use alloc::vec;
use alloc::vec::Vec;
use core::ops::{Mul, Range};
use crate::MAX_EXTREMA;
use crate::{Line, QuadSpline, Vec2};
use arrayvec::ArrayVec;
use crate::common::{
solve_quadratic, solve_quartic, GAUSS_LEGENDRE_COEFFS_16_HALF, GAUSS_LEGENDRE_COEFFS_24_HALF,
GAUSS_LEGENDRE_COEFFS_8, GAUSS_LEGENDRE_COEFFS_8_HALF,
};
use crate::{
Affine, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea, ParamCurveCurvature,
ParamCurveDeriv, ParamCurveExtrema, ParamCurveNearest, PathEl, Point, QuadBez, Rect, Shape,
};
#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;
const MAX_SPLINE_SPLIT: usize = 100;
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[allow(missing_docs)]
pub struct CubicBez {
pub p0: Point,
pub p1: Point,
pub p2: Point,
pub p3: Point,
}
struct ToQuads {
c: CubicBez,
i: usize,
n: usize,
}
#[derive(Debug)]
pub enum CuspType {
Loop,
DoubleInflection,
}
impl CubicBez {
#[inline]
pub fn new<P: Into<Point>>(p0: P, p1: P, p2: P, p3: P) -> CubicBez {
CubicBez {
p0: p0.into(),
p1: p1.into(),
p2: p2.into(),
p3: p3.into(),
}
}
#[inline]
pub fn to_quads(&self, accuracy: f64) -> impl Iterator<Item = (f64, f64, QuadBez)> {
let max_hypot2 = 432.0 * accuracy * accuracy;
let p1x2 = 3.0 * self.p1.to_vec2() - self.p0.to_vec2();
let p2x2 = 3.0 * self.p2.to_vec2() - self.p3.to_vec2();
let err = (p2x2 - p1x2).hypot2();
let n = ((err / max_hypot2).powf(1. / 6.0).ceil() as usize).max(1);
ToQuads { c: *self, n, i: 0 }
}
pub fn approx_spline(&self, accuracy: f64) -> Option<QuadSpline> {
(1..=MAX_SPLINE_SPLIT).find_map(|n| self.approx_spline_n(n, accuracy))
}
fn approx_spline_n(&self, n: usize, accuracy: f64) -> Option<QuadSpline> {
if n == 1 {
return self
.try_approx_quadratic(accuracy)
.map(|quad| QuadSpline::new(vec![quad.p0, quad.p1, quad.p2]));
}
let mut cubics = self.split_into_n(n);
let mut next_cubic = cubics.next().unwrap();
let mut next_q1: Point = next_cubic.approx_quad_control(0.0);
let mut q2 = self.p0;
let mut d1 = Vec2::ZERO;
let mut spline = vec![self.p0, next_q1];
for i in 1..=n {
let current_cubic: CubicBez = next_cubic;
let q0 = q2;
let q1 = next_q1;
q2 = if i < n {
next_cubic = cubics.next().unwrap();
next_q1 = next_cubic.approx_quad_control(i as f64 / (n - 1) as f64);
spline.push(next_q1);
q1.midpoint(next_q1)
} else {
current_cubic.p3
};
let d0 = d1;
d1 = q2.to_vec2() - current_cubic.p3.to_vec2();
if d1.hypot() > accuracy
|| !CubicBez::new(
d0.to_point(),
q0.lerp(q1, 2.0 / 3.0) - current_cubic.p1.to_vec2(),
q2.lerp(q1, 2.0 / 3.0) - current_cubic.p2.to_vec2(),
d1.to_point(),
)
.fit_inside(accuracy)
{
return None;
}
}
spline.push(self.p3);
Some(QuadSpline::new(spline))
}
fn approx_quad_control(&self, t: f64) -> Point {
let p1 = self.p0 + (self.p1 - self.p0) * 1.5;
let p2 = self.p3 + (self.p2 - self.p3) * 1.5;
p1.lerp(p2, t)
}
fn try_approx_quadratic(&self, accuracy: f64) -> Option<QuadBez> {
if let Some(q1) = Line::new(self.p0, self.p1).crossing_point(Line::new(self.p2, self.p3)) {
let c1 = self.p0.lerp(q1, 2.0 / 3.0);
let c2 = self.p3.lerp(q1, 2.0 / 3.0);
if !CubicBez::new(
Point::ZERO,
c1 - self.p1.to_vec2(),
