kurbo/
svg.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
// Copyright 2018 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! SVG path representation.

use alloc::vec::Vec;
use core::f64::consts::PI;
use core::fmt::{self, Display, Formatter};
// MSRV: Once our MSRV is 1.81, we can switch to `core::error`
#[cfg(feature = "std")]
use std::error::Error;
#[cfg(feature = "std")]
use std::io::{self, Write};

use crate::{Arc, BezPath, ParamCurve, PathEl, PathSeg, Point, Vec2};

#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;

// Note: the SVG arc logic is heavily adapted from https://github.com/nical/lyon

/// A single SVG arc segment.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct SvgArc {
    /// The arc's start point.
    pub from: Point,
    /// The arc's end point.
    pub to: Point,
    /// The arc's radii, where the vector's x-component is the radius in the
    /// positive x direction after applying `x_rotation`.
    pub radii: Vec2,
    /// How much the arc is rotated, in radians.
    pub x_rotation: f64,
    /// Does this arc sweep through more than π radians?
    pub large_arc: bool,
    /// Determines if the arc should begin moving at positive angles.
    pub sweep: bool,
}

impl BezPath {
    /// Create a `BezPath` with segments corresponding to the sequence of
    /// `PathSeg`s
    pub fn from_path_segments(segments: impl Iterator<Item = PathSeg>) -> BezPath {
        let mut path_elements = Vec::new();
        let mut current_pos = None;

        for segment in segments {
            let start = segment.start();
            if Some(start) != current_pos {
                path_elements.push(PathEl::MoveTo(start));
            };
            path_elements.push(match segment {
                PathSeg::Line(l) => PathEl::LineTo(l.p1),
                PathSeg::Quad(q) => PathEl::QuadTo(q.p1, q.p2),
                PathSeg::Cubic(c) => PathEl::CurveTo(c.p1, c.p2, c.p3),
            });

            current_pos = Some(segment.end());
        }

        BezPath::from_vec(path_elements)
    }

    /// Convert the path to an SVG path string representation.
    ///
    /// The current implementation doesn't take any special care to produce a
    /// short string (reducing precision, using relative movement).
    #[cfg(feature = "std")]
    pub fn to_svg(&self) -> String {
        let mut buffer = Vec::new();
        self.write_to(&mut buffer).unwrap();
        String::from_utf8(buffer).unwrap()
    }

    /// Write the SVG representation of this path to the provided buffer.
    #[cfg(feature = "std")]
    pub fn write_to<W: Write>(&self, mut writer: W) -> io::Result<()> {
        for (i, el) in self.elements().iter().enumerate() {
            if i > 0 {
                write!(writer, " ")?;
            }
            match *el {
                PathEl::MoveTo(p) => write!(writer, "M{},{}", p.x, p.y)?,
                PathEl::LineTo(p) => write!(writer, "L{},{}", p.x, p.y)?,
                PathEl::QuadTo(p1, p2) => write!(writer, "Q{},{} {},{}", p1.x, p1.y, p2.x, p2.y)?,
                PathEl::CurveTo(p1, p2, p3) => write!(
                    writer,
                    "C{},{} {},{} {},{}",
                    p1.x, p1.y, p2.x, p2.y, p3.x, p3.y
                )?,
                PathEl::ClosePath => write!(writer, "Z")?,
            }
        }

        Ok(())
    }

    /// Try to parse a bezier path from an SVG path element.
    ///
    /// This is implemented on a best-effort basis, intended for cases where the
    /// user controls the source of paths, and is not intended as a replacement
    /// for a general, robust SVG parser.
    pub fn from_svg(data: &str) -> Result<BezPath, SvgParseError> {
        let mut lexer = SvgLexer::new(data);
        let mut path = BezPath::new();
        let mut last_cmd = 0;
        let mut last_ctrl = None;
        let mut first_pt = Point::ORIGIN;
        let mut implicit_moveto = None;
        while let Some(c) = lexer.get_cmd(last_cmd) {
            if c != b'm' && c != b'M' {
                if path.elements().is_empty() {
                    return Err(SvgParseError::UninitializedPath);
                }

