kurbo/offset.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
// Copyright 2022 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT
//! Computation of offset curves of cubic Béziers, based on a curve fitting
//! approach.
//!
//! See the [Parallel curves of cubic Béziers] blog post for a discussion of how
//! this algorithm works and what kind of results can be expected. In general, it
//! is expected to perform much better than most published algorithms. The number
//! of curve segments needed to attain a given accuracy scales as O(n^6) with
//! accuracy.
//!
//! In general, to compute the offset curve (also known as parallel curve) of
//! a cubic Bézier segment, create a [`CubicOffset`] struct with the curve
//! segment and offset, then use [`fit_to_bezpath`] or [`fit_to_bezpath_opt`]
//! depending on how much time to spend optimizing the resulting path.
//!
//! [`fit_to_bezpath`]: crate::fit_to_bezpath
//! [`fit_to_bezpath_opt`]: crate::fit_to_bezpath_opt
//! [Parallel curves of cubic Béziers]: https://raphlinus.github.io/curves/2022/09/09/parallel-beziers.html
use core::ops::Range;
#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;
use crate::{
common::solve_itp, CubicBez, CurveFitSample, ParamCurve, ParamCurveDeriv, ParamCurveFit, Point,
QuadBez, Vec2,
};
/// The offset curve of a cubic Bézier.
///
/// This is a representation of the offset curve of a cubic Bézier segment, for
/// purposes of curve fitting.
///
/// See the [module-level documentation] for a bit more discussion of the approach,
/// and how this struct is to be used.
///
/// [module-level documentation]: crate::offset
pub struct CubicOffset {
/// Source curve.
c: CubicBez,
/// Derivative of source curve.
q: QuadBez,
/// Offset.
d: f64,
// c0 + c1 t + c2 t^2 is the cross product of second and first
// derivatives of the underlying cubic, multiplied by offset (for
// computing cusp).
c0: f64,
c1: f64,
c2: f64,
}
impl CubicOffset {
/// Create a new curve from Bézier segment and offset.
///
/// This method should only be used if the Bézier is smooth. Use
/// [`new_regularized`] instead to deal with a wider range of inputs.
///
/// [`new_regularized`]: Self::new_regularized
pub fn new(c: CubicBez, d: f64) -> Self {
let q = c.deriv();
let d0 = q.p0.to_vec2();
let d1 = 2.0 * (q.p1 - q.p0);
let d2 = q.p0.to_vec2() - 2.0 * q.p1.to_vec2() + q.p2.to_vec2();
CubicOffset {
c,
q,
d,
c0: d * d1.cross(d0),
c1: d * 2.0 * d2.cross(d0),
c2: d * d2.cross(d1),
}
}
/// Create a new curve from Bézier segment and offset, with numerical robustness tweaks.
///
/// The dimension represents a minimum feature size; the regularization is allowed to
/// perturb the curve by this amount in order to improve the robustness.
pub fn new_regularized(c: CubicBez, d: f64, dimension: f64) -> Self {
Self::new(c.regularize(dimension), d)
}
fn eval_offset(&self, t: f64) -> Vec2 {
let dp = self.q.eval(t).to_vec2();
let norm = Vec2::new(-dp.y, dp.x);
// TODO: deal with hypot = 0
norm * self.d / dp.hypot()
}
fn eval(&self, t: f64) -> Point {
// Point on source curve.
self.c.eval(t) + self.eval_offset(t)
}
/// Evaluate derivative of curve.
fn eval_deriv(&self, t: f64) -> Vec2 {
self.cusp_sign(t) * self.q.eval(t).to_vec2()
}
// Compute a function which has a zero-crossing at cusps, and is
// positive at low curvatures on the source curve.
fn cusp_sign(&self, t: f64) -> f64 {
let ds2 = self.q.eval(t).to_vec2().hypot2();
((self.c2 * t + self.c1) * t + self.c0) / (ds2 * ds2.sqrt()) + 1.0
}
}
impl ParamCurveFit for CubicOffset {
fn sample_pt_tangent(&self, t: f64, sign: f64) -> CurveFitSample {
let p = self.eval(t);
const CUSP_EPS: f64 = 1e-8;
let mut cusp = self.cusp_sign(t);
if cusp.abs() < CUSP_EPS {
// This is a numerical derivative, which is probably good enough
// for all practical purposes, but an analytical derivative would
// be more elegant.
