1use alloc::vec;
7use alloc::vec::Vec;
8use core::ops::{Mul, Range};
9
10use crate::MAX_EXTREMA;
11use crate::{Line, QuadSpline, Vec2};
12use arrayvec::ArrayVec;
13
14use crate::common::{
15 solve_quadratic, solve_quartic, GAUSS_LEGENDRE_COEFFS_16_HALF, GAUSS_LEGENDRE_COEFFS_24_HALF,
16 GAUSS_LEGENDRE_COEFFS_8, GAUSS_LEGENDRE_COEFFS_8_HALF,
17};
18use crate::{
19 Affine, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea, ParamCurveCurvature,
20 ParamCurveDeriv, ParamCurveExtrema, ParamCurveNearest, PathEl, Point, QuadBez, Rect, Shape,
21};
22
23#[cfg(not(feature = "std"))]
24use crate::common::FloatFuncs;
25
26const MAX_SPLINE_SPLIT: usize = 100;
27
28#[derive(Clone, Copy, Debug, PartialEq)]
30#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
31#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
32#[allow(missing_docs)]
33pub struct CubicBez {
34 pub p0: Point,
35 pub p1: Point,
36 pub p2: Point,
37 pub p3: Point,
38}
39
40struct ToQuads {
42 c: CubicBez,
43 i: usize,
44 n: usize,
45}
46
47#[derive(Debug)]
49pub enum CuspType {
50 Loop,
52 DoubleInflection,
54}
55
56impl CubicBez {
57 #[inline(always)]
59 pub fn new<P: Into<Point>>(p0: P, p1: P, p2: P, p3: P) -> CubicBez {
60 CubicBez {
61 p0: p0.into(),
62 p1: p1.into(),
63 p2: p2.into(),
64 p3: p3.into(),
65 }
66 }
67
68 #[inline]
78 pub fn to_quads(&self, accuracy: f64) -> impl Iterator<Item = (f64, f64, QuadBez)> {
79 let max_hypot2 = 432.0 * accuracy * accuracy;
91 let p1x2 = 3.0 * self.p1.to_vec2() - self.p0.to_vec2();
92 let p2x2 = 3.0 * self.p2.to_vec2() - self.p3.to_vec2();
93 let err = (p2x2 - p1x2).hypot2();
94 let n = ((err / max_hypot2).powf(1. / 6.0).ceil() as usize).max(1);
95
96 ToQuads { c: *self, n, i: 0 }
97 }
98
99 pub fn approx_spline(&self, accuracy: f64) -> Option<QuadSpline> {
104 (1..=MAX_SPLINE_SPLIT).find_map(|n| self.approx_spline_n(n, accuracy))
105 }
106
107 fn approx_spline_n(&self, n: usize, accuracy: f64) -> Option<QuadSpline> {
109 if n == 1 {
110 return self
111 .try_approx_quadratic(accuracy)
112 .map(|quad| QuadSpline::new(vec![quad.p0, quad.p1, quad.p2]));
113 }
114 let mut cubics = self.split_into_n(n);
115
116 let mut next_cubic = cubics.next().unwrap();
119 let mut next_q1: Point = next_cubic.approx_quad_control(0.0);
120 let mut q2 = self.p0;
121 let mut d1 = Vec2::ZERO;
122 let mut spline = vec![self.p0, next_q1];
123 for i in 1..=n {
124 let current_cubic: CubicBez = next_cubic;
125 let q0 = q2;
126 let q1 = next_q1;
127 q2 = if i < n {
128 next_cubic = cubics.next().unwrap();
129 next_q1 = next_cubic.approx_quad_control(i as f64 / (n - 1) as f64);
130
131 spline.push(next_q1);
132 q1.midpoint(next_q1)
133 } else {
134 current_cubic.p3
135 };
136 let d0 = d1;
137 d1 = q2.to_vec2() - current_cubic.p3.to_vec2();
138
139 if d1.hypot() > accuracy
140 || !CubicBez::new(
141 d0.to_point(),
142 q0.lerp(q1, 2.0 / 3.0) - current_cubic.p1.to_vec2(),
143 q2.lerp(q1, 2.0 / 3.0) - current_cubic.p2.to_vec2(),
144 d1.to_point(),
145 )
146 .fit_inside(accuracy)
147 {
148 return None;
149 }
150 }
151 spline.push(self.p3);
152 Some(QuadSpline::new(spline))
153 }
154
155 fn approx_quad_control(&self, t: f64) -> Point {
156 let p1 = self.p0 + (self.p1 - self.p0) * 1.5;
157 let p2 = self.p3 + (self.p2 - self.p3) * 1.5;
158 p1.lerp(p2, t)
159 }
160
161 fn try_approx_quadratic(&self, accuracy: f64) -> Option<QuadBez> {
166 if let Some(q1) = Line::new(self.p0, self.p1).crossing_point(Line::new(self.p2, self.p3)) {
167 let c1 = self.p0.lerp(q1, 2.0 / 3.0);
168 let c2 = self.p3.lerp(q1, 2.0 / 3.0);
169 if !CubicBez::new(
170 Point::ZERO,
171 c1 - self.p1.to_vec2(),
