lebe/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
#![warn(
missing_docs, unused,
trivial_numeric_casts,
future_incompatible,
rust_2018_compatibility,
rust_2018_idioms,
clippy::all
)]
#![doc(html_root_url = "https://docs.rs/lebe/0.5.0")]
//! Dead simple endianness conversions.
//! The following operations are implemented on
//! `u8`, `i8`, `u16`, `i16`, `u32`, `i32`, `u64`, `i64`, `u128`, `i128`, `f32`, `f64`:
//!
//!
//! ### Read Numbers
//! ```rust
//! use lebe::prelude::*;
//! let mut reader: &[u8] = &[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15];
//!
//! let number : u64 = reader.read_from_little_endian()?;
//! let number = u64::read_from_big_endian(&mut reader)?;
//! # Ok::<(), std::io::Error>(())
//! ```
//!
//! ### Read Slices
//! ```rust
//! use std::io::Read;
//! use lebe::prelude::*;
//! let mut reader: &[u8] = &[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15];
//!
//! let mut numbers: &mut [u64] = &mut [0, 0];
//! reader.read_from_little_endian_into(numbers)?;
//! # Ok::<(), std::io::Error>(())
//! ```
//!
//! ### Write Numbers
//! ```rust
//! use std::io::Read;
//! use lebe::prelude::*;
//! let mut writer: Vec<u8> = Vec::new();
//!
//! let number: u64 = 1237691;
//! writer.write_as_big_endian(&number)?;
//! # Ok::<(), std::io::Error>(())
//! ```
//!
//! ### Write Slices
//! ```rust
//! use std::io::Write;
//! use lebe::prelude::*;
//! let mut writer: Vec<u8> = Vec::new();
//!
//! let numbers: &[u64] = &[1_u64, 234545_u64];
//! writer.write_as_little_endian(numbers)?;
//! # Ok::<(), std::io::Error>(())
//! ```
//!
/// Exports some of the most common types.
pub mod prelude {
pub use super::Endian;
pub use super::io::{ WriteEndian, ReadEndian, ReadPrimitive };
}
/// Represents values that can swap their bytes to reverse their endianness.
///
/// Supports converting values in-place using [`swap_bytes`] or [`convert_current_to_little_endian`]:
/// Supports converting while transferring ownership using
/// [`from_little_endian_into_current`] or [`from_current_into_little_endian`].
///
///
/// For the types `u8`, `i8`, `&[u8]` and `&[i8]`, this trait will never transform any data,
/// as they are just implemented for completeness.
pub trait Endian {
/// Swaps all bytes in this value, inverting its endianness.
fn swap_bytes(&mut self);
/// On a little endian machine, this does nothing.
/// On a big endian machine, the bytes of this value are reversed.
#[inline] fn convert_current_to_little_endian(&mut self) {
#[cfg(target_endian = "big")] {
self.swap_bytes();
}
}
/// On a big endian machine, this does nothing.
/// On a little endian machine, the bytes of this value are reversed.
#[inline] fn convert_current_to_big_endian(&mut self) {
#[cfg(target_endian = "little")] {
self.swap_bytes();
}
}
/// On a little endian machine, this does nothing.
/// On a big endian machine, the bytes of this value are reversed.
#[inline] fn convert_little_endian_to_current(&mut self) {
#[cfg(target_endian = "big")] {
self.swap_bytes();
}
}
/// On a big endian machine, this does nothing.
/// On a little endian machine, the bytes of this value are reversed.
#[inline] fn convert_big_endian_to_current(&mut self) {
#[cfg(target_endian = "little")] {
self.swap_bytes();
}
}
/// On a little endian machine, this does nothing.
/// On a big endian machine, the bytes of this value are reversed.
#[inline] fn from_current_into_little_endian(mut self) -> Self where Self: Sized {
self.convert_current_to_little_endian();
self
}
/// On a big endian machine, this does nothing.
/// On a little endian machine, the bytes of this value are reversed.
#[inline] fn from_current_into_big_endian(mut self) -> Self where Self: Sized {
self.convert_current_to_big_endian();
self
}
/// On a little endian machine, this does nothing.
/// On a big endian machine, the bytes of this value are reversed.
#[inline] fn from_little_endian_into_current(mut self) -> Self where Self: Sized {
self.convert_little_endian_to_current();
self
}
/// On a big endian machine, this does nothing.
/// On a little endian machine, the bytes of this value are reversed.
#[inline] fn from_big_endian_into_current(mut self) -> Self where Self: Sized {
self.convert_big_endian_to_current();
self
}
}
// call a macro for each argument
macro_rules! call_single_arg_macro_for_each {
($macro: ident, $( $arguments: ident ),* ) => {
$( $macro! { $arguments } )*
};
}
// implement this interface for primitive signed and unsigned integers
macro_rules! implement_simple_primitive_endian {
($type: ident) => {
impl Endian for $type {
fn swap_bytes(&mut self) {
*self = $type::swap_bytes(*self);
}
}
};
}
call_single_arg_macro_for_each! {
implement_simple_primitive_endian,
u16, u32, u64, u128, i16, i32, i64, i128
}
// no-op implementations
impl Endian for u8 { fn swap_bytes(&mut self) {} }
impl Endian for i8 { fn swap_bytes(&mut self) {} }
impl Endian for [u8] { fn swap_bytes(&mut self) {} }
impl Endian for [i8] { fn swap_bytes(&mut self) {} }
// implement this interface for primitive floats, because they do not have a `swap_bytes()` in `std`
macro_rules! implement_float_primitive_by_bits {
($type: ident) => {
impl Endian for $type {
fn swap_bytes(&mut self) {
*self = Self::from_bits(self.to_bits().swap_bytes());
}
}
};
}
implement_float_primitive_by_bits!(f32);
implement_float_primitive_by_bits!(f64);
macro_rules! implement_slice_by_element {
($type: ident) => {
impl Endian for [$type] {
fn swap_bytes(&mut self) {
for number in self.iter_mut() { // TODO SIMD?