//
// Also, we're not dealing with second or higher order cusps.
cusp = sign * (self.cusp_sign(t + CUSP_EPS) - self.cusp_sign(t - CUSP_EPS));
}
let tangent = self.q.eval(t).to_vec2() * cusp.signum();
CurveFitSample { p, tangent }
}
fn sample_pt_deriv(&self, t: f64) -> (Point, Vec2) {
(self.eval(t), self.eval_deriv(t))
}
fn break_cusp(&self, range: Range<f64>) -> Option<f64> {
const CUSP_EPS: f64 = 1e-8;
// When an endpoint is on (or very near) a cusp, move just far enough
// away from the cusp that we're confident we have the right sign.
let break_cusp_help = |mut x, mut d| {
let mut cusp = self.cusp_sign(x);
while cusp.abs() < CUSP_EPS && d < 1.0 {
x += d;
let old_cusp = cusp;
cusp = self.cusp_sign(x);
if cusp.abs() > old_cusp.abs() {
break;
}
d *= 2.0;
}
(x, cusp)
};
let (a, cusp0) = break_cusp_help(range.start, 1e-12);
let (b, cusp1) = break_cusp_help(range.end, -1e-12);
if a >= b || cusp0 * cusp1 >= 0.0 {
// Discussion point: maybe we should search for double cusps in the interior
// of the range.
return None;
}
let s = cusp1.signum();
let f = |t| s * self.cusp_sign(t);
let k1 = 0.2 / (b - a);
const ITP_EPS: f64 = 1e-12;
let x = solve_itp(f, a, b, ITP_EPS, 1, k1, s * cusp0, s * cusp1);
Some(x)
}
}
#[cfg(test)]
mod tests {
use super::CubicOffset;
use crate::{fit_to_bezpath, fit_to_bezpath_opt, CubicBez, PathEl};
// This test tries combinations of parameters that have caused problems in the past.
#[test]
fn pathological_curves() {
let curve = CubicBez {
p0: (-1236.3746269978635, 152.17981429574826).into(),
p1: (-1175.18662093517, 108.04721798590596).into(),
p2: (-1152.142883879584, 105.76260301083356).into(),
p3: (-1151.842639804639, 105.73040758939104).into(),
};
let offset = 3603.7267536453924;
let accuracy = 0.1;
let offset_path = CubicOffset::new(curve, offset);
let path = fit_to_bezpath_opt(&offset_path, accuracy);
assert!(matches!(path.iter().next(), Some(PathEl::MoveTo(_))));
let path_opt = fit_to_bezpath(&offset_path, accuracy);
assert!(matches!(path_opt.iter().next(), Some(PathEl::MoveTo(_))));
}
/// Cubic offset that used to trigger infinite recursion.
#[test]
fn infinite_recursion() {
const DIM_TUNE: f64 = 0.25;
const TOLERANCE: f64 = 0.1;
let c = CubicBez::new(
(1096.2962962962963, 593.90243902439033),
(1043.6213991769548, 593.90243902439033),
(1030.4526748971193, 593.90243902439033),
(1056.7901234567901, 593.90243902439033),
);
let co = CubicOffset::new_regularized(c, -0.5, DIM_TUNE * TOLERANCE);
fit_to_bezpath(&co, TOLERANCE);
}
#[test]
fn test_cubic_offset_simple_line() {
let cubic = CubicBez::new((0., 0.), (10., 0.), (20., 0.), (30., 0.));
let offset = CubicOffset::new(cubic, 5.);
let _optimized = fit_to_bezpath(&offset, 1e-6);
}
}