c2 - self.p2.to_vec2(),
Point::ZERO,
)
.fit_inside(accuracy)
{
return None;
}
return Some(QuadBez::new(self.p0, q1, self.p3));
}
None
}
fn split_into_n(&self, n: usize) -> impl Iterator<Item = CubicBez> {
let mut storage = ArrayVec::<_, 6>::new();
match n {
1 => storage.push(*self),
2 => {
let (l, r) = self.subdivide();
storage.try_extend_from_slice(&[r, l]).unwrap();
}
3 => {
let (left, mid, right) = self.subdivide_3();
storage.try_extend_from_slice(&[right, mid, left]).unwrap();
}
4 => {
let (l, r) = self.subdivide();
let (ll, lr) = l.subdivide();
let (rl, rr) = r.subdivide();
storage.try_extend_from_slice(&[rr, rl, lr, ll]).unwrap();
}
6 => {
let (l, r) = self.subdivide();
let (l1, l2, l3) = l.subdivide_3();
let (r1, r2, r3) = r.subdivide_3();
storage
.try_extend_from_slice(&[r3, r2, r1, l3, l2, l1])
.unwrap();
}
_ => (),
}
let mut storage = if storage.is_empty() {
None
} else {
Some(storage)
};
let mut i = 0;
let (a, b, c, d) = self.parameters();
let dt = 1.0 / n as f64;
let delta_2 = dt * dt;
let delta_3 = dt * delta_2;
core::iter::from_fn(move || {
if let Some(storage) = storage.as_mut() {
return storage.pop();
}
if i >= n {
return None;
}
let t1 = i as f64 * dt;
let t1_2 = t1 * t1;
let a1 = a * delta_3;
let b1 = (3.0 * a * t1 + b) * delta_2;
let c1 = (2.0 * b * t1 + c + 3.0 * a * t1_2) * dt;
let d1 = a * t1 * t1_2 + b * t1_2 + c * t1 + d;
let result = CubicBez::from_parameters(a1, b1, c1, d1);
i += 1;
Some(result)
})
}
fn parameters(&self) -> (Vec2, Vec2, Vec2, Vec2) {
let c = (self.p1 - self.p0) * 3.0;
let b = (self.p2 - self.p1) * 3.0 - c;
let d = self.p0.to_vec2();
let a = self.p3.to_vec2() - d - c - b;
(a, b, c, d)
}
fn from_parameters(a: Vec2, b: Vec2, c: Vec2, d: Vec2) -> Self {
let p0 = d.to_point();
let p1 = c.div_exact(3.0).to_point() + d;
let p2 = (b + c).div_exact(3.0).to_point() + p1.to_vec2();
let p3 = (a + d + c + b).to_point();
CubicBez::new(p0, p1, p2, p3)
}
fn subdivide_3(&self) -> (CubicBez, CubicBez, CubicBez) {
let (p0, p1, p2, p3) = (
self.p0.to_vec2(),
self.p1.to_vec2(),
self.p2.to_vec2(),
self.p3.to_vec2(),
);
let one_27th = 27.0_f64.recip();
let mid1 = ((8.0 * p0 + 12.0 * p1 + 6.0 * p2 + p3) * one_27th).to_point();
let deriv1 = (p3 + 3.0 * p2 - 4.0 * p0) * one_27th;
let mid2 = ((p0 + 6.0 * p1 + 12.0 * p2 + 8.0 * p3) * one_27th).to_point();
let deriv2 = (4.0 * p3 - 3.0 * p1 - p0) * one_27th;
let left = CubicBez::new(
self.p0,
(2.0 * p0 + p1).div_exact(3.0).to_point(),
mid1 - deriv1,
mid1,
);
let mid = CubicBez::new(mid1, mid1 + deriv1, mid2 - deriv2, mid2);
let right = CubicBez::new(
mid2,
mid2 + deriv2,
(p2 + 2.0 * p3).div_exact(3.0).to_point(),
self.p3,
);
(left, mid, right)
}
fn fit_inside(&self, distance: f64) -> bool {
if self.p2.to_vec2().hypot() <= distance && self.p1.to_vec2().hypot() <= distance {
return true;
}
let mid =
(self.p0.to_vec2() + 3.0 * (self.p1.to_vec2() + self.p2.to_vec2()) + self.p3.to_vec2())
* 0.125;
if mid.hypot() > distance {
return false;
}
let (left, right) = self.subdivide();
left.fit_inside(distance) && right.fit_inside(distance)
}
#[inline]
pub fn is_finite(&self) -> bool {