number.swap_bytes();
}
}
}
};
}
call_single_arg_macro_for_each! {
implement_slice_by_element,
u16, u32, u64, u128,
i16, i32, i64, i128,
f64, f32
}
/// Easily write primitives and slices of primitives to
/// binary `std::io::Write` streams and easily read from binary `std::io::Read` streams.
///
/// Also contains the unsafe `bytes` module for reinterpreting values as byte slices and vice versa.
pub mod io {
use super::Endian;
use std::io::{Read, Write, Result};
/// Reinterpret values as byte slices and byte slices as values unsafely.
pub mod bytes {
use std::io::{Read, Write, Result};
/// View this slice of values as a slice of bytes.
#[inline]
pub unsafe fn slice_as_bytes<T>(value: &[T]) -> &[u8] {
std::slice::from_raw_parts(
value.as_ptr() as *const u8,
value.len() * std::mem::size_of::<T>()
)
}
/// View this slice of values as a mutable slice of bytes.
#[inline]
pub unsafe fn slice_as_bytes_mut<T>(value: &mut [T]) -> &mut [u8] {
std::slice::from_raw_parts_mut(
value.as_mut_ptr() as *mut u8,
value.len() * std::mem::size_of::<T>()
)
}
/// View this reference as a slice of bytes.
#[inline]
pub unsafe fn value_as_bytes<T: Sized>(value: &T) -> &[u8] {
std::slice::from_raw_parts(
value as *const T as *const u8,
std::mem::size_of::<T>()
)
}
/// View this reference as a mutable slice of bytes.
#[inline]
pub unsafe fn value_as_bytes_mut<T: Sized>(value: &mut T) ->&mut [u8] {
std::slice::from_raw_parts_mut(
value as *mut T as *mut u8,
std::mem::size_of::<T>()
)
}
/// View this slice as a mutable slice of bytes and write it.
#[inline]
pub unsafe fn write_slice<T>(write: &mut impl Write, value: &[T]) -> Result<()> {
write.write_all(slice_as_bytes(value))
}
/// Read a slice of bytes into the specified slice.
#[inline]
pub unsafe fn read_slice<T>(read: &mut impl Read, value: &mut [T]) -> Result<()> {
read.read_exact(slice_as_bytes_mut(value))
}
/// View this reference as a mutable slice of bytes and write it.
#[inline]
pub unsafe fn write_value<T: Sized>(write: &mut impl Write, value: &T) -> Result<()> {
write.write_all(value_as_bytes(value))
}
/// Read a slice of bytes into the specified reference.
#[inline]
pub unsafe fn read_value<T: Sized>(read: &mut impl Read, value: &mut T) -> Result<()> {
read.read_exact(value_as_bytes_mut(value))
}
}
/// A `std::io::Write` output stream which supports writing any primitive values as bytes.
/// Will encode the values to be either little endian or big endian, as desired.
///
/// This extension trait is implemented for all `Write` types.
/// Add `use lebe::io::WriteEndian;` to your code
/// to automatically unlock this functionality for all types that implement `Write`.
pub trait WriteEndian<T: ?Sized> {
/// Write the byte value of the specified reference, converting it to little endianness
fn write_as_little_endian(&mut self, value: &T) -> Result<()>;
/// Write the byte value of the specified reference, converting it to big endianness
fn write_as_big_endian(&mut self, value: &T) -> Result<()>;
/// Write the byte value of the specified reference, not converting it
fn write_as_native_endian(&mut self, value: &T) -> Result<()> {
#[cfg(target_endian = "little")] { self.write_as_little_endian(value) }
#[cfg(target_endian = "big")] { self.write_as_big_endian(value) }
}
}
/// A `std::io::Read` input stream which supports reading any primitive values from bytes.
/// Will decode the values from either little endian or big endian, as desired.
///
/// This extension trait is implemented for all `Read` types.
/// Add `use lebe::io::ReadEndian;` to your code
/// to automatically unlock this functionality for all types that implement `Read`.
pub trait ReadEndian<T: ?Sized> {
/// Read into the supplied reference. Acts the same as `std::io::Read::read_exact`.
fn read_from_little_endian_into(&mut self, value: &mut T) -> Result<()>;
/// Read into the supplied reference. Acts the same as `std::io::Read::read_exact`.
fn read_from_big_endian_into(&mut self, value: &mut T) -> Result<()>;
/// Read into the supplied reference. Acts the same as `std::io::Read::read_exact`.
fn read_from_native_endian_into(&mut self, value: &mut T) -> Result<()> {
#[cfg(target_endian = "little")] { self.read_from_little_endian_into(value) }
#[cfg(target_endian = "big")] { self.read_from_big_endian_into(value) }
}
/// Read the byte value of the inferred type
#[inline]
fn read_from_little_endian(&mut self) -> Result<T> where T: