kurbo/
point.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
// Copyright 2019 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! A 2D point.

use core::fmt;
use core::ops::{Add, AddAssign, Sub, SubAssign};

use crate::common::FloatExt;
use crate::Vec2;

#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;

/// A 2D point.
///
/// This type represents a point in 2D space. It has the same layout as [`Vec2`][crate::Vec2], but
/// its meaning is different: `Vec2` represents a change in location (for example velocity).
///
/// In general, `kurbo` overloads math operators where it makes sense, for example implementing
/// `Affine * Point` as the point under the affine transformation. However `Point + Point` and
/// `f64 * Point` are not implemented, because the operations do not make geometric sense. If you
/// need to apply these operations, then 1) check what you're doing makes geometric sense, then 2)
/// use [`Point::to_vec2`] to convert the point to a `Vec2`.
#[derive(Clone, Copy, Default, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Point {
    /// The x coordinate.
    pub x: f64,
    /// The y coordinate.
    pub y: f64,
}

impl Point {
    /// The point (0, 0).
    pub const ZERO: Point = Point::new(0., 0.);

    /// The point at the origin; (0, 0).
    pub const ORIGIN: Point = Point::new(0., 0.);

    /// Create a new `Point` with the provided `x` and `y` coordinates.
    #[inline]
    pub const fn new(x: f64, y: f64) -> Self {
        Point { x, y }
    }

    /// Convert this point into a `Vec2`.
    #[inline]
    pub const fn to_vec2(self) -> Vec2 {
        Vec2::new(self.x, self.y)
    }

    /// Linearly interpolate between two points.
    #[inline]
    pub fn lerp(self, other: Point, t: f64) -> Point {
        self.to_vec2().lerp(other.to_vec2(), t).to_point()
    }

    /// Determine the midpoint of two points.
    #[inline]
    pub fn midpoint(self, other: Point) -> Point {
        Point::new(0.5 * (self.x + other.x), 0.5 * (self.y + other.y))
    }

    /// Euclidean distance.
    ///
    /// See [`Vec2::hypot`] for the same operation on [`Vec2`].
    #[inline]
    pub fn distance(self, other: Point) -> f64 {
        (self - other).hypot()
    }

    /// Squared Euclidean distance.
    ///
    /// See [`Vec2::hypot2`] for the same operation on [`Vec2`].
    #[inline]
    pub fn distance_squared(self, other: Point) -> f64 {
        (self - other).hypot2()
    }

    /// Returns a new `Point`, with `x` and `y` [rounded] to the nearest integer.
    ///
    /// # Examples
    ///
    /// ```
    /// use kurbo::Point;
    /// let a = Point::new(3.3, 3.6).round();
    /// let b = Point::new(3.0, -3.1).round();
    /// assert_eq!(a.x, 3.0);
    /// assert_eq!(a.y, 4.0);
    /// assert_eq!(b.x, 3.0);
    /// assert_eq!(b.y, -3.0);
    /// ```
    ///
    /// [rounded]: f64::round
    #[inline]
    pub fn round(self) -> Point {
        Point::new(self.x.round(), self.y.round())
    }

    /// Returns a new `Point`,
    /// with `x` and `y` [rounded up] to the nearest integer,
    /// unless they are already an integer.
    ///
    /// # Examples
    ///
    /// ```
    /// use kurbo::Point;
    /// let a = Point::new(3.3, 3.6).ceil();
    /// let b = Point::new(3.0, -3.1).ceil();
    /// assert_eq!(a.x, 4.0);
    /// assert_eq!(a.y, 4.0);
    /// assert_eq!(b.x, 3.0);
    /// assert_eq!(b.y, -3.0);
    /// ```
    ///
    /// [rounded up]: f64::ceil
    #[inline]
    pub fn ceil(self) -> Point {
        Point::new(self.x.ceil(), self.y.ceil())
    }

    /// Returns a new `Point`,
    /// with `x` and `y` [rounded down] to the nearest integer,
    /// unless they are already an integer.
    ///
    /// # Examples
    ///
    /// ```
    /// use kurbo::Point;
    /// let a = Point::new(3.3, 3.6).floor();
    /// let b = Point::new(3.0, -3.1).floor();
    /// assert_eq!(a.x, 3.0);
    /// assert_eq!(a.y, 3.0);
    /// assert_eq!(b.x, 3.0);
    /// assert_eq!(b.y, -4.0);
    /// ```
    ///
    /// [rounded down]: f64::floor
    #[inline]
    pub fn floor(self) -> Point {
        Point::new(self.x.floor(), self.y.floor())
    }

    /// Returns a new `Point`,
    /// with `x` and `y` [rounded away] from zero to the nearest integer,
    /// unless they are already an integer.
    ///
    /// # Examples
    ///
    /// ```
    /// use kurbo::Point;
    /// let a = Point::new(3.3, 3.6).expand();
    /// let b = Point::new(3.0, -3.1).expand();
    /// assert_eq!(a.x, 4.0);
    /// assert_eq!(a.y, 4.0);
    /// assert_eq!(b.x, 3.0);
    /// assert_eq!(b.y, -4.0);
    /// ```
    ///
    /// [rounded away]: FloatExt::expand
    #[inline]
    pub fn expand(self) -> Point {
        Point::new(self.x.expand(), self.y.expand())
    }