self.p0.is_finite() && self.p1.is_finite() && self.p2.is_finite() && self.p3.is_finite()
}
#[inline]
pub fn is_nan(&self) -> bool {
self.p0.is_nan() || self.p1.is_nan() || self.p2.is_nan() || self.p3.is_nan()
}
pub fn inflections(&self) -> ArrayVec<f64, 2> {
let a = self.p1 - self.p0;
let b = (self.p2 - self.p1) - a;
let c = (self.p3 - self.p0) - 3. * (self.p2 - self.p1);
solve_quadratic(a.cross(b), a.cross(c), b.cross(c))
.iter()
.copied()
.filter(|t| *t >= 0.0 && *t <= 1.0)
.collect()
}
pub fn tangents_to_point(&self, p: Point) -> ArrayVec<f64, 4> {
let (a, b, c, d_orig) = self.parameters();
let d = d_orig - p.to_vec2();
let c4 = b.cross(a);
let c3 = 2.0 * c.cross(a);
let c2 = c.cross(b) + 3.0 * d.cross(a);
let c1 = 2.0 * d.cross(b);
let c0 = d.cross(c);
solve_quartic(c0, c1, c2, c3, c4)
.iter()
.copied()
.filter(|t| *t >= 0.0 && *t <= 1.0)
.collect()
}
pub(crate) fn regularize(&self, dimension: f64) -> CubicBez {
let mut c = *self;
let dim2 = dimension * dimension;
if c.p0.distance_squared(c.p1) < dim2 {
let d02 = c.p0.distance_squared(c.p2);
if d02 >= dim2 {
c.p1 = c.p0.lerp(c.p2, (dim2 / d02).sqrt());
} else {
c.p1 = c.p0.lerp(c.p3, 1.0 / 3.0);
c.p2 = c.p3.lerp(c.p0, 1.0 / 3.0);
return c;
}
}
if c.p3.distance_squared(c.p2) < dim2 {
let d13 = c.p1.distance_squared(c.p2);
if d13 >= dim2 {
c.p2 = c.p3.lerp(c.p1, (dim2 / d13).sqrt());
} else {
c.p1 = c.p0.lerp(c.p3, 1.0 / 3.0);
c.p2 = c.p3.lerp(c.p0, 1.0 / 3.0);
return c;
}
}
if let Some(cusp_type) = self.detect_cusp(dimension) {
let d01 = c.p1 - c.p0;
let d01h = d01.hypot();
let d23 = c.p3 - c.p2;
let d23h = d23.hypot();
match cusp_type {
CuspType::Loop => {
c.p1 += (dimension / d01h) * d01;
c.p2 -= (dimension / d23h) * d23;
}
CuspType::DoubleInflection => {
if d01h > 2.0 * dimension {
c.p1 -= (dimension / d01h) * d01;
}
if d23h > 2.0 * dimension {
c.p2 += (dimension / d23h) * d23;
}
}
}
}
c
}
fn detect_cusp(&self, dimension: f64) -> Option<CuspType> {
let d01 = self.p1 - self.p0;
let d02 = self.p2 - self.p0;
let d03 = self.p3 - self.p0;
let d12 = self.p2 - self.p1;
let d23 = self.p3 - self.p2;
let det_012 = d01.cross(d02);
let det_123 = d12.cross(d23);
let det_013 = d01.cross(d03);
let det_023 = d02.cross(d03);
if det_012 * det_123 > 0.0 && det_012 * det_013 < 0.0 && det_012 * det_023 < 0.0 {
let q = self.deriv();
let nearest = q.nearest(Point::ORIGIN, 1e-9);
let d = q.eval(nearest.t);
let d2 = q.deriv().eval(nearest.t);
let cross = d.to_vec2().cross(d2.to_vec2());
if nearest.distance_sq.powi(3) <= (cross * dimension).powi(2) {
let a = 3. * det_012 + det_023 - 2. * det_013;
let b = -3. * det_012 + det_013;
let c = det_012;
let d = b * b - 4. * a * c;
if d > 0.0 {
return Some(CuspType::DoubleInflection);
} else {
return Some(CuspType::Loop);
}
}
}
None
}
}
pub struct CubicBezIter {
cubic: CubicBez,
ix: usize,
}
impl Shape for CubicBez {
type PathElementsIter<'iter> = CubicBezIter;
#[inline]
fn path_elements(&self, _tolerance: f64) -> CubicBezIter {
CubicBezIter {
cubic: *self,
ix: 0,
}
}
fn area(&self) -> f64 {
0.0
}
#[inline]
fn perimeter(&self, accuracy: f64) -> f64 {
self.arclen(accuracy)
