kurbo/affine.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
// Copyright 2018 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT
//! Affine transforms.
use core::ops::{Mul, MulAssign};
use crate::{Point, Rect, Vec2};
#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;
/// A 2D affine transform.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Affine([f64; 6]);
impl Affine {
/// The identity transform.
pub const IDENTITY: Affine = Affine::scale(1.0);
/// A transform that is flipped on the y-axis. Useful for converting between
/// y-up and y-down spaces.
pub const FLIP_Y: Affine = Affine::new([1.0, 0., 0., -1.0, 0., 0.]);
/// A transform that is flipped on the x-axis.
pub const FLIP_X: Affine = Affine::new([-1.0, 0., 0., 1.0, 0., 0.]);
/// Construct an affine transform from coefficients.
///
/// If the coefficients are `(a, b, c, d, e, f)`, then the resulting
/// transformation represents this augmented matrix:
///
/// ```text
/// | a c e |
/// | b d f |
/// | 0 0 1 |
/// ```
///
/// Note that this convention is transposed from PostScript and
/// Direct2D, but is consistent with the
/// [Wikipedia](https://en.wikipedia.org/wiki/Affine_transformation)
/// formulation of affine transformation as augmented matrix. The
/// idea is that `(A * B) * v == A * (B * v)`, where `*` is the
/// [`Mul`](std::ops::Mul) trait.
#[inline]
pub const fn new(c: [f64; 6]) -> Affine {
Affine(c)
}
/// An affine transform representing uniform scaling.
#[inline]
pub const fn scale(s: f64) -> Affine {
Affine([s, 0.0, 0.0, s, 0.0, 0.0])
}
/// An affine transform representing non-uniform scaling
/// with different scale values for x and y
#[inline]
pub const fn scale_non_uniform(s_x: f64, s_y: f64) -> Affine {
Affine([s_x, 0.0, 0.0, s_y, 0.0, 0.0])
}
/// An affine transform representing rotation.
///
/// The convention for rotation is that a positive angle rotates a
/// positive X direction into positive Y. Thus, in a Y-down coordinate
/// system (as is common for graphics), it is a clockwise rotation, and
/// in Y-up (traditional for math), it is anti-clockwise.
///
/// The angle, `th`, is expressed in radians.
#[inline]
pub fn rotate(th: f64) -> Affine {
let (s, c) = th.sin_cos();
Affine([c, s, -s, c, 0.0, 0.0])
}
/// An affine transform representing a rotation of `th` radians about `center`.
///
/// See [`Affine::rotate()`] for more info.
#[inline]
pub fn rotate_about(th: f64, center: Point) -> Affine {
let center = center.to_vec2();
Self::translate(-center)
.then_rotate(th)
.then_translate(center)
}
/// An affine transform representing translation.
#[inline]
pub fn translate<V: Into<Vec2>>(p: V) -> Affine {
let p = p.into();
Affine([1.0, 0.0, 0.0, 1.0, p.x, p.y])
}
/// An affine transformation representing a skew.
///
/// The `skew_x` and `skew_y` parameters represent skew factors for the
/// horizontal and vertical directions, respectively.
///
/// This is commonly used to generate a faux oblique transform for
/// font rendering. In this case, you can slant the glyph 20 degrees
/// clockwise in the horizontal direction (assuming a Y-up coordinate
/// system):
///
/// ```
/// let oblique_transform = kurbo::Affine::skew(20f64.to_radians().tan(), 0.0);
/// ```
#[inline]
pub fn skew(skew_x: f64, skew_y: f64) -> Affine {
Affine([1.0, skew_y, skew_x, 1.0, 0.0, 0.0])
}
/// Create an affine transform that represents reflection about the line `point + direction * t, t in (-infty, infty)`
///
/// # Examples
///
/// ```
/// # use kurbo::{Point, Vec2, Affine};
/// # fn assert_near(p0: Point, p1: Point) {
/// # assert!((p1 - p0).hypot() < 1e-9, "{p0:?} != {p1:?}");
/// # }
/// let point = Point::new(1., 0.);
/// let vec = Vec2::new(1., 1.);
/// let map = Affine::reflect(point, vec);
/// assert_near(map * Point::new(1., 0.), Point::new(1., 0.));
/// assert_near(map * Point::new(2., 1.), Point::new(2., 1.));
/// assert_near(map * Point::new(2., 2.), Point::new(3., 1.));
/// ```
#[inline]
#[must_use]
pub fn reflect(point: impl Into<Point>, direction: impl Into<Vec2>) -> Self {
let point = point.into();
let direction = direction.into();
let n = Vec2 {
x: direction.y,
y: -direction.x,
}
.normalize();
// Compute Householder reflection matrix
let x2 = n.x * n.x;
let xy = n.x * n.y;
let y2 = n.y * n.y;
// Here we also add in the post translation, because it doesn't require any further calc.
let aff = Affine::new([
1. - 2. * x2,
-2. * xy,
-2. * xy,
1. - 2. * y2,
point.x,
point.y,
]);
aff.pre_translate(-point.to_vec2())
}
/// A [rotation] by `th` followed by `self`.
