kurbo/
arc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// Copyright 2019 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! An ellipse arc.

use crate::{Affine, Ellipse, PathEl, Point, Rect, Shape, Vec2};
use core::{
    f64::consts::{FRAC_PI_2, PI},
    iter,
    ops::Mul,
};

#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;

/// A single elliptical arc segment.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Arc {
    /// The arc's centre point.
    pub center: Point,
    /// The arc's radii, where the vector's x-component is the radius in the
    /// positive x direction after applying `x_rotation`.
    pub radii: Vec2,
    /// The start angle in radians.
    pub start_angle: f64,
    /// The angle between the start and end of the arc, in radians.
    pub sweep_angle: f64,
    /// How much the arc is rotated, in radians.
    pub x_rotation: f64,
}

impl Arc {
    /// Create a new `Arc`.
    pub fn new(
        center: impl Into<Point>,
        radii: impl Into<Vec2>,
        start_angle: f64,
        sweep_angle: f64,
        x_rotation: f64,
    ) -> Self {
        Self {
            center: center.into(),
            radii: radii.into(),
            start_angle,
            sweep_angle,
            x_rotation,
        }
    }

    /// Returns a copy of this `Arc` in the opposite direction.
    ///
    /// The new `Arc` will sweep towards the original `Arc`s
    /// start angle.
    #[must_use]
    #[inline]
    pub fn reversed(&self) -> Arc {
        Self {
            center: self.center,
            radii: self.radii,
            start_angle: self.start_angle + self.sweep_angle,
            sweep_angle: -self.sweep_angle,
            x_rotation: self.x_rotation,
        }
    }

    /// Create an iterator generating Bezier path elements.
    ///
    /// The generated elements can be appended to an existing bezier path.
    pub fn append_iter(&self, tolerance: f64) -> ArcAppendIter {
        let sign = self.sweep_angle.signum();
        let scaled_err = self.radii.x.max(self.radii.y) / tolerance;
        // Number of subdivisions per ellipse based on error tolerance.
        // Note: this may slightly underestimate the error for quadrants.
        let n_err = (1.1163 * scaled_err).powf(1.0 / 6.0).max(3.999_999);
        let n = (n_err * self.sweep_angle.abs() * (1.0 / (2.0 * PI))).ceil();
        let angle_step = self.sweep_angle / n;
        let n = n as usize;
        let arm_len = (4.0 / 3.0) * (0.25 * angle_step).abs().tan() * sign;
        let angle0 = self.start_angle;
        let p0 = sample_ellipse(self.radii, self.x_rotation, angle0);

        ArcAppendIter {
            idx: 0,

            center: self.center,
            radii: self.radii,
            x_rotation: self.x_rotation,
            n,
            arm_len,
            angle_step,

            p0,
            angle0,
        }
    }

    /// Converts an `Arc` into a series of cubic bezier segments.
    ///
    /// The closure `p` will be invoked with the control points for each segment.
    pub fn to_cubic_beziers<P>(self, tolerance: f64, mut p: P)
    where
        P: FnMut(Point, Point, Point),
    {
        let mut path = self.append_iter(tolerance);
        while let Some(PathEl::CurveTo(p1, p2, p3)) = path.next() {
            p(p1, p2, p3);
        }
    }
}

#[doc(hidden)]
pub struct ArcAppendIter {
    idx: usize,

    center: Point,
    radii: Vec2,
    x_rotation: f64,
    n: usize,
    arm_len: f64,
    angle_step: f64,

    p0: Vec2,
    angle0: f64,
}

impl Iterator for ArcAppendIter {
    type Item = PathEl;

    fn next(&mut self) -> Option<Self::Item> {
        if self.idx >= self.n {
            return None;
        }

        let angle1 = self.angle0 + self.angle_step;
        let p0 = self.p0;
        let p1 = p0
            + self.arm_len * sample_ellipse(self.radii, self.x_rotation, self.angle0 + FRAC_PI_2);
        let p3 = sample_ellipse(self.radii, self.x_rotation, angle1);
        let p2 =
            p3 - self.arm_len * sample_ellipse(self.radii, self.x_rotation, angle1 + FRAC_PI_2);

        self.angle0 = angle1;
        self.p0 = p3;
        self.idx += 1;

        Some(PathEl::CurveTo(
            self.center + p1,
            self.center + p2,
            self.center + p3,
        ))
    }
}

/// Take the ellipse radii, how the radii are rotated, and the sweep angle, and return a point on
/// the ellipse.
fn sample_ellipse(radii: Vec2, x_rotation: f64, angle: f64) -> Vec2 {
    let (angle_sin, angle_cos) = angle.sin_cos();
    let u = radii.x * angle_cos;
    let v = radii.y * angle_sin;
    rotate_pt(Vec2::new(u, v), x_rotation)
}

/// Rotate `pt` about the origin by `angle` radians.
fn rotate_pt(pt: Vec2, angle: f64) -> Vec2 {
    let (angle_sin, angle_cos) = angle.sin_cos();
    Vec2::new(
        pt.x * angle_cos - pt.y * angle_sin,
        pt.x * angle_sin + pt.y * angle_cos,
    )
}

impl Shape for Arc {
    type PathElementsIter<'iter> = iter::Chain<iter::Once<PathEl>, ArcAppendIter>;

    fn path_elements(&self, tolerance: f64) -> Self::PathElementsIter<'_> {
        let p0 = sample_ellipse(self.radii, self.x_rotation, self.start_angle);
        iter::once(PathEl::MoveTo(self.center + p0)).chain(self.append_iter(tolerance))
    }

    /// Note: shape isn't closed so area is not well defined.
    #[inline]
    fn area(&self) -> f64 {
        let Vec2 { x, y } = self.radii;
        PI * x * y
    }

    /// The perimeter of the arc.
    ///
    /// For now we just approximate by using the bezier curve representation.
    #[inline]
    fn perimeter(&self, accuracy: f64) -> f64 {
        self.path_segments(0.1).perimeter(accuracy)
    }

    /// Note: shape isn't closed, so a point's winding number is not well defined.
    #[inline]
    fn winding(&self, pt: Point) -> i32 {
        self.path_segments(0.1).winding(pt)
    }

    #[inline]
    fn bounding_box(&self) -> Rect {
        self.path_segments(0.1).bounding_box()
    }
}

impl Mul<Arc> for Affine {
    type Output = Arc;

    fn mul(self, arc: Arc) -> Self::Output {
        let ellipse = self * Ellipse::new(arc.center, arc.radii, arc.x_rotation);
        let center = ellipse.center();
        let (radii, rotation) = ellipse.radii_and_rotation();
        Arc {
            center,
            radii,
            x_rotation: rotation,
            start_angle: arc.start_angle,
            sweep_angle: arc.sweep_angle,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn reversed_arc() {
        let a = Arc::new((0., 0.), (1., 0.), 0., PI, 0.);
        let f = a.reversed();

        // Most fields should be unchanged:
        assert_eq!(a.center, f.center);
        assert_eq!(a.radii, f.radii);
        assert_eq!(a.x_rotation, f.x_rotation);

        // Sweep angle should be in reverse
        assert_eq!(a.sweep_angle, -f.sweep_angle);

        // Reversing it again should result in the original arc
        assert_eq!(a, f.reversed());
    }
}