
        APP(13) => {
            if length >= 14 {
                let mut buffer = [0u8; 14];
                reader.read_exact(&mut buffer)?;
                bytes_read = buffer.len();

                // PSIR (Photoshop)
                // https://github.com/adobe/XMP-Toolkit-SDK/blob/main/docs/XMPSpecificationPart3.pdf
                if buffer[0..14] == *b"Photoshop 3.0\0" {
                    let mut data = vec![0; length - bytes_read];
                    reader.read_exact(&mut data)?;
                    bytes_read += data.len();
                    result = Some(AppData::Psir(data));
                }
            }
        }
        APP(14) => {
            if length >= 12 {
                let mut buffer = [0u8; 12];
                reader.read_exact(&mut buffer)?;
                bytes_read = buffer.len();

                // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
                if buffer[0 .. 6] == *b"Adobe\0" {
                    let color_transform = match buffer[11] {
                        0 => AdobeColorTransform::Unknown,
                        1 => AdobeColorTransform::YCbCr,
                        2 => AdobeColorTransform::YCCK,
                        _ => return Err(Error::Format("invalid color transform in adobe app segment".to_owned())),
                    };

                    result = Some(AppData::Adobe(color_transform));
                }
            }
        },
        _ => {},
    }

    skip_bytes(reader, length - bytes_read)?;
    Ok(result)
}