}
fn winding(&self, _pt: Point) -> i32 {
0
}
#[inline]
fn bounding_box(&self) -> Rect {
ParamCurveExtrema::bounding_box(self)
}
}
impl Iterator for CubicBezIter {
type Item = PathEl;
fn next(&mut self) -> Option<PathEl> {
self.ix += 1;
match self.ix {
1 => Some(PathEl::MoveTo(self.cubic.p0)),
2 => Some(PathEl::CurveTo(self.cubic.p1, self.cubic.p2, self.cubic.p3)),
_ => None,
}
}
}
impl ParamCurve for CubicBez {
#[inline]
fn eval(&self, t: f64) -> Point {
let mt = 1.0 - t;
let v = self.p0.to_vec2() * (mt * mt * mt)
+ (self.p1.to_vec2() * (mt * mt * 3.0)
+ (self.p2.to_vec2() * (mt * 3.0) + self.p3.to_vec2() * t) * t)
* t;
v.to_point()
}
fn subsegment(&self, range: Range<f64>) -> CubicBez {
let (t0, t1) = (range.start, range.end);
let p0 = self.eval(t0);
let p3 = self.eval(t1);
let d = self.deriv();
let scale = (t1 - t0) * (1.0 / 3.0);
let p1 = p0 + scale * d.eval(t0).to_vec2();
let p2 = p3 - scale * d.eval(t1).to_vec2();
CubicBez { p0, p1, p2, p3 }
}
#[inline]
fn subdivide(&self) -> (CubicBez, CubicBez) {
let pm = self.eval(0.5);
(
CubicBez::new(
self.p0,
self.p0.midpoint(self.p1),
((self.p0.to_vec2() + self.p1.to_vec2() * 2.0 + self.p2.to_vec2()) * 0.25)
.to_point(),
pm,
),
CubicBez::new(
pm,
((self.p1.to_vec2() + self.p2.to_vec2() * 2.0 + self.p3.to_vec2()) * 0.25)
.to_point(),
self.p2.midpoint(self.p3),
self.p3,
),
)
}
#[inline]
fn start(&self) -> Point {
self.p0
}
#[inline]
fn end(&self) -> Point {
self.p3
}
}
impl ParamCurveDeriv for CubicBez {
type DerivResult = QuadBez;
#[inline]
fn deriv(&self) -> QuadBez {
QuadBez::new(
(3.0 * (self.p1 - self.p0)).to_point(),
(3.0 * (self.p2 - self.p1)).to_point(),
(3.0 * (self.p3 - self.p2)).to_point(),
)
}
}
fn arclen_quadrature_core(coeffs: &[(f64, f64)], dm: Vec2, dm1: Vec2, dm2: Vec2) -> f64 {
coeffs
.iter()
.map(|&(wi, xi)| {
let d = dm + dm2 * (xi * xi);
let dpx = (d + dm1 * xi).hypot();
let dmx = (d - dm1 * xi).hypot();
(2.25f64.sqrt() * wi) * (dpx + dmx)
})
.sum::<f64>()
}
fn arclen_rec(c: &CubicBez, accuracy: f64, depth: usize) -> f64 {
let d03 = c.p3 - c.p0;
let d01 = c.p1 - c.p0;
let d12 = c.p2 - c.p1;
let d23 = c.p3 - c.p2;
let lp_lc = d01.hypot() + d12.hypot() + d23.hypot() - d03.hypot();
let dd1 = d12 - d01;
let dd2 = d23 - d12;
let dm = 0.25 * (d01 + d23) + 0.5 * d12; let dm1 = 0.5 * (dd2 + dd1); let dm2 = 0.25 * (dd2 - dd1); let est = GAUSS_LEGENDRE_COEFFS_8
.iter()
.map(|&(wi, xi)| {
wi * {
let d_norm2 = (dm + dm1 * xi + dm2 * (xi * xi)).hypot2();
let dd_norm2 = (dm1 + dm2 * (2.0 * xi)).hypot2();
dd_norm2 / d_norm2
}
})
.sum::<f64>();
let est_gauss8_error = (est.powi(3) * 2.5e-6).min(3e-2) * lp_lc;
if est_gauss8_error < accuracy {
return arclen_quadrature_core(GAUSS_LEGENDRE_COEFFS_8_HALF, dm, dm1, dm2);
}
let est_gauss16_error = (est.powi(6) * 1.5e-11).min(9e-3) * lp_lc;
if est_gauss16_error < accuracy {
return arclen_quadrature_core(GAUSS_LEGENDRE_COEFFS_16_HALF, dm, dm1, dm2);
}
let est_gauss24_error = (est.powi(9) * 3.5e-16).min(3.5e-3) * lp_lc;
if est_gauss24_error < accuracy || depth >= 20 {
return arclen_quadrature_core(GAUSS_LEGENDRE_COEFFS_24_HALF, dm, dm1, dm2);