                if let Some(pt) = implicit_moveto.take() {
                    path.move_to(pt);
                }
            }
            match c {
                b'm' | b'M' => {
                    implicit_moveto = None;
                    let pt = lexer.get_maybe_relative(c)?;
                    path.move_to(pt);
                    lexer.last_pt = pt;
                    first_pt = pt;
                    last_ctrl = Some(pt);
                    last_cmd = c - (b'M' - b'L');
                }
                b'l' | b'L' => {
                    let pt = lexer.get_maybe_relative(c)?;
                    path.line_to(pt);
                    lexer.last_pt = pt;
                    last_ctrl = Some(pt);
                    last_cmd = c;
                }
                b'h' | b'H' => {
                    let mut x = lexer.get_number()?;
                    lexer.opt_comma();
                    if c == b'h' {
                        x += lexer.last_pt.x;
                    }
                    let pt = Point::new(x, lexer.last_pt.y);
                    path.line_to(pt);
                    lexer.last_pt = pt;
                    last_ctrl = Some(pt);
                    last_cmd = c;
                }
                b'v' | b'V' => {
                    let mut y = lexer.get_number()?;
                    lexer.opt_comma();
                    if c == b'v' {
                        y += lexer.last_pt.y;
                    }
                    let pt = Point::new(lexer.last_pt.x, y);
                    path.line_to(pt);
                    lexer.last_pt = pt;
                    last_ctrl = Some(pt);
                    last_cmd = c;
                }
                b'q' | b'Q' => {
                    let p1 = lexer.get_maybe_relative(c)?;
                    let p2 = lexer.get_maybe_relative(c)?;
                    path.quad_to(p1, p2);
                    last_ctrl = Some(p1);
                    lexer.last_pt = p2;
                    last_cmd = c;
                }
                b't' | b'T' => {
                    let p1 = match last_ctrl {
                        Some(ctrl) => (2.0 * lexer.last_pt.to_vec2() - ctrl.to_vec2()).to_point(),
                        None => lexer.last_pt,
                    };
                    let p2 = lexer.get_maybe_relative(c)?;
                    path.quad_to(p1, p2);
                    last_ctrl = Some(p1);
                    lexer.last_pt = p2;
                    last_cmd = c;
                }
                b'c' | b'C' => {
                    let p1 = lexer.get_maybe_relative(c)?;
                    let p2 = lexer.get_maybe_relative(c)?;
                    let p3 = lexer.get_maybe_relative(c)?;
                    path.curve_to(p1, p2, p3);
                    last_ctrl = Some(p2);
                    lexer.last_pt = p3;
                    last_cmd = c;
                }
                b's' | b'S' => {
                    let p1 = match last_ctrl {
                        Some(ctrl) => (2.0 * lexer.last_pt.to_vec2() - ctrl.to_vec2()).to_point(),
                        None => lexer.last_pt,
                    };
                    let p2 = lexer.get_maybe_relative(c)?;
                    let p3 = lexer.get_maybe_relative(c)?;
                    path.curve_to(p1, p2, p3);
                    last_ctrl = Some(p2);
                    lexer.last_pt = p3;
                    last_cmd = c;
                }
                b'a' | b'A' => {
                    let radii = lexer.get_number_pair()?;
                    let x_rotation = lexer.get_number()?.to_radians();
                    lexer.opt_comma();
                    let large_arc = lexer.get_flag()?;
                    lexer.opt_comma();
                    let sweep = lexer.get_flag()?;
                    lexer.opt_comma();
                    let p = lexer.get_maybe_relative(c)?;
                    let svg_arc = SvgArc {
                        from: lexer.last_pt,
                        to: p,
                        radii: radii.to_vec2(),
                        x_rotation,
                        large_arc,
                        sweep,
                    };

                    match Arc::from_svg_arc(&svg_arc) {
                        Some(arc) => {
                            // TODO: consider making tolerance configurable
                            arc.to_cubic_beziers(0.1, |p1, p2, p3| {
                                path.curve_to(p1, p2, p3);
                            });
                        }
                        None => {
                            path.line_to(p);
                        }
                    }

                    last_ctrl = Some(p);
                    lexer.last_pt = p;
                    last_cmd = c;
                }
                b'z' | b'Z' => {
                    path.close_path();
                    lexer.last_pt = first_pt;
                    implicit_moveto = Some(first_pt);
                }
                _ => return Err(SvgParseError::UnknownCommand(c as char)),
            }
        }
        Ok(path)
    }
}