///
/// Equivalent to `self * Affine::rotate(th)`
///
/// [rotation]: Affine::rotate
#[inline]
#[must_use]
pub fn pre_rotate(self, th: f64) -> Self {
self * Affine::rotate(th)
}
/// A [rotation] by `th` about `center` followed by `self`.
///
/// Equivalent to `self * Affine::rotate_about(th, center)`
///
/// [rotation]: Affine::rotate_about
#[inline]
#[must_use]
pub fn pre_rotate_about(self, th: f64, center: Point) -> Self {
Affine::rotate_about(th, center) * self
}
/// A [scale] by `scale` followed by `self`.
///
/// Equivalent to `self * Affine::scale(scale)`
///
/// [scale]: Affine::scale
#[inline]
#[must_use]
pub fn pre_scale(self, scale: f64) -> Self {
self * Affine::scale(scale)
}
/// A [scale] by `(scale_x, scale_y)` followed by `self`.
///
/// Equivalent to `self * Affine::scale_non_uniform(scale_x, scale_y)`
///
/// [scale]: Affine::scale_non_uniform
#[inline]
#[must_use]
pub fn pre_scale_non_uniform(self, scale_x: f64, scale_y: f64) -> Self {
self * Affine::scale_non_uniform(scale_x, scale_y)
}
/// A [translation] of `trans` followed by `self`.
///
/// Equivalent to `self * Affine::translate(trans)`
///
/// [translation]: Affine::translate
#[inline]
#[must_use]
pub fn pre_translate(self, trans: Vec2) -> Self {
self * Affine::translate(trans)
}
/// `self` followed by a [rotation] of `th`.
///
/// Equivalent to `Affine::rotate(th) * self`
///
/// [rotation]: Affine::rotate
#[inline]
#[must_use]
pub fn then_rotate(self, th: f64) -> Self {
Affine::rotate(th) * self
}
/// `self` followed by a [rotation] of `th` about `center`.
///
/// Equivalent to `Affine::rotate_about(th, center) * self`
///
/// [rotation]: Affine::rotate_about
#[inline]
#[must_use]
pub fn then_rotate_about(self, th: f64, center: Point) -> Self {
Affine::rotate_about(th, center) * self
}
/// `self` followed by a [scale] of `scale`.
///
/// Equivalent to `Affine::scale(scale) * self`
///
/// [scale]: Affine::scale
#[inline]
#[must_use]
pub fn then_scale(self, scale: f64) -> Self {
Affine::scale(scale) * self
}
/// `self` followed by a [scale] of `(scale_x, scale_y)`.
///
/// Equivalent to `Affine::scale_non_uniform(scale_x, scale_y) * self`
///
/// [scale]: Affine::scale_non_uniform
#[inline]
#[must_use]
pub fn then_scale_non_uniform(self, scale_x: f64, scale_y: f64) -> Self {
Affine::scale_non_uniform(scale_x, scale_y) * self
}
/// `self` followed by a translation of `trans`.
///
/// Equivalent to `Affine::translate(trans) * self`
///
/// [translation]: Affine::translate
#[inline]
#[must_use]
pub fn then_translate(mut self, trans: Vec2) -> Self {
self.0[4] += trans.x;
self.0[5] += trans.y;
self
}
/// Creates an affine transformation that takes the unit square to the given rectangle.
///
/// Useful when you want to draw into the unit square but have your output fill any rectangle.
/// In this case push the `Affine` onto the transform stack.
pub fn map_unit_square(rect: Rect) -> Affine {
Affine([rect.width(), 0., 0., rect.height(), rect.x0, rect.y0])
}
/// Get the coefficients of the transform.
#[inline]
pub fn as_coeffs(self) -> [f64; 6] {
self.0
}
/// Compute the determinant of this transform.
pub fn determinant(self) -> f64 {
self.0[0] * self.0[3] - self.0[1] * self.0[2]
}
/// Compute the inverse transform.
///
/// Produces NaN values when the determinant is zero.
pub fn inverse(self) -> Affine {
let inv_det = self.determinant().recip();
Affine([
inv_det * self.0[3],
-inv_det * self.0[1],
-inv_det * self.0[2],
inv_det * self.0[0],
inv_det * (self.0[2] * self.0[5] - self.0[3] * self.0[4]),
inv_det * (self.0[1] * self.0[4] - self.0[0] * self.0[5]),
])
}
/// Compute the bounding box of a transformed rectangle.