}
let (c0, c1) = c.subdivide();
arclen_rec(&c0, accuracy * 0.5, depth + 1) + arclen_rec(&c1, accuracy * 0.5, depth + 1)
}
impl ParamCurveArclen for CubicBez {
fn arclen(&self, accuracy: f64) -> f64 {
arclen_rec(self, accuracy, 0)
}
}
impl ParamCurveArea for CubicBez {
#[inline]
fn signed_area(&self) -> f64 {
(self.p0.x * (6.0 * self.p1.y + 3.0 * self.p2.y + self.p3.y)
+ 3.0
* (self.p1.x * (-2.0 * self.p0.y + self.p2.y + self.p3.y)
- self.p2.x * (self.p0.y + self.p1.y - 2.0 * self.p3.y))
- self.p3.x * (self.p0.y + 3.0 * self.p1.y + 6.0 * self.p2.y))
* (1.0 / 20.0)
}
}
impl ParamCurveNearest for CubicBez {
fn nearest(&self, p: Point, accuracy: f64) -> Nearest {
let mut best_r = None;
let mut best_t = 0.0;
for (t0, t1, q) in self.to_quads(accuracy) {
let nearest = q.nearest(p, accuracy);
if best_r
.map(|best_r| nearest.distance_sq < best_r)
.unwrap_or(true)
{
best_t = t0 + nearest.t * (t1 - t0);
best_r = Some(nearest.distance_sq);
}
}
Nearest {
t: best_t,
distance_sq: best_r.unwrap(),
}
}
}
impl ParamCurveCurvature for CubicBez {}
impl ParamCurveExtrema for CubicBez {
fn extrema(&self) -> ArrayVec<f64, MAX_EXTREMA> {
fn one_coord(result: &mut ArrayVec<f64, MAX_EXTREMA>, d0: f64, d1: f64, d2: f64) {
let a = d0 - 2.0 * d1 + d2;
let b = 2.0 * (d1 - d0);
let c = d0;
let roots = solve_quadratic(c, b, a);
for &t in &roots {
if t > 0.0 && t < 1.0 {
result.push(t);
}
}
}
let mut result = ArrayVec::new();
let d0 = self.p1 - self.p0;
let d1 = self.p2 - self.p1;
let d2 = self.p3 - self.p2;
one_coord(&mut result, d0.x, d1.x, d2.x);
one_coord(&mut result, d0.y, d1.y, d2.y);
result.sort_by(|a, b| a.partial_cmp(b).unwrap());
result
}
}
impl Mul<CubicBez> for Affine {
type Output = CubicBez;
#[inline]
fn mul(self, c: CubicBez) -> CubicBez {
CubicBez {
p0: self * c.p0,
p1: self * c.p1,
p2: self * c.p2,
p3: self * c.p3,
}
}
}
impl Iterator for ToQuads {
type Item = (f64, f64, QuadBez);
fn next(&mut self) -> Option<(f64, f64, QuadBez)> {
if self.i == self.n {
return None;
}
let t0 = self.i as f64 / self.n as f64;
let t1 = (self.i + 1) as f64 / self.n as f64;
let seg = self.c.subsegment(t0..t1);
let p1x2 = 3.0 * seg.p1.to_vec2() - seg.p0.to_vec2();
let p2x2 = 3.0 * seg.p2.to_vec2() - seg.p3.to_vec2();
let result = QuadBez::new(seg.p0, ((p1x2 + p2x2) / 4.0).to_point(), seg.p3);
self.i += 1;
Some((t0, t1, result))
}
fn size_hint(&self) -> (usize, Option<usize>) {
let remaining = self.n - self.i;
(remaining, Some(remaining))
}
}
pub fn cubics_to_quadratic_splines(curves: &[CubicBez], accuracy: f64) -> Option<Vec<QuadSpline>> {
let mut result = Vec::new();
let mut split_order = 0;
while split_order <= MAX_SPLINE_SPLIT {
split_order += 1;
result.clear();
for curve in curves {
match curve.approx_spline_n(split_order, accuracy) {
Some(spline) => result.push(spline),
None => break,
}
}
if result.len() == curves.len() {
return Some(result);
}
}
None
}
#[cfg(test)]
mod tests {
use crate::{
cubics_to_quadratic_splines, Affine, CubicBez, Nearest, ParamCurve, ParamCurveArclen,
ParamCurveArea, ParamCurveDeriv, ParamCurveExtrema, ParamCurveNearest, Point, QuadBez,