172 c2 - self.p2.to_vec2(),
173 Point::ZERO,
174 )
175 .fit_inside(accuracy)
176 {
177 return None;
178 }
179 return Some(QuadBez::new(self.p0, q1, self.p3));
180 }
181 None
182 }
183
184 fn split_into_n(&self, n: usize) -> impl Iterator<Item = CubicBez> {
185 let mut storage = ArrayVec::<_, 6>::new();
188
189 match n {
190 1 => storage.push(*self),
191 2 => {
192 let (l, r) = self.subdivide();
193 storage.try_extend_from_slice(&[r, l]).unwrap();
194 }
195 3 => {
196 let (left, mid, right) = self.subdivide_3();
197 storage.try_extend_from_slice(&[right, mid, left]).unwrap();
198 }
199 4 => {
200 let (l, r) = self.subdivide();
201 let (ll, lr) = l.subdivide();
202 let (rl, rr) = r.subdivide();
203 storage.try_extend_from_slice(&[rr, rl, lr, ll]).unwrap();
204 }
205 6 => {
206 let (l, r) = self.subdivide();
207 let (l1, l2, l3) = l.subdivide_3();
208 let (r1, r2, r3) = r.subdivide_3();
209 storage
210 .try_extend_from_slice(&[r3, r2, r1, l3, l2, l1])
211 .unwrap();
212 }
213 _ => (),
214 }
215
216 let mut storage = if storage.is_empty() {
225 None
226 } else {
227 Some(storage)
228 };
229
230 let mut i = 0;
232 let (a, b, c, d) = self.parameters();
233 let dt = 1.0 / n as f64;
234 let delta_2 = dt * dt;
235 let delta_3 = dt * delta_2;
236
237 core::iter::from_fn(move || {
238 if let Some(storage) = storage.as_mut() {
240 return storage.pop();
241 }
242
243 if i >= n {
245 return None;
246 }
247
248 let t1 = i as f64 * dt;
249 let t1_2 = t1 * t1;
250 let a1 = a * delta_3;
251 let b1 = (3.0 * a * t1 + b) * delta_2;
252 let c1 = (2.0 * b * t1 + c + 3.0 * a * t1_2) * dt;
253 let d1 = a * t1 * t1_2 + b * t1_2 + c * t1 + d;
254 let result = CubicBez::from_parameters(a1, b1, c1, d1);
255 i += 1;
256 Some(result)
257 })
258 }
259
260 fn parameters(&self) -> (Vec2, Vec2, Vec2, Vec2) {
261 let c = (self.p1 - self.p0) * 3.0;
262 let b = (self.p2 - self.p1) * 3.0 - c;
263 let d = self.p0.to_vec2();
264 let a = self.p3.to_vec2() - d - c - b;
265 (a, b, c, d)
266 }
267
268 fn from_parameters(a: Vec2, b: Vec2, c: Vec2, d: Vec2) -> Self {
270 let p0 = d.to_point();
271 let p1 = c.div_exact(3.0).to_point() + d;
272 let p2 = (b + c).div_exact(3.0).to_point() + p1.to_vec2();
273 let p3 = (a + d + c + b).to_point();
274 CubicBez::new(p0, p1, p2, p3)
275 }
276
277 fn subdivide_3(&self) -> (CubicBez, CubicBez, CubicBez) {
278 let (p0, p1, p2, p3) = (
279 self.p0.to_vec2(),
280 self.p1.to_vec2(),
281 self.p2.to_vec2(),
282 self.p3.to_vec2(),
283 );
284 let one_27th = 27.0_f64.recip();
292 let mid1 = ((8.0 * p0 + 12.0 * p1 + 6.0 * p2 + p3) * one_27th).to_point();
293 let deriv1 = (p3 + 3.0 * p2 - 4.0 * p0) * one_27th;
294 let mid2 = ((p0 + 6.0 * p1 + 12.0 * p2 + 8.0 * p3) * one_27th).to_point();
295 let deriv2 = (4.0 * p3 - 3.0 * p1 - p0) * one_27th;
296
297 let left = CubicBez::new(
298 self.p0,
299 (2.0 * p0 + p1).div_exact(3.0).to_point(),
300 mid1 - deriv1,
301 mid1,
302 );
303 let mid = CubicBez::new(mid1, mid1 + deriv1, mid2 - deriv2, mid2);
304 let right = CubicBez::new(
305 mid2,
306 mid2 + deriv2,
307 (p2 + 2.0 * p3).div_exact(3.0).to_point(),
308 self.p3,
309 );
310 (left, mid, right)
311 }
312
313 fn fit_inside(&self, distance: f64) -> bool {
317 if self.p2.to_vec2().hypot() <= distance && self.p1.to_vec2().hypot() <= distance {
318 return true;
319 }
320 let mid =
321 (self.p0.to_vec2() + 3.0 * (self.p1.to_vec2() + self.p2.to_vec2()) + self.p3.to_vec2())
322 * 0.125;
323 if mid.hypot() > distance {
324 return false;
325 }
326 let (left, right) = self.subdivide();
328 left.fit_inside(distance) && right.fit_inside(distance)
329 }
330
331 #[inline]
333 pub fn is_finite(&self) -> bool {