///
/// Returns the minimal `Rect` that encloses the given `Rect` after affine transformation.
/// If the transform is axis-aligned, then this bounding box is "tight", in other words the
/// returned `Rect` is the transformed rectangle.
///
/// The returned rectangle always has non-negative width and height.
pub fn transform_rect_bbox(self, rect: Rect) -> Rect {
let p00 = self * Point::new(rect.x0, rect.y0);
let p01 = self * Point::new(rect.x0, rect.y1);
let p10 = self * Point::new(rect.x1, rect.y0);
let p11 = self * Point::new(rect.x1, rect.y1);
Rect::from_points(p00, p01).union(Rect::from_points(p10, p11))
}
/// Is this map [finite]?
///
/// [finite]: f64::is_finite
#[inline]
pub fn is_finite(&self) -> bool {
self.0[0].is_finite()
&& self.0[1].is_finite()
&& self.0[2].is_finite()
&& self.0[3].is_finite()
&& self.0[4].is_finite()
&& self.0[5].is_finite()
}
/// Is this map [NaN]?
///
/// [NaN]: f64::is_nan
#[inline]
pub fn is_nan(&self) -> bool {
self.0[0].is_nan()
|| self.0[1].is_nan()
|| self.0[2].is_nan()
|| self.0[3].is_nan()
|| self.0[4].is_nan()
|| self.0[5].is_nan()
}
/// Compute the singular value decomposition of the linear transformation (ignoring the
/// translation).
///
/// All non-degenerate linear transformations can be represented as
///
/// 1. a rotation about the origin.
/// 2. a scaling along the x and y axes
/// 3. another rotation about the origin
///
/// composed together. Decomposing a 2x2 matrix in this way is called a "singular value
/// decomposition" and is written `U Σ V^T`, where U and V^T are orthogonal (rotations) and Σ
/// is a diagonal matrix (a scaling).
///
/// Since currently this function is used to calculate ellipse radii and rotation from an
/// affine map on the unit circle, we don't calculate V^T, since a rotation of the unit (or
/// any) circle about its center always results in the same circle. This is the reason that an
/// ellipse mapped using an affine map is always an ellipse.
///
/// Will return NaNs if the matrix (or equivalently the linear map) is singular.
///
/// First part of the return tuple is the scaling, second part is the angle of rotation (in
/// radians)
#[inline]
pub(crate) fn svd(self) -> (Vec2, f64) {
let a = self.0[0];
let a2 = a * a;
let b = self.0[1];
let b2 = b * b;
let c = self.0[2];
let c2 = c * c;
let d = self.0[3];
let d2 = d * d;
let ab = a * b;
let cd = c * d;
let angle = 0.5 * (2.0 * (ab + cd)).atan2(a2 - b2 + c2 - d2);
let s1 = a2 + b2 + c2 + d2;
let s2 = ((a2 - b2 + c2 - d2).powi(2) + 4.0 * (ab + cd).powi(2)).sqrt();
(
Vec2 {
x: (0.5 * (s1 + s2)).sqrt(),
y: (0.5 * (s1 - s2)).sqrt(),
},
angle,
)
}
/// Returns the translation part of this affine map (`(self.0[4], self.0[5])`).
#[inline]
pub fn translation(self) -> Vec2 {
Vec2 {
x: self.0[4],
y: self.0[5],
}
}
/// Replaces the translation portion of this affine map
///
/// The translation can be seen as being applied after the linear part of the map.