QuadSpline,
};
#[test]
fn cubicbez_deriv() {
let c = CubicBez::new(
(0.0, 0.0),
(1.0 / 3.0, 0.0),
(2.0 / 3.0, 1.0 / 3.0),
(1.0, 1.0),
);
let deriv = c.deriv();
let n = 10;
for i in 0..=n {
let t = (i as f64) * (n as f64).recip();
let delta = 1e-6;
let p = c.eval(t);
let p1 = c.eval(t + delta);
let d_approx = (p1 - p) * delta.recip();
let d = deriv.eval(t).to_vec2();
assert!((d - d_approx).hypot() < delta * 2.0);
}
}
#[test]
fn cubicbez_arclen() {
let c = CubicBez::new(
(0.0, 0.0),
(1.0 / 3.0, 0.0),
(2.0 / 3.0, 1.0 / 3.0),
(1.0, 1.0),
);
let true_arclen = 0.5 * 5.0f64.sqrt() + 0.25 * (2.0 + 5.0f64.sqrt()).ln();
for i in 0..12 {
let accuracy = 0.1f64.powi(i);
let error = c.arclen(accuracy) - true_arclen;
assert!(error.abs() < accuracy);
}
}
#[test]
fn cubicbez_inv_arclen() {
let c = CubicBez::new(
(0.0, 0.0),
(100.0 / 3.0, 0.0),
(200.0 / 3.0, 100.0 / 3.0),
(100.0, 100.0),
);
let true_arclen = 100.0 * (0.5 * 5.0f64.sqrt() + 0.25 * (2.0 + 5.0f64.sqrt()).ln());
for i in 0..12 {
let accuracy = 0.1f64.powi(i);
let n = 10;
for j in 0..=n {
let arc = (j as f64) * ((n as f64).recip() * true_arclen);
let t = c.inv_arclen(arc, accuracy * 0.5);
let actual_arc = c.subsegment(0.0..t).arclen(accuracy * 0.5);
assert!(
(arc - actual_arc).abs() < accuracy,
"at accuracy {accuracy:e}, wanted {actual_arc} got {arc}"
);
}
}
let accuracy = true_arclen * 1.1;
let arc = true_arclen * 0.5;
let t = c.inv_arclen(arc, accuracy);
let actual_arc = c.subsegment(0.0..t).arclen(accuracy);
assert!(
(arc - actual_arc).abs() < 2.0 * accuracy,
"at accuracy {accuracy:e}, want {actual_arc} got {arc}"
);
}
#[test]
fn cubicbez_inv_arclen_accuracy() {
let c = CubicBez::new((0.2, 0.73), (0.35, 1.08), (0.85, 1.08), (1.0, 0.73));
let true_t = c.inv_arclen(0.5, 1e-12);
for i in 1..12 {
let accuracy = (0.1f64).powi(i);
let approx_t = c.inv_arclen(0.5, accuracy);
assert!((approx_t - true_t).abs() <= accuracy);
}
}
#[test]
#[allow(clippy::float_cmp)]
fn cubicbez_signed_area_linear() {
let c = CubicBez::new(
(1.0, 0.0),
(2.0 / 3.0, 1.0 / 3.0),
(1.0 / 3.0, 2.0 / 3.0),
(0.0, 1.0),
);
let epsilon = 1e-12;
assert_eq!((Affine::rotate(0.5) * c).signed_area(), 0.5);
assert!(((Affine::rotate(0.5) * c).signed_area() - 0.5).abs() < epsilon);
assert!(((Affine::translate((0.0, 1.0)) * c).signed_area() - 1.0).abs() < epsilon);
assert!(((Affine::translate((1.0, 0.0)) * c).signed_area() - 1.0).abs() < epsilon);
}
#[test]
fn cubicbez_signed_area() {
let c = CubicBez::new((1.0, 0.0), (2.0 / 3.0, 1.0), (1.0 / 3.0, 1.0), (0.0, 1.0));
let epsilon = 1e-12;
assert!((c.signed_area() - 0.75).abs() < epsilon);
assert!(((Affine::rotate(0.5) * c).signed_area() - 0.75).abs() < epsilon);
assert!(((Affine::translate((0.0, 1.0)) * c).signed_area() - 1.25).abs() < epsilon);
assert!(((Affine::translate((1.0, 0.0)) * c).signed_area() - 1.25).abs() < epsilon);
}
#[test]
fn cubicbez_nearest() {
fn verify(result: Nearest, expected: f64) {
assert!(
(result.t - expected).abs() < 1e-6,
"got {result:?} expected {expected}"
);
}
let c = CubicBez::new((0.0, 0.0), (1.0 / 3.0, 0.0), (2.0 / 3.0, 0.0), (1.0, 1.0));