334 self.p0.is_finite() && self.p1.is_finite() && self.p2.is_finite() && self.p3.is_finite()
335 }
336
337 #[inline]
339 pub fn is_nan(&self) -> bool {
340 self.p0.is_nan() || self.p1.is_nan() || self.p2.is_nan() || self.p3.is_nan()
341 }
342
343 pub fn inflections(&self) -> ArrayVec<f64, 2> {
351 let a = self.p1 - self.p0;
352 let b = (self.p2 - self.p1) - a;
353 let c = (self.p3 - self.p0) - 3. * (self.p2 - self.p1);
354 solve_quadratic(a.cross(b), a.cross(c), b.cross(c))
355 .iter()
356 .copied()
357 .filter(|t| *t >= 0.0 && *t <= 1.0)
358 .collect()
359 }
360
361 pub fn tangents_to_point(&self, p: Point) -> ArrayVec<f64, 4> {
367 let (a, b, c, d_orig) = self.parameters();
368 let d = d_orig - p.to_vec2();
369 let c4 = b.cross(a);
371 let c3 = 2.0 * c.cross(a);
372 let c2 = c.cross(b) + 3.0 * d.cross(a);
373 let c1 = 2.0 * d.cross(b);
374 let c0 = d.cross(c);
375 solve_quartic(c0, c1, c2, c3, c4)
376 .iter()
377 .copied()
378 .filter(|t| *t >= 0.0 && *t <= 1.0)
379 .collect()
380 }
381
382 pub(crate) fn regularize(&self, dimension: f64) -> CubicBez {
388 let mut c = *self;
389 let dim2 = dimension * dimension;
392 if c.p0.distance_squared(c.p1) < dim2 {
393 let d02 = c.p0.distance_squared(c.p2);
394 if d02 >= dim2 {
395 c.p1 = c.p0.lerp(c.p2, (dim2 / d02).sqrt());
397 } else {
398 c.p1 = c.p0.lerp(c.p3, 1.0 / 3.0);
399 c.p2 = c.p3.lerp(c.p0, 1.0 / 3.0);
400 return c;
401 }
402 }
403 if c.p3.distance_squared(c.p2) < dim2 {
404 let d13 = c.p1.distance_squared(c.p2);
405 if d13 >= dim2 {
406 c.p2 = c.p3.lerp(c.p1, (dim2 / d13).sqrt());
408 } else {
409 c.p1 = c.p0.lerp(c.p3, 1.0 / 3.0);
410 c.p2 = c.p3.lerp(c.p0, 1.0 / 3.0);
411 return c;
412 }
413 }
414 if let Some(cusp_type) = self.detect_cusp(dimension) {
415 let d01 = c.p1 - c.p0;
416 let d01h = d01.hypot();
417 let d23 = c.p3 - c.p2;
418 let d23h = d23.hypot();
419 match cusp_type {
420 CuspType::Loop => {
421 c.p1 += (dimension / d01h) * d01;
422 c.p2 -= (dimension / d23h) * d23;
423 }
424 CuspType::DoubleInflection => {
425 if d01h > 2.0 * dimension {
427 c.p1 -= (dimension / d01h) * d01;
428 }
429 if d23h > 2.0 * dimension {
430 c.p2 += (dimension / d23h) * d23;
431 }
432 }
433 }
434 }
435 c
436 }
437
438 fn detect_cusp(&self, dimension: f64) -> Option<CuspType> {
443 let d01 = self.p1 - self.p0;
444 let d02 = self.p2 - self.p0;
445 let d03 = self.p3 - self.p0;
446 let d12 = self.p2 - self.p1;
447 let d23 = self.p3 - self.p2;
448 let det_012 = d01.cross(d02);
449 let det_123 = d12.cross(d23);
450 let det_013 = d01.cross(d03);
451 let det_023 = d02.cross(d03);
452 if det_012 * det_123 > 0.0 && det_012 * det_013 < 0.0 && det_012 * det_023 < 0.0 {
453 let q = self.deriv();
454 let nearest = q.nearest(Point::ORIGIN, 1e-9);
456 let d = q.eval(nearest.t);
459 let d2 = q.deriv().eval(nearest.t);
460 let cross = d.to_vec2().cross(d2.to_vec2());
461 if nearest.distance_sq.powi(3) <= (cross * dimension).powi(2) {
462 let a = 3. * det_012 + det_023 - 2. * det_013;
463 let b = -3. * det_012 + det_013;
464 let c = det_012;
465 let d = b * b - 4. * a * c;
466 if d > 0.0 {
467 return Some(CuspType::DoubleInflection);
468 } else {
469 return Some(CuspType::Loop);
470 }
471 }
472 }
473 None
474 }
475}
476
477pub struct CubicBezIter {
479 cubic: CubicBez,
480 ix: usize,
481}
482
483impl Shape for CubicBez {
484 type PathElementsIter<'iter> = CubicBezIter;
485
486 #[inline]
487 fn path_elements(&self, _tolerance: f64) -> CubicBezIter {
488 CubicBezIter {
489 cubic: *self,
490 ix: 0,
491 }
492 }
493
494 #[inline(always)]
495 fn area(&self) -> f64 {
496 0.0
497 }
498
499 #[inline]
500 fn perimeter(&self, accuracy: f64) -> f64 {