/// An error which can be returned when parsing an SVG.
#[derive(Debug)]
#[non_exhaustive]
pub enum SvgParseError {
    /// A number was expected.
    Wrong,
    /// The input string ended while still expecting input.
    UnexpectedEof,
    /// Encountered an unknown command letter.
    UnknownCommand(char),
    /// Encountered a command that precedes expected 'moveto' command.
    UninitializedPath,
}

impl Display for SvgParseError {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        match self {
            SvgParseError::Wrong => write!(f, "Unable to parse a number"),
            SvgParseError::UnexpectedEof => write!(f, "Unexpected EOF"),
            SvgParseError::UnknownCommand(letter) => write!(f, "Unknown command, \"{letter}\""),
            SvgParseError::UninitializedPath => {
                write!(f, "Uninitialized path (missing moveto command)")
            }
        }
    }
}

#[cfg(feature = "std")]
impl Error for SvgParseError {}

struct SvgLexer<'a> {
    data: &'a str,
    ix: usize,
    pub last_pt: Point,
}

impl<'a> SvgLexer<'a> {
    fn new(data: &str) -> SvgLexer {
        SvgLexer {
            data,
            ix: 0,
            last_pt: Point::ORIGIN,
        }
    }

    fn skip_ws(&mut self) {
        while let Some(&c) = self.data.as_bytes().get(self.ix) {
            if !(c == b' ' || c == 9 || c == 10 || c == 12 || c == 13) {
                break;
            }
            self.ix += 1;
        }
    }

    fn get_cmd(&mut self, last_cmd: u8) -> Option<u8> {
        self.skip_ws();
        if let Some(c) = self.get_byte() {
            if c.is_ascii_lowercase() || c.is_ascii_uppercase() {
                return Some(c);
            } else if last_cmd != 0 && (c == b'-' || c == b'.' || c.is_ascii_digit()) {
                // Plausible number start
                self.unget();
                return Some(last_cmd);
            } else {
                self.unget();
            }
        }
        None
    }

    fn get_byte(&mut self) -> Option<u8> {
        self.data.as_bytes().get(self.ix).map(|&c| {
            self.ix += 1;
            c
        })
    }

    fn unget(&mut self) {
        self.ix -= 1;
    }

    fn get_number(&mut self) -> Result<f64, SvgParseError> {
        self.skip_ws();
        let start = self.ix;
        let c = self.get_byte().ok_or(SvgParseError::UnexpectedEof)?;
        if !(c == b'-' || c == b'+') {
            self.unget();
        }
        let mut digit_count = 0;
        let mut seen_period = false;
        while let Some(c) = self.get_byte() {
            if c.is_ascii_digit() {
                digit_count += 1;
            } else if c == b'.' && !seen_period {
                seen_period = true;
            } else {
                self.unget();
                break;
            }
        }
        if let Some(c) = self.get_byte() {
            if c == b'e' || c == b'E' {
                let mut c = self.get_byte().ok_or(SvgParseError::Wrong)?;
                if c == b'-' || c == b'+' {
                    c = self.get_byte().ok_or(SvgParseError::Wrong)?;
                }
                if !c.is_ascii_digit() {
                    return Err(SvgParseError::Wrong);
                }
                while let Some(c) = self.get_byte() {
                    if !c.is_ascii_digit() {
                        self.unget();
                        break;
                    }
                }
            } else {
                self.unget();
            }
        }
        if digit_count > 0 {
            self.data[start..self.ix]
                .parse()
                .map_err(|_| SvgParseError::Wrong)
        } else {
            Err(SvgParseError::Wrong)
        }
    }

    fn get_flag(&mut self) -> Result<bool, SvgParseError> {
        self.skip_ws();
        match self.get_byte().ok_or(SvgParseError::UnexpectedEof)? {
            b'0' => Ok(false),
            b'1' => Ok(true),
            _ => Err(SvgParseError::Wrong),
        }
    }

    fn get_number_pair(&mut self) -> Result<Point, SvgParseError> {
        let x = self.get_number()?;
        self.opt_comma();
        let y = self.get_number()?;
        self.opt_comma();
        Ok(Point::new(x, y))
    }

    fn get_maybe_relative(&mut self, cmd: u8) -> Result<Point, SvgParseError> {
        let pt = self.get_number_pair()?;
        if cmd.is_ascii_lowercase() {
            Ok(self.last_pt + pt.to_vec2())
        } else {
            Ok(pt)
        }
    }

    fn opt_comma(&mut self) {
        self.skip_ws();
        if let Some(c) = self.get_byte() {
            if c != b',' {
                self.unget();
            }
        }
    }
}