verify(c.nearest((0.1, 0.001).into(), 1e-6), 0.1);
verify(c.nearest((0.2, 0.008).into(), 1e-6), 0.2);
verify(c.nearest((0.3, 0.027).into(), 1e-6), 0.3);
verify(c.nearest((0.4, 0.064).into(), 1e-6), 0.4);
verify(c.nearest((0.5, 0.125).into(), 1e-6), 0.5);
verify(c.nearest((0.6, 0.216).into(), 1e-6), 0.6);
verify(c.nearest((0.7, 0.343).into(), 1e-6), 0.7);
verify(c.nearest((0.8, 0.512).into(), 1e-6), 0.8);
verify(c.nearest((0.9, 0.729).into(), 1e-6), 0.9);
verify(c.nearest((1.0, 1.0).into(), 1e-6), 1.0);
verify(c.nearest((1.1, 1.1).into(), 1e-6), 1.0);
verify(c.nearest((-0.1, 0.0).into(), 1e-6), 0.0);
let a = Affine::rotate(0.5);
verify((a * c).nearest(a * Point::new(0.1, 0.001), 1e-6), 0.1);
}
#[test]
fn degenerate_to_quads() {
let c = CubicBez::new((0., 9.), (6., 6.), (12., 3.0), (18., 0.0));
let quads = c.to_quads(1e-6).collect::<Vec<_>>();
assert_eq!(quads.len(), 1, "{:?}", &quads);
}
#[test]
fn cubicbez_extrema() {
let q = CubicBez::new((0.0, 0.0), (0.0, 1.0), (1.0, 1.0), (1.0, 0.0));
let extrema = q.extrema();
assert_eq!(extrema.len(), 1);
assert!((extrema[0] - 0.5).abs() < 1e-6);
let q = CubicBez::new((0.4, 0.5), (0.0, 1.0), (1.0, 0.0), (0.5, 0.4));
let extrema = q.extrema();
assert_eq!(extrema.len(), 4);
}
#[test]
fn cubicbez_toquads() {
let c = CubicBez::new((0.0, 0.0), (1.0 / 3.0, 0.0), (2.0 / 3.0, 0.0), (1.0, 1.0));
for i in 0..10 {
let accuracy = 0.1f64.powi(i);
let mut worst: f64 = 0.0;
for (t0, t1, q) in c.to_quads(accuracy) {
let epsilon = 1e-12;
assert!((q.start() - c.eval(t0)).hypot() < epsilon);
assert!((q.end() - c.eval(t1)).hypot() < epsilon);
let n = 4;
for j in 0..=n {
let t = (j as f64) * (n as f64).recip();
let p = q.eval(t);
let err = (p.y - p.x.powi(3)).abs();
worst = worst.max(err);
assert!(err < accuracy, "got {err} wanted {accuracy}");
}
}
}
}
#[test]
fn cubicbez_approx_spline() {
let c1 = CubicBez::new(
(550.0, 258.0),
(1044.0, 482.0),
(2029.0, 1841.0),
(1934.0, 1554.0),
);
let quad = c1.try_approx_quadratic(344.0);
let expected = QuadBez::new(
Point::new(550.0, 258.0),
Point::new(1673.665720592873, 767.5164401068898),
Point::new(1934.0, 1554.0),
);
assert!(quad.is_some());
assert_eq!(quad.unwrap(), expected);
let quad = c1.try_approx_quadratic(343.0);
assert!(quad.is_none());
let spline = c1.approx_spline_n(2, 343.0);
assert!(spline.is_some());
let spline = spline.unwrap();
let expected = [
Point::new(550.0, 258.0),
Point::new(920.5, 426.0),
Point::new(2005.25, 1769.25),
Point::new(1934.0, 1554.0),
];
assert_eq!(spline.points().len(), expected.len());
for (got, &wanted) in spline.points().iter().zip(expected.iter()) {
assert!(got.distance(wanted) < 5.0);
}
let spline = c1.approx_spline(5.0);
let expected = [
Point::new(550.0, 258.0),
Point::new(673.5, 314.0),
Point::new(984.8777777777776, 584.2666666666667),
Point::new(1312.6305555555557, 927.825),
Point::new(1613.1194444444443, 1267.425),
Point::new(1842.7055555555555, 1525.8166666666666),
Point::new(1957.75, 1625.75),
Point::new(1934.0, 1554.0),
];
assert!(spline.is_some());
let spline = spline.unwrap();
assert_eq!(spline.points().len(), expected.len());