501 self.arclen(accuracy)
502 }
503
504 #[inline(always)]
505 fn winding(&self, _pt: Point) -> i32 {
506 0
507 }
508
509 #[inline]
510 fn bounding_box(&self) -> Rect {
511 ParamCurveExtrema::bounding_box(self)
512 }
513}
514
515impl Iterator for CubicBezIter {
516 type Item = PathEl;
517
518 fn next(&mut self) -> Option<PathEl> {
519 self.ix += 1;
520 match self.ix {
521 1 => Some(PathEl::MoveTo(self.cubic.p0)),
522 2 => Some(PathEl::CurveTo(self.cubic.p1, self.cubic.p2, self.cubic.p3)),
523 _ => None,
524 }
525 }
526}
527
528impl ParamCurve for CubicBez {
529 #[inline]
530 fn eval(&self, t: f64) -> Point {
531 let mt = 1.0 - t;
532 let v = self.p0.to_vec2() * (mt * mt * mt)
533 + (self.p1.to_vec2() * (mt * mt * 3.0)
534 + (self.p2.to_vec2() * (mt * 3.0) + self.p3.to_vec2() * t) * t)
535 * t;
536 v.to_point()
537 }
538
539 fn subsegment(&self, range: Range<f64>) -> CubicBez {
540 let (t0, t1) = (range.start, range.end);
541 let p0 = self.eval(t0);
542 let p3 = self.eval(t1);
543 let d = self.deriv();
544 let scale = (t1 - t0) * (1.0 / 3.0);
545 let p1 = p0 + scale * d.eval(t0).to_vec2();
546 let p2 = p3 - scale * d.eval(t1).to_vec2();
547 CubicBez { p0, p1, p2, p3 }
548 }
549
550 #[inline]
552 fn subdivide(&self) -> (CubicBez, CubicBez) {
553 let pm = self.eval(0.5);
554 (
555 CubicBez::new(
556 self.p0,
557 self.p0.midpoint(self.p1),
558 ((self.p0.to_vec2() + self.p1.to_vec2() * 2.0 + self.p2.to_vec2()) * 0.25)
559 .to_point(),
560 pm,
561 ),
562 CubicBez::new(
563 pm,
564 ((self.p1.to_vec2() + self.p2.to_vec2() * 2.0 + self.p3.to_vec2()) * 0.25)
565 .to_point(),
566 self.p2.midpoint(self.p3),
567 self.p3,
568 ),
569 )
570 }
571
572 #[inline(always)]
573 fn start(&self) -> Point {
574 self.p0
575 }
576
577 #[inline(always)]
578 fn end(&self) -> Point {
579 self.p3
580 }
581}
582
583impl ParamCurveDeriv for CubicBez {
584 type DerivResult = QuadBez;
585
586 #[inline]
587 fn deriv(&self) -> QuadBez {
588 QuadBez::new(
589 (3.0 * (self.p1 - self.p0)).to_point(),
590 (3.0 * (self.p2 - self.p1)).to_point(),
591 (3.0 * (self.p3 - self.p2)).to_point(),
592 )
593 }
594}
595
596fn arclen_quadrature_core(coeffs: &[(f64, f64)], dm: Vec2, dm1: Vec2, dm2: Vec2) -> f64 {
597 coeffs
598 .iter()
599 .map(|&(wi, xi)| {
600 let d = dm + dm2 * (xi * xi);
601 let dpx = (d + dm1 * xi).hypot();
602 let dmx = (d - dm1 * xi).hypot();
603 (2.25f64.sqrt() * wi) * (dpx + dmx)
604 })
605 .sum::<f64>()
606}
607
608fn arclen_rec(c: &CubicBez, accuracy: f64, depth: usize) -> f64 {
609 let d03 = c.p3 - c.p0;
610 let d01 = c.p1 - c.p0;
611 let d12 = c.p2 - c.p1;
612 let d23 = c.p3 - c.p2;
613 let lp_lc = d01.hypot() + d12.hypot() + d23.hypot() - d03.hypot();
614 let dd1 = d12 - d01;
615 let dd2 = d23 - d12;
616 let dm = 0.25 * (d01 + d23) + 0.5 * d12; let dm1 = 0.5 * (dd2 + dd1); let dm2 = 0.25 * (dd2 - dd1); let est = GAUSS_LEGENDRE_COEFFS_8
623 .iter()
624 .map(|&(wi, xi)| {
625 wi * {
626 let d_norm2 = (dm + dm1 * xi + dm2 * (xi * xi)).hypot2();
627 let dd_norm2 = (dm1 + dm2 * (2.0 * xi)).hypot2();
628 dd_norm2 / d_norm2
629 }
630 })
631 .sum::<f64>();
632 let est_gauss8_error = (est.powi(3) * 2.5e-6).min(3e-2) * lp_lc;
633 if est_gauss8_error < accuracy {
634 return arclen_quadrature_core(GAUSS_LEGENDRE_COEFFS_8_HALF, dm, dm1, dm2);
635 }
636 let est_gauss16_error = (est.powi(6) * 1.5e-11).min(9e-3) * lp_lc;
637 if est_gauss16_error < accuracy {
638 return arclen_quadrature_core(GAUSS_LEGENDRE_COEFFS_16_HALF, dm, dm1, dm2);
639 }
640 let est_gauss24_error = (est.powi(9) * 3.5e-16).min(3.5e-3) * lp_lc;
641 if est_gauss24_error < accuracy || depth >= 20 {