impl SvgArc {
    /// Checks that arc is actually a straight line.
    ///
    /// In this case, it can be replaced with a `LineTo`.
    pub fn is_straight_line(&self) -> bool {
        self.radii.x.abs() <= 1e-5 || self.radii.y.abs() <= 1e-5 || self.from == self.to
    }
}

impl Arc {
    /// Creates an `Arc` from a `SvgArc`.
    ///
    /// Returns `None` if `arc` is actually a straight line.
    pub fn from_svg_arc(arc: &SvgArc) -> Option<Arc> {
        // Have to check this first, otherwise `sum_of_sq` will be 0.
        if arc.is_straight_line() {
            return None;
        }

        let mut rx = arc.radii.x.abs();
        let mut ry = arc.radii.y.abs();

        let xr = arc.x_rotation % (2.0 * PI);
        let (sin_phi, cos_phi) = xr.sin_cos();
        let hd_x = (arc.from.x - arc.to.x) * 0.5;
        let hd_y = (arc.from.y - arc.to.y) * 0.5;
        let hs_x = (arc.from.x + arc.to.x) * 0.5;
        let hs_y = (arc.from.y + arc.to.y) * 0.5;

        // F6.5.1
        let p = Vec2::new(
            cos_phi * hd_x + sin_phi * hd_y,
            -sin_phi * hd_x + cos_phi * hd_y,
        );

        // Sanitize the radii.
        // If rf > 1 it means the radii are too small for the arc to
        // possibly connect the end points. In this situation we scale
        // them up according to the formula provided by the SVG spec.

        // F6.6.2
        let rf = p.x * p.x / (rx * rx) + p.y * p.y / (ry * ry);
        if rf > 1.0 {
            let scale = rf.sqrt();
            rx *= scale;
            ry *= scale;
        }

        let rxry = rx * ry;
        let rxpy = rx * p.y;
        let rypx = ry * p.x;
        let sum_of_sq = rxpy * rxpy + rypx * rypx;

        debug_assert!(sum_of_sq != 0.0);

        // F6.5.2
        let sign_coe = if arc.large_arc == arc.sweep {
            -1.0
        } else {
            1.0
        };
        let coe = sign_coe * ((rxry * rxry - sum_of_sq) / sum_of_sq).abs().sqrt();
        let transformed_cx = coe * rxpy / ry;
        let transformed_cy = -coe * rypx / rx;

        // F6.5.3
        let center = Point::new(
            cos_phi * transformed_cx - sin_phi * transformed_cy + hs_x,
            sin_phi * transformed_cx + cos_phi * transformed_cy + hs_y,
        );

        let start_v = Vec2::new((p.x - transformed_cx) / rx, (p.y - transformed_cy) / ry);
        let end_v = Vec2::new((-p.x - transformed_cx) / rx, (-p.y - transformed_cy) / ry);

        let start_angle = start_v.atan2();

        let mut sweep_angle = (end_v.atan2() - start_angle) % (2.0 * PI);

        if arc.sweep && sweep_angle < 0.0 {
            sweep_angle += 2.0 * PI;
        } else if !arc.sweep && sweep_angle > 0.0 {
            sweep_angle -= 2.0 * PI;
        }

        Some(Arc {
            center,
            radii: Vec2::new(rx, ry),
            start_angle,
            sweep_angle,
            x_rotation: arc.x_rotation,
        })
    }
}

#[cfg(test)]
mod tests {
    use crate::{BezPath, CubicBez, Line, ParamCurve, PathEl, PathSeg, Point, QuadBez, Shape};

    #[test]
    fn test_parse_svg() {
        let path = BezPath::from_svg("m10 10 100 0 0 100 -100 0z").unwrap();
        assert_eq!(path.segments().count(), 4);
    }

    #[test]
    fn test_parse_svg2() {
        let path =
            BezPath::from_svg("M3.5 8a.5.5 0 01.5-.5h8a.5.5 0 010 1H4a.5.5 0 01-.5-.5z").unwrap();
        assert_eq!(path.segments().count(), 6);
    }

    #[test]
    fn test_parse_svg_arc() {
        let path = BezPath::from_svg("M 100 100 A 25 25 0 1 0 -25 25 z").unwrap();
        assert_eq!(path.segments().count(), 3);
    }