for (got, &wanted) in spline.points().iter().zip(expected.iter()) {
assert!(got.distance(wanted) < 5.0);
}
}
#[test]
fn cubicbez_cubics_to_quadratic_splines() {
let curves = vec![
CubicBez::new(
(550.0, 258.0),
(1044.0, 482.0),
(2029.0, 1841.0),
(1934.0, 1554.0),
),
CubicBez::new(
(859.0, 384.0),
(1998.0, 116.0),
(1596.0, 1772.0),
(8.0, 1824.0),
),
CubicBez::new(
(1090.0, 937.0),
(418.0, 1300.0),
(125.0, 91.0),
(104.0, 37.0),
),
];
let converted = cubics_to_quadratic_splines(&curves, 5.0);
assert!(converted.is_some());
let converted = converted.unwrap();
assert_eq!(converted[0].points().len(), 8);
assert_eq!(converted[1].points().len(), 8);
assert_eq!(converted[2].points().len(), 8);
assert!(converted[0].points()[1].distance(Point::new(673.5, 314.0)) < 0.0001);
assert!(
converted[0].points()[2].distance(Point::new(88639.0 / 90.0, 52584.0 / 90.0)) < 0.0001
);
}
#[test]
fn cubicbez_approx_spline_div_exact() {
let cubic = CubicBez::new(
Point::new(408.0, 321.0),
Point::new(408.0, 452.0),
Point::new(342.0, 560.0),
Point::new(260.0, 560.0),
);
let spline = cubic.approx_spline(1.0).unwrap();
assert_eq!(
spline.points(),
&[
Point::new(408.0, 321.0),
Point::new(408.0, 386.5),
Point::new(368.16666666666663, 495.0833333333333),
Point::new(301.0, 560.0),
Point::new(260.0, 560.0)
]
);
}
#[test]
fn cubicbez_inflections() {
let c = CubicBez::new((0., 0.), (0.8, 1.), (0.2, 1.), (1., 0.));
let inflections = c.inflections();
assert_eq!(inflections.len(), 2);
assert!((inflections[0] - 0.311018).abs() < 1e-6);
assert!((inflections[1] - 0.688982).abs() < 1e-6);
let c = CubicBez::new((0., 0.), (1., 1.), (2., -1.), (3., 0.));
let inflections = c.inflections();
assert_eq!(inflections.len(), 1);
assert!((inflections[0] - 0.5).abs() < 1e-6);
let c = CubicBez::new((0., 0.), (1., 1.), (2., 1.), (3., 0.));
let inflections = c.inflections();
assert_eq!(inflections.len(), 0);
}
#[test]
fn cubic_to_quadratic_matches_python() {
let cubic = CubicBez {
p0: (796.0, 319.0).into(),
p1: (727.0, 314.0).into(),
p2: (242.0, 303.0).into(),
p3: (106.0, 303.0).into(),
};
assert!(cubic.approx_spline_n(7, 1.0).is_some());
assert!(cubics_to_quadratic_splines(&[cubic], 0.001).is_some());
}
#[test]
fn cubics_to_quadratic_splines_matches_python() {
let light = CubicBez::new((378., 608.), (378., 524.), (355., 455.), (266., 455.));
let regular = CubicBez::new((367., 607.), (367., 511.), (338., 472.), (243., 472.));
let bold = CubicBez::new(
(372.425, 593.05),
(372.425, 524.95),
(355.05, 485.95),
(274., 485.95),
);
let qsplines = cubics_to_quadratic_splines(&[light, regular, bold], 1.0).unwrap();
assert_eq!(
qsplines,
[
QuadSpline::new(vec![
(378.0, 608.0).into(),
(378.0, 566.0).into(),
(359.0833333333333, 496.5).into(),
(310.5, 455.0).into(),
(266.0, 455.0).into(),
]),
QuadSpline::new(vec![
(367.0, 607.0).into(),
(367.0, 559.0).into(),
(344.5833333333333, 499.49999999999994).into(),
(290.5, 472.0).into(),
(243.0, 472.0).into(),
]),
QuadSpline::new(vec![
(372.425, 593.05).into(),
(372.425, 559.0).into(),
(356.98333333333335, 511.125).into(),
(314.525, 485.95).into(),
(274.0, 485.95).into(),
]),
]
);
}
}