642 return arclen_quadrature_core(GAUSS_LEGENDRE_COEFFS_24_HALF, dm, dm1, dm2);
643 }
644 let (c0, c1) = c.subdivide();
645 arclen_rec(&c0, accuracy * 0.5, depth + 1) + arclen_rec(&c1, accuracy * 0.5, depth + 1)
646}
647
648impl ParamCurveArclen for CubicBez {
649 fn arclen(&self, accuracy: f64) -> f64 {
654 arclen_rec(self, accuracy, 0)
655 }
656}
657
658impl ParamCurveArea for CubicBez {
659 #[inline]
660 fn signed_area(&self) -> f64 {
661 (self.p0.x * (6.0 * self.p1.y + 3.0 * self.p2.y + self.p3.y)
662 + 3.0
663 * (self.p1.x * (-2.0 * self.p0.y + self.p2.y + self.p3.y)
664 - self.p2.x * (self.p0.y + self.p1.y - 2.0 * self.p3.y))
665 - self.p3.x * (self.p0.y + 3.0 * self.p1.y + 6.0 * self.p2.y))
666 * (1.0 / 20.0)
667 }
668}
669
670impl ParamCurveNearest for CubicBez {
671 fn nearest(&self, p: Point, accuracy: f64) -> Nearest {
673 let mut best_r = None;
674 let mut best_t = 0.0;
675 for (t0, t1, q) in self.to_quads(accuracy) {
676 let nearest = q.nearest(p, accuracy);
677 if best_r
678 .map(|best_r| nearest.distance_sq < best_r)
679 .unwrap_or(true)
680 {
681 best_t = t0 + nearest.t * (t1 - t0);
682 best_r = Some(nearest.distance_sq);
683 }
684 }
685 Nearest {
686 t: best_t,
687 distance_sq: best_r.unwrap(),
688 }
689 }
690}
691
692impl ParamCurveCurvature for CubicBez {}
693
694impl ParamCurveExtrema for CubicBez {
695 fn extrema(&self) -> ArrayVec<f64, MAX_EXTREMA> {
696 fn one_coord(result: &mut ArrayVec<f64, MAX_EXTREMA>, d0: f64, d1: f64, d2: f64) {
697 let a = d0 - 2.0 * d1 + d2;
698 let b = 2.0 * (d1 - d0);
699 let c = d0;
700 let roots = solve_quadratic(c, b, a);
701 for &t in &roots {
702 if t > 0.0 && t < 1.0 {
703 result.push(t);
704 }
705 }
706 }
707 let mut result = ArrayVec::new();
708 let d0 = self.p1 - self.p0;
709 let d1 = self.p2 - self.p1;
710 let d2 = self.p3 - self.p2;
711 one_coord(&mut result, d0.x, d1.x, d2.x);
712 one_coord(&mut result, d0.y, d1.y, d2.y);
713 result.sort_by(|a, b| a.partial_cmp(b).unwrap());
714 result
715 }
716}
717
718impl Mul<CubicBez> for Affine {
719 type Output = CubicBez;
720
721 #[inline]
722 fn mul(self, c: CubicBez) -> CubicBez {
723 CubicBez {
724 p0: self * c.p0,
725 p1: self * c.p1,
726 p2: self * c.p2,
727 p3: self * c.p3,
728 }
729 }
730}
731
732impl Iterator for ToQuads {
733 type Item = (f64, f64, QuadBez);
734
735 fn next(&mut self) -> Option<(f64, f64, QuadBez)> {
736 if self.i == self.n {
737 return None;
738 }
739 let t0 = self.i as f64 / self.n as f64;
740 let t1 = (self.i + 1) as f64 / self.n as f64;
741 let seg = self.c.subsegment(t0..t1);
742 let p1x2 = 3.0 * seg.p1.to_vec2() - seg.p0.to_vec2();
743 let p2x2 = 3.0 * seg.p2.to_vec2() - seg.p3.to_vec2();
744 let result = QuadBez::new(seg.p0, ((p1x2 + p2x2) / 4.0).to_point(), seg.p3);
745 self.i += 1;
746 Some((t0, t1, result))
747 }
748
749 fn size_hint(&self) -> (usize, Option<usize>) {
750 let remaining = self.n - self.i;
751 (remaining, Some(remaining))
752 }
753}
754
755pub fn cubics_to_quadratic_splines(curves: &[CubicBez], accuracy: f64) -> Option<Vec<QuadSpline>> {
761 let mut result = Vec::new();
762 let mut split_order = 0;
763
764 while split_order <= MAX_SPLINE_SPLIT {
765 split_order += 1;
766 result.clear();
767
768 for curve in curves {
769 match curve.approx_spline_n(split_order, accuracy) {
770 Some(spline) => result.push(spline),
771 None => break,
772 }
773 }
774
775 if result.len() == curves.len() {
776 return Some(result);
777 }
778 }
779 None
780}
781#[cfg(test)]
782mod tests {
783 use crate::{
784 cubics_to_quadratic_splines, Affine, CubicBez, Nearest, ParamCurve, ParamCurveArclen,
785 ParamCurveArea, ParamCurveDeriv, ParamCurveExtrema, ParamCurveNearest, Point, QuadBez,