#[must_use]
#[inline]
pub fn with_translation(mut self, trans: Vec2) -> Affine {
self.0[4] = trans.x;
self.0[5] = trans.y;
self
}
}
impl Default for Affine {
#[inline]
fn default() -> Affine {
Affine::IDENTITY
}
}
impl Mul<Point> for Affine {
type Output = Point;
#[inline]
fn mul(self, other: Point) -> Point {
Point::new(
self.0[0] * other.x + self.0[2] * other.y + self.0[4],
self.0[1] * other.x + self.0[3] * other.y + self.0[5],
)
}
}
impl Mul for Affine {
type Output = Affine;
#[inline]
fn mul(self, other: Affine) -> Affine {
Affine([
self.0[0] * other.0[0] + self.0[2] * other.0[1],
self.0[1] * other.0[0] + self.0[3] * other.0[1],
self.0[0] * other.0[2] + self.0[2] * other.0[3],
self.0[1] * other.0[2] + self.0[3] * other.0[3],
self.0[0] * other.0[4] + self.0[2] * other.0[5] + self.0[4],
self.0[1] * other.0[4] + self.0[3] * other.0[5] + self.0[5],
])
}
}
impl MulAssign for Affine {
#[inline]
fn mul_assign(&mut self, other: Affine) {
*self = self.mul(other);
}
}
impl Mul<Affine> for f64 {
type Output = Affine;
#[inline]
fn mul(self, other: Affine) -> Affine {
Affine([
self * other.0[0],
self * other.0[1],
self * other.0[2],
self * other.0[3],
self * other.0[4],
self * other.0[5],
])
}
}
// Conversions to and from mint
#[cfg(feature = "mint")]
impl From<Affine> for mint::ColumnMatrix2x3<f64> {
#[inline]
fn from(a: Affine) -> mint::ColumnMatrix2x3<f64> {
mint::ColumnMatrix2x3 {
x: mint::Vector2 {
x: a.0[0],
y: a.0[1],
},
y: mint::Vector2 {
x: a.0[2],
y: a.0[3],
},
z: mint::Vector2 {
x: a.0[4],
y: a.0[5],
},
}
}
}
#[cfg(feature = "mint")]
impl From<mint::ColumnMatrix2x3<f64>> for Affine {
#[inline]
fn from(m: mint::ColumnMatrix2x3<f64>) -> Affine {
Affine([m.x.x, m.x.y, m.y.x, m.y.y, m.z.x, m.z.y])
}
}
#[cfg(test)]
mod tests {
use crate::{Affine, Point, Vec2};
use std::f64::consts::PI;
fn assert_near(p0: Point, p1: Point) {
assert!((p1 - p0).hypot() < 1e-9, "{p0:?} != {p1:?}");
}
fn affine_assert_near(a0: Affine, a1: Affine) {
for i in 0..6 {
assert!((a0.0[i] - a1.0[i]).abs() < 1e-9, "{a0:?} != {a1:?}");
}
}
#[test]
fn affine_basic() {
let p = Point::new(3.0, 4.0);
assert_near(Affine::default() * p, p);
assert_near(Affine::scale(2.0) * p, Point::new(6.0, 8.0));
assert_near(Affine::rotate(0.0) * p, p);
assert_near(Affine::rotate(PI / 2.0) * p, Point::new(-4.0, 3.0));
assert_near(Affine::translate((5.0, 6.0)) * p, Point::new(8.0, 10.0));
assert_near(Affine::skew(0.0, 0.0) * p, p);
assert_near(Affine::skew(2.0, 4.0) * p, Point::new(11.0, 16.0));
}
#[test]
fn affine_mul() {
let a1 = Affine::new([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
let a2 = Affine::new([0.1, 1.2, 2.3, 3.4, 4.5, 5.6]);
let px = Point::new(1.0, 0.0);
let py = Point::new(0.0, 1.0);
let pxy = Point::new(1.0, 1.0);
assert_near(a1 * (a2 * px), (a1 * a2) * px);
assert_near(a1 * (a2 * py), (a1 * a2) * py);
assert_near(a1 * (a2 * pxy), (a1 * a2) * pxy);
}
#[test]
fn affine_inv() {
let a = Affine::new([0.1, 1.2, 2.3, 3.4, 4.5, 5.6]);
let a_inv = a.inverse();
let px = Point::new(1.0, 0.0);
let py = Point::new(0.0, 1.0);
let pxy = Point::new(1.0, 1.0);
assert_near(a * (a_inv * px), px);
assert_near(a * (a_inv * py), py);
assert_near(a * (a_inv * pxy), pxy);
assert_near(a_inv * (a * px), px);
assert_near(a_inv * (a * py), py);
assert_near(a_inv * (a * pxy), pxy);
}
#[test]
fn reflection() {
affine_assert_near(
Affine::reflect(Point::ZERO, (1., 0.)),
Affine::new([1., 0., 0., -1., 0., 0.]),
);
affine_assert_near(
Affine::reflect(Point::ZERO, (0., 1.)),
Affine::new([-1., 0., 0., 1., 0., 0.]),
);
// y = x
affine_assert_near(
Affine::reflect(Point::ZERO, (1., 1.)),
Affine::new([0., 1., 1., 0., 0., 0.]),
);
// no translate
let point = Point::new(0., 0.);
let vec = Vec2::new(1., 1.);
let map = Affine::reflect(point, vec);
assert_near(map * Point::new(0., 0.), Point::new(0., 0.));
assert_near(map * Point::new(1., 1.), Point::new(1., 1.));
assert_near(map * Point::new(1., 2.), Point::new(2., 1.));
// with translate
let point = Point::new(1., 0.);
let vec = Vec2::new(1., 1.);
let map = Affine::reflect(point, vec);
assert_near(map * Point::new(1., 0.), Point::new(1., 0.));
assert_near(map * Point::new(2., 1.), Point::new(2., 1.));
assert_near(map * Point::new(2., 2.), Point::new(3., 1.));
}
}