    // Regression test for #51
    #[test]
    #[allow(clippy::float_cmp)]
    fn test_parse_svg_arc_pie() {
        let path = BezPath::from_svg("M 100 100 h 25 a 25 25 0 1 0 -25 25 z").unwrap();
        // Approximate figures, but useful for regression testing
        assert_eq!(path.area().round(), -1473.0);
        assert_eq!(path.perimeter(1e-6).round(), 168.0);
    }

    #[test]
    fn test_parse_svg_uninitialized() {
        let path = BezPath::from_svg("L10 10 100 0 0 100");
        assert!(path.is_err());
    }

    #[test]
    #[allow(clippy::float_cmp)]
    fn test_parse_scientific_notation() {
        let path = BezPath::from_svg("M 0 0 L 1e-123 -4E+5").unwrap();
        assert_eq!(
            path.elements(),
            &[
                PathEl::MoveTo(Point { x: 0.0, y: 0.0 }),
                PathEl::LineTo(Point {
                    x: 1e-123,
                    y: -4E+5
                })
            ]
        );
    }

    #[test]
    fn test_write_svg_single() {
        let segments = [CubicBez::new(
            Point::new(10., 10.),
            Point::new(20., 20.),
            Point::new(30., 30.),
            Point::new(40., 40.),
        )
        .into()];
        let path = BezPath::from_path_segments(segments.iter().cloned());

        assert_eq!(path.to_svg(), "M10,10 C20,20 30,30 40,40");
    }

    #[test]
    fn test_write_svg_two_nomove() {
        let segments = [
            CubicBez::new(
                Point::new(10., 10.),
                Point::new(20., 20.),
                Point::new(30., 30.),
                Point::new(40., 40.),
            )
            .into(),
            CubicBez::new(
                Point::new(40., 40.),
                Point::new(30., 30.),
                Point::new(20., 20.),
                Point::new(10., 10.),
            )
            .into(),
        ];
        let path = BezPath::from_path_segments(segments.iter().cloned());

        assert_eq!(
            path.to_svg(),
            "M10,10 C20,20 30,30 40,40 C30,30 20,20 10,10"
        );
    }

    #[test]
    fn test_write_svg_two_move() {
        let segments = [
            CubicBez::new(
                Point::new(10., 10.),
                Point::new(20., 20.),
                Point::new(30., 30.),
                Point::new(40., 40.),
            )
            .into(),
            CubicBez::new(
                Point::new(50., 50.),
                Point::new(30., 30.),
                Point::new(20., 20.),
                Point::new(10., 10.),
            )
            .into(),
        ];
        let path = BezPath::from_path_segments(segments.iter().cloned());

        assert_eq!(
            path.to_svg(),
            "M10,10 C20,20 30,30 40,40 M50,50 C30,30 20,20 10,10"
        );
    }

    use rand::prelude::*;

    fn gen_random_path_sequence(rng: &mut impl Rng) -> Vec<PathSeg> {
        const MAX_LENGTH: u32 = 10;

        let mut elements = vec![];
        let mut position = None;

        let length = rng.gen_range(0..MAX_LENGTH);
        for _ in 0..length {
            let should_follow: bool = random();
            let kind = rng.gen_range(0..3);

            let first = position
                .filter(|_| should_follow)
                .unwrap_or_else(|| Point::new(rng.gen(), rng.gen()));

            let element: PathSeg = match kind {
                0 => Line::new(first, Point::new(rng.gen(), rng.gen())).into(),

                1 => QuadBez::new(
                    first,
                    Point::new(rng.gen(), rng.gen()),
                    Point::new(rng.gen(), rng.gen()),
                )
                .into(),

                2 => CubicBez::new(
                    first,
                    Point::new(rng.gen(), rng.gen()),
                    Point::new(rng.gen(), rng.gen()),
                    Point::new(rng.gen(), rng.gen()),
                )
                .into(),

                _ => unreachable!(),
            };

            position = Some(element.end());
            elements.push(element);
        }

        elements
    }

    #[test]
    fn test_serialize_deserialize() {
        const N_TESTS: u32 = 100;
        let mut rng = thread_rng();

        for _ in 0..N_TESTS {
            let vec = gen_random_path_sequence(&mut rng);
            let ser = BezPath::from_path_segments(vec.iter().cloned()).to_svg();
            let deser = BezPath::from_svg(&ser).expect("failed deserialization");

            let deser_vec = deser.segments().collect::<Vec<PathSeg>>();

            assert_eq!(vec, deser_vec);
        }
    }
}