786 QuadSpline,
787 };
788
789 #[test]
790 fn cubicbez_deriv() {
791 let c = CubicBez::new(
793 (0.0, 0.0),
794 (1.0 / 3.0, 0.0),
795 (2.0 / 3.0, 1.0 / 3.0),
796 (1.0, 1.0),
797 );
798 let deriv = c.deriv();
799
800 let n = 10;
801 for i in 0..=n {
802 let t = (i as f64) * (n as f64).recip();
803 let delta = 1e-6;
804 let p = c.eval(t);
805 let p1 = c.eval(t + delta);
806 let d_approx = (p1 - p) * delta.recip();
807 let d = deriv.eval(t).to_vec2();
808 assert!((d - d_approx).hypot() < delta * 2.0);
809 }
810 }
811
812 #[test]
813 fn cubicbez_arclen() {
814 let c = CubicBez::new(
816 (0.0, 0.0),
817 (1.0 / 3.0, 0.0),
818 (2.0 / 3.0, 1.0 / 3.0),
819 (1.0, 1.0),
820 );
821 let true_arclen = 0.5 * 5.0f64.sqrt() + 0.25 * (2.0 + 5.0f64.sqrt()).ln();
822 for i in 0..12 {
823 let accuracy = 0.1f64.powi(i);
824 let error = c.arclen(accuracy) - true_arclen;
825 assert!(error.abs() < accuracy);
826 }
827 }
828
829 #[test]
830 fn cubicbez_inv_arclen() {
831 let c = CubicBez::new(
833 (0.0, 0.0),
834 (100.0 / 3.0, 0.0),
835 (200.0 / 3.0, 100.0 / 3.0),
836 (100.0, 100.0),
837 );
838 let true_arclen = 100.0 * (0.5 * 5.0f64.sqrt() + 0.25 * (2.0 + 5.0f64.sqrt()).ln());
839 for i in 0..12 {
840 let accuracy = 0.1f64.powi(i);
841 let n = 10;
842 for j in 0..=n {
843 let arc = (j as f64) * ((n as f64).recip() * true_arclen);
844 let t = c.inv_arclen(arc, accuracy * 0.5);
845 let actual_arc = c.subsegment(0.0..t).arclen(accuracy * 0.5);
846 assert!(
847 (arc - actual_arc).abs() < accuracy,
848 "at accuracy {accuracy:e}, wanted {actual_arc} got {arc}"
849 );
850 }
851 }
852 let accuracy = true_arclen * 1.1;
854 let arc = true_arclen * 0.5;
855 let t = c.inv_arclen(arc, accuracy);
856 let actual_arc = c.subsegment(0.0..t).arclen(accuracy);
857 assert!(
858 (arc - actual_arc).abs() < 2.0 * accuracy,
859 "at accuracy {accuracy:e}, want {actual_arc} got {arc}"
860 );
861 }
862
863 #[test]
864 fn cubicbez_inv_arclen_accuracy() {
865 let c = CubicBez::new((0.2, 0.73), (0.35, 1.08), (0.85, 1.08), (1.0, 0.73));
866 let true_t = c.inv_arclen(0.5, 1e-12);
867 for i in 1..12 {
868 let accuracy = (0.1f64).powi(i);
869 let approx_t = c.inv_arclen(0.5, accuracy);
870 assert!((approx_t - true_t).abs() <= accuracy);
871 }
872 }
873
874 #[test]
875 #[allow(clippy::float_cmp)]
876 fn cubicbez_signed_area_linear() {
877 let c = CubicBez::new(
879 (1.0, 0.0),
880 (2.0 / 3.0, 1.0 / 3.0),
881 (1.0 / 3.0, 2.0 / 3.0),
882 (0.0, 1.0),
883 );
884 let epsilon = 1e-12;
885 assert_eq!((Affine::rotate(0.5) * c).signed_area(), 0.5);
886 assert!(((Affine::rotate(0.5) * c).signed_area() - 0.5).abs() < epsilon);
887 assert!(((Affine::translate((0.0, 1.0)) * c).signed_area() - 1.0).abs() < epsilon);
888 assert!(((Affine::translate((1.0, 0.0)) * c).signed_area() - 1.0).abs() < epsilon);
889 }
890
891 #[test]
892 fn cubicbez_signed_area() {
893 let c = CubicBez::new((1.0, 0.0), (2.0 / 3.0, 1.0), (1.0 / 3.0, 1.0), (0.0, 1.0));
895 let epsilon = 1e-12;
896 assert!((c.signed_area() - 0.75).abs() < epsilon);
897 assert!(((Affine::rotate(0.5) * c).signed_area() - 0.75).abs() < epsilon);
898 assert!(((Affine::translate((0.0, 1.0)) * c).signed_area() - 1.25).abs() < epsilon);
899 assert!(((Affine::translate((1.0, 0.0)) * c).signed_area() - 1.25).abs() < epsilon);
900 }
901
902 #[test]
903 fn cubicbez_nearest() {
904 fn verify(result: Nearest, expected: f64) {
905 assert!(
906 (result.t - expected).abs() < 1e-6,
907 "got {result:?} expected {expected}"
908 );
909 }
910 let c = CubicBez::new((0.0, 0.0), (1.0 / 3.0, 0.0), (2.0 / 3.0, 0.0), (1.0, 1.0));
912 verify(c.nearest((0.1, 0.001).into(), 1e-6), 0.1);
