jpeg_decoder/worker/
rayon.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
use rayon::iter::{IndexedParallelIterator, ParallelIterator};
use rayon::slice::ParallelSliceMut;

use crate::decoder::{choose_color_convert_func, ColorTransform};
use crate::error::Result;
use crate::idct::dequantize_and_idct_block;
use crate::parser::Component;
use crate::upsampler::Upsampler;
use crate::{decoder::MAX_COMPONENTS, parser::Dimensions};

use std::sync::Arc;

use super::{RowData, Worker};

/// Technically similar to `immediate::ImmediateWorker` but we copy it since we may prefer
/// different style of managing the memory allocation, something that multiple actors can access in
/// parallel.
#[derive(Default)]
struct ImmediateWorker {
    offsets: [usize; MAX_COMPONENTS],
    results: [Vec<u8>; MAX_COMPONENTS],
    components: [Option<Component>; MAX_COMPONENTS],
    quantization_tables: [Option<Arc<[u16; 64]>>; MAX_COMPONENTS],
}

#[derive(Clone, Copy)]
struct ComponentMetadata {
    block_width: usize,
    block_count: usize,
    line_stride: usize,
    dct_scale: usize,
}

#[derive(Default)]
pub struct Scoped {
    inner: ImmediateWorker,
}

impl ImmediateWorker {
    pub fn start_immediate(&mut self, data: RowData) {
        let elements = data.component.block_size.width as usize
            * data.component.block_size.height as usize
            * data.component.dct_scale
            * data.component.dct_scale;
        self.offsets[data.index] = 0;
        self.results[data.index].resize(elements, 0u8);
        self.components[data.index] = Some(data.component);
        self.quantization_tables[data.index] = Some(data.quantization_table);
    }

    pub fn get_result_immediate(&mut self, index: usize) -> Vec<u8> {
        core::mem::take(&mut self.results[index])
    }

    pub fn component_metadata(&self, index: usize) -> Option<ComponentMetadata> {
        let component = self.components[index].as_ref()?;
        let block_size = component.block_size;
        let block_width = block_size.width as usize;
        let block_count = block_size.width as usize * component.vertical_sampling_factor as usize;
        let line_stride = block_size.width as usize * component.dct_scale;
        let dct_scale = component.dct_scale;

        Some(ComponentMetadata {
            block_width,
            block_count,
            line_stride,
            dct_scale,
        })
    }

    pub fn append_row_locked(
        quantization_table: Arc<[u16; 64]>,
        metadata: ComponentMetadata,
        data: Vec<i16>,
        result_block: &mut [u8],
    ) {
        // Convert coefficients from a MCU row to samples.
        let ComponentMetadata {
            block_count,
            line_stride,
            block_width,
            dct_scale,
        } = metadata;

        assert_eq!(data.len(), block_count * 64);

        let mut output_buffer = [0; 64];
        for i in 0..block_count {
            let x = (i % block_width) * dct_scale;
            let y = (i / block_width) * dct_scale;

            let coefficients: &[i16; 64] = &data[i * 64..(i + 1) * 64].try_into().unwrap();

            // Write to a temporary intermediate buffer, a 8x8 'image'.
            dequantize_and_idct_block(
                dct_scale,
                coefficients,
                &quantization_table,
                8,
                &mut output_buffer,
            );

            let write_back = &mut result_block[y * line_stride + x..];

            let buffered_lines = output_buffer.chunks_mut(8);
            let back_lines = write_back.chunks_mut(line_stride);

            for (buf, back) in buffered_lines.zip(back_lines).take(dct_scale) {
                back[..dct_scale].copy_from_slice(&buf[..dct_scale]);
            }
        }
    }
}

impl Worker for Scoped {
    fn start(&mut self, row_data: RowData) -> Result<()> {
        self.inner.start_immediate(row_data);
        Ok(())
    }

    fn append_row(&mut self, row: (usize, Vec<i16>)) -> Result<()> {
        let inner = &mut self.inner;
        let (index, data) = row;

        let quantization_table = inner.quantization_tables[index].as_ref().unwrap().clone();
        let metadata = inner.component_metadata(index).unwrap();
        let result_block = &mut inner.results[index][inner.offsets[index]..];
        inner.offsets[index] += metadata.bytes_used();

        ImmediateWorker::append_row_locked(quantization_table, metadata, data, result_block);
        Ok(())
    }

    fn get_result(&mut self, index: usize) -> Result<Vec<u8>> {
        let result = self.inner.get_result_immediate(index);
        Ok(result)
    }

    // Magic sauce, these _may_ run in parallel.
    fn append_rows(&mut self, iter: &mut dyn Iterator<Item = (usize, Vec<i16>)>) -> Result<()> {
        let inner = &mut self.inner;
        rayon::in_place_scope(|scope| {
            let metadatas = [
                inner.component_metadata(0),
                inner.component_metadata(1),
                inner.component_metadata(2),
                inner.component_metadata(3),
            ];

            let [res0, res1, res2, res3] = &mut inner.results;

            // Lazily get the blocks. Note: if we've already collected results from a component
            // then the result vector has already been deallocated/taken. But no more tasks should
            // be created for it.
            let mut result_blocks = [
                res0.get_mut(inner.offsets[0]..).unwrap_or(&mut []),
                res1.get_mut(inner.offsets[1]..).unwrap_or(&mut []),
                res2.get_mut(inner.offsets[2]..).unwrap_or(&mut []),
                res3.get_mut(inner.offsets[3]..).unwrap_or(&mut []),
            ];

            // First we schedule everything, making sure their index is right etc.
            for (index, data) in iter {
                let metadata = metadatas[index].unwrap();
                let quantization_table = inner.quantization_tables[index].as_ref().unwrap().clone();

                inner.offsets[index] += metadata.bytes_used();
                let (result_block, tail) =
                    core::mem::take(&mut result_blocks[index]).split_at_mut(metadata.bytes_used());
                result_blocks[index] = tail;

                scope.spawn(move |_| {
                    ImmediateWorker::append_row_locked(
                        quantization_table,
                        metadata,
                        data,
                        result_block,
                    )
                });
            }
        });

        Ok(())
    }
}

impl ComponentMetadata {
    fn bytes_used(&self) -> usize {
        self.block_count * self.dct_scale * self.dct_scale
    }
}

pub fn compute_image_parallel(
    components: &[Component],
    data: Vec<Vec<u8>>,
    output_size: Dimensions,
    color_transform: ColorTransform,
) -> Result<Vec<u8>> {
    let color_convert_func = choose_color_convert_func(components.len(), color_transform)?;
    let upsampler = Upsampler::new(components, output_size.width, output_size.height)?;
    let line_size = output_size.width as usize * components.len();
    let mut image = vec![0u8; line_size * output_size.height as usize];

    image
        .par_chunks_mut(line_size)
        .with_max_len(1)
        .enumerate()
        .for_each(|(row, line)| {
            upsampler.upsample_and_interleave_row(
                &data,
                row,
                output_size.width as usize,
                line,
                color_convert_func,
            );
        });

    Ok(image)
}