    /// Returns a new `Point`,
    /// with `x` and `y` [rounded towards] zero to the nearest integer,
    /// unless they are already an integer.
    ///
    /// # Examples
    ///
    /// ```
    /// use kurbo::Point;
    /// let a = Point::new(3.3, 3.6).trunc();
    /// let b = Point::new(3.0, -3.1).trunc();
    /// assert_eq!(a.x, 3.0);
    /// assert_eq!(a.y, 3.0);
    /// assert_eq!(b.x, 3.0);
    /// assert_eq!(b.y, -3.0);
    /// ```
    ///
    /// [rounded towards]: f64::trunc
    #[inline]
    pub fn trunc(self) -> Point {
        Point::new(self.x.trunc(), self.y.trunc())
    }

    /// Is this point [finite]?
    ///
    /// [finite]: f64::is_finite
    #[inline]
    pub fn is_finite(self) -> bool {
        self.x.is_finite() && self.y.is_finite()
    }

    /// Is this point [`NaN`]?
    ///
    /// [`NaN`]: f64::is_nan
    #[inline]
    pub fn is_nan(self) -> bool {
        self.x.is_nan() || self.y.is_nan()
    }
}

impl From<(f32, f32)> for Point {
    #[inline]
    fn from(v: (f32, f32)) -> Point {
        Point {
            x: v.0 as f64,
            y: v.1 as f64,
        }
    }
}

impl From<(f64, f64)> for Point {
    #[inline]
    fn from(v: (f64, f64)) -> Point {
        Point { x: v.0, y: v.1 }
    }
}

impl From<Point> for (f64, f64) {
    #[inline]
    fn from(v: Point) -> (f64, f64) {
        (v.x, v.y)
    }
}

impl Add<Vec2> for Point {
    type Output = Point;

    #[inline]
    fn add(self, other: Vec2) -> Self {
        Point::new(self.x + other.x, self.y + other.y)
    }
}

impl AddAssign<Vec2> for Point {
    #[inline]
    fn add_assign(&mut self, other: Vec2) {
        *self = Point::new(self.x + other.x, self.y + other.y);
    }
}

impl Sub<Vec2> for Point {
    type Output = Point;

    #[inline]
    fn sub(self, other: Vec2) -> Self {
        Point::new(self.x - other.x, self.y - other.y)
    }
}

impl SubAssign<Vec2> for Point {
    #[inline]
    fn sub_assign(&mut self, other: Vec2) {
        *self = Point::new(self.x - other.x, self.y - other.y);
    }
}

impl Add<(f64, f64)> for Point {
    type Output = Point;

    #[inline]
    fn add(self, (x, y): (f64, f64)) -> Self {
        Point::new(self.x + x, self.y + y)
    }
}

impl AddAssign<(f64, f64)> for Point {
    #[inline]
    fn add_assign(&mut self, (x, y): (f64, f64)) {
        *self = Point::new(self.x + x, self.y + y);
    }
}

impl Sub<(f64, f64)> for Point {
    type Output = Point;

    #[inline]
    fn sub(self, (x, y): (f64, f64)) -> Self {
        Point::new(self.x - x, self.y - y)
    }
}

impl SubAssign<(f64, f64)> for Point {
    #[inline]
    fn sub_assign(&mut self, (x, y): (f64, f64)) {
        *self = Point::new(self.x - x, self.y - y);
    }
}

impl Sub<Point> for Point {
    type Output = Vec2;

    #[inline]
    fn sub(self, other: Point) -> Vec2 {
        Vec2::new(self.x - other.x, self.y - other.y)
    }
}

impl fmt::Debug for Point {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "({:?}, {:?})", self.x, self.y)
    }
}

impl fmt::Display for Point {
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        write!(formatter, "(")?;
        fmt::Display::fmt(&self.x, formatter)?;
        write!(formatter, ", ")?;
        fmt::Display::fmt(&self.y, formatter)?;
        write!(formatter, ")")
    }
}

#[cfg(feature = "mint")]
impl From<Point> for mint::Point2<f64> {
    #[inline]
    fn from(p: Point) -> mint::Point2<f64> {
        mint::Point2 { x: p.x, y: p.y }
    }
}

#[cfg(feature = "mint")]
impl From<mint::Point2<f64>> for Point {
    #[inline]
    fn from(p: mint::Point2<f64>) -> Point {
        Point { x: p.x, y: p.y }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn point_arithmetic() {
        assert_eq!(
            Point::new(0., 0.) - Vec2::new(10., 0.),
            Point::new(-10., 0.)
        );
        assert_eq!(
            Point::new(0., 0.) - Point::new(-5., 101.),
            Vec2::new(5., -101.)
        );
    }

    #[test]
    #[allow(clippy::float_cmp)]
    fn distance() {
        let p1 = Point::new(0., 10.);
        let p2 = Point::new(0., 5.);
        assert_eq!(p1.distance(p2), 5.);

        let p1 = Point::new(-11., 1.);
        let p2 = Point::new(-7., -2.);
        assert_eq!(p1.distance(p2), 5.);
    }

    #[test]
    fn display() {
        let p = Point::new(0.12345, 9.87654);
        assert_eq!(format!("{p}"), "(0.12345, 9.87654)");

        let p = Point::new(0.12345, 9.87654);
        assert_eq!(format!("{p:.2}"), "(0.12, 9.88)");
    }
}