913 verify(c.nearest((0.2, 0.008).into(), 1e-6), 0.2);
914 verify(c.nearest((0.3, 0.027).into(), 1e-6), 0.3);
915 verify(c.nearest((0.4, 0.064).into(), 1e-6), 0.4);
916 verify(c.nearest((0.5, 0.125).into(), 1e-6), 0.5);
917 verify(c.nearest((0.6, 0.216).into(), 1e-6), 0.6);
918 verify(c.nearest((0.7, 0.343).into(), 1e-6), 0.7);
919 verify(c.nearest((0.8, 0.512).into(), 1e-6), 0.8);
920 verify(c.nearest((0.9, 0.729).into(), 1e-6), 0.9);
921 verify(c.nearest((1.0, 1.0).into(), 1e-6), 1.0);
922 verify(c.nearest((1.1, 1.1).into(), 1e-6), 1.0);
923 verify(c.nearest((-0.1, 0.0).into(), 1e-6), 0.0);
924 let a = Affine::rotate(0.5);
925 verify((a * c).nearest(a * Point::new(0.1, 0.001), 1e-6), 0.1);
926 }
927
928 #[test]
930 fn degenerate_to_quads() {
931 let c = CubicBez::new((0., 9.), (6., 6.), (12., 3.0), (18., 0.0));
932 let quads = c.to_quads(1e-6).collect::<Vec<_>>();
933 assert_eq!(quads.len(), 1, "{:?}", &quads);
934 }
935
936 #[test]
937 fn cubicbez_extrema() {
938 let q = CubicBez::new((0.0, 0.0), (0.0, 1.0), (1.0, 1.0), (1.0, 0.0));
940 let extrema = q.extrema();
941 assert_eq!(extrema.len(), 1);
942 assert!((extrema[0] - 0.5).abs() < 1e-6);
943
944 let q = CubicBez::new((0.4, 0.5), (0.0, 1.0), (1.0, 0.0), (0.5, 0.4));
945 let extrema = q.extrema();
946 assert_eq!(extrema.len(), 4);
947 }
948
949 #[test]
950 fn cubicbez_toquads() {
951 let c = CubicBez::new((0.0, 0.0), (1.0 / 3.0, 0.0), (2.0 / 3.0, 0.0), (1.0, 1.0));
953 for i in 0..10 {
954 let accuracy = 0.1f64.powi(i);
955 let mut worst: f64 = 0.0;
956 for (t0, t1, q) in c.to_quads(accuracy) {
957 let epsilon = 1e-12;
958 assert!((q.start() - c.eval(t0)).hypot() < epsilon);
959 assert!((q.end() - c.eval(t1)).hypot() < epsilon);
960 let n = 4;
961 for j in 0..=n {
962 let t = (j as f64) * (n as f64).recip();
963 let p = q.eval(t);
964 let err = (p.y - p.x.powi(3)).abs();
965 worst = worst.max(err);
966 assert!(err < accuracy, "got {err} wanted {accuracy}");
967 }
968 }
969 }
970 }
971
972 #[test]
973 fn cubicbez_approx_spline() {
974 let c1 = CubicBez::new(
975 (550.0, 258.0),
976 (1044.0, 482.0),
977 (2029.0, 1841.0),
978 (1934.0, 1554.0),
979 );
980
981 let quad = c1.try_approx_quadratic(344.0);
982 let expected = QuadBez::new(
983 Point::new(550.0, 258.0),
984 Point::new(1673.665720592873, 767.5164401068898),
985 Point::new(1934.0, 1554.0),
986 );
987 assert!(quad.is_some());
988 assert_eq!(quad.unwrap(), expected);
989
990 let quad = c1.try_approx_quadratic(343.0);
991 assert!(quad.is_none());
992
993 let spline = c1.approx_spline_n(2, 343.0);
994 assert!(spline.is_some());
995 let spline = spline.unwrap();
996 let expected = [
997 Point::new(550.0, 258.0),
998 Point::new(920.5, 426.0),
999 Point::new(2005.25, 1769.25),
1000 Point::new(1934.0, 1554.0),
1001 ];
1002 assert_eq!(spline.points().len(), expected.len());
1003 for (got, &wanted) in spline.points().iter().zip(expected.iter()) {
1004 assert!(got.distance(wanted) < 5.0);
1005 }
1006
1007 let spline = c1.approx_spline(5.0);
1008 let expected = [
1009 Point::new(550.0, 258.0),
1010 Point::new(673.5, 314.0),
1011 Point::new(984.8777777777776, 584.2666666666667),
1012 Point::new(1312.6305555555557, 927.825),
1013 Point::new(1613.1194444444443, 1267.425),
1014 Point::new(1842.7055555555555, 1525.8166666666666),
1015 Point::new(1957.75, 1625.75),
1016 Point::new(1934.0, 1554.0),
1017 ];
1018 assert!(spline.is_some());
1019 let spline = spline.unwrap();
1020 assert_eq!(spline.points().len(), expected.len());
1021 for (got, &wanted) in spline.points().iter().zip(expected.iter()) {
1022 assert!(got.distance(wanted) < 5.0);
1023 }
1024 }
1025
1026 #[test]
1027 fn cubicbez_cubics_to_quadratic_splines() {
1028 let curves = vec![
1029 CubicBez::new(
1030 (550.0, 258.0),
1031 (1044.0, 482.0),
1032 (2029.0, 1841.0),
1033 (1934.0, 1554.0),
1034 ),
1035 CubicBez::new(
1036 (859.0, 384.0),
1037 (1998.0, 116.0),
1038 (1596.0, 1772.0),
1039 (8.0, 1824.0),
1040 ),
1041 CubicBez::new(
1042 (1090.0, 937.0),
1043 (418.0, 1300.0),
1044 (125.0, 91.0),
1045 (104.0, 37.0),
1046 ),
1047 ];
1048 let converted = cubics_to_quadratic_splines(&curves, 5.0);
1049 assert!(converted.is_some());
1050 let converted = converted.unwrap();
1051 assert_eq!(converted[0].points().len(), 8);
1052 assert_eq!(converted[1].points().len(), 8);
1053 assert_eq!(converted[2].points().len(), 8);
1054 assert!(converted[0].points()[1].distance(Point::new(673.5, 314.0)) < 0.0001);
1055 assert!(
1056 converted[0].points()[2].distance(Point::new(88639.0 / 90.0, 52584.0 / 90.0)) < 0.0001
1057 );
1058 }
1059
1060 #[test]
1061 fn cubicbez_approx_spline_div_exact() {
1062 let cubic = CubicBez::new(
1066 Point::new(408.0, 321.0),
1067 Point::new(408.0, 452.0),
1068 Point::new(342.0, 560.0),
1069 Point::new(260.0, 560.0),
1070 );
1071 let spline = cubic.approx_spline(1.0).unwrap();
1072 assert_eq!(
1073 spline.points(),
1074 &[
1075 Point::new(408.0, 321.0),
1076 Point::new(408.0, 386.5),
1079 Point::new(368.16666666666663, 495.0833333333333),
1080 Point::new(301.0, 560.0),
1081 Point::new(260.0, 560.0)
1082 ]
1083 );
1084 }
1085
1086 #[test]
1087 fn cubicbez_inflections() {
1088 let c = CubicBez::new((0., 0.), (0.8, 1.), (0.2, 1.), (1., 0.));
1089 let inflections = c.inflections();
1090 assert_eq!(inflections.len(), 2);
1091 assert!((inflections[0] - 0.311018).abs() < 1e-6);
1092 assert!((inflections[1] - 0.688982).abs() < 1e-6);
1093 let c = CubicBez::new((0., 0.), (1., 1.), (2., -1.), (3., 0.));
1094 let inflections = c.inflections();
1095 assert_eq!(inflections.len(), 1);
1096 assert!((inflections[0] - 0.5).abs() < 1e-6);
1097 let c = CubicBez::new((0., 0.), (1., 1.), (2., 1.), (3., 0.));
1098 let inflections = c.inflections();
1099 assert_eq!(inflections.len(), 0);
1100 }
1101
1102 #[test]
1103 fn cubic_to_quadratic_matches_python() {
1104 let cubic = CubicBez {
1106 p0: (796.0, 319.0).into(),
1107 p1: (727.0, 314.0).into(),
1108 p2: (242.0, 303.0).into(),
1109 p3: (106.0, 303.0).into(),
1110 };
1111
1112 assert!(cubic.approx_spline_n(7, 1.0).is_some());
1114
1115 assert!(cubics_to_quadratic_splines(&[cubic], 0.001).is_some());
1117 }
1118
1119 #[test]
1120 fn cubics_to_quadratic_splines_matches_python() {
1121 let light = CubicBez::new((378., 608.), (378., 524.), (355., 455.), (266., 455.));
1123 let regular = CubicBez::new((367., 607.), (367., 511.), (338., 472.), (243., 472.));
1124 let bold = CubicBez::new(
1125 (372.425, 593.05),
1126 (372.425, 524.95),
1127 (355.05, 485.95),
1128 (274., 485.95),
1129 );
1130 let qsplines = cubics_to_quadratic_splines(&[light, regular, bold], 1.0).unwrap();
1131 assert_eq!(
1132 qsplines,
1133 [
1134 QuadSpline::new(vec![
1135 (378.0, 608.0).into(),
1136 (378.0, 566.0).into(),
1137 (359.0833333333333, 496.5).into(),
1138 (310.5, 455.0).into(),
1139 (266.0, 455.0).into(),
1140 ]),
1141 QuadSpline::new(vec![
1142 (367.0, 607.0).into(),
1143 (367.0, 559.0).into(),
1144 (344.5833333333333, 499.49999999999994).into(),
1146 (290.5, 472.0).into(),
1147 (243.0, 472.0).into(),
1148 ]),
1149 QuadSpline::new(vec![
1150 (372.425, 593.05).into(),
1151 (372.425, 559.0).into(),
1152 (356.98333333333335, 511.125).into(),
1153 (314.525, 485.95).into(),
1154 (274.0, 485.95).into(),
1155 ]),
1156 ]
1157 );
1158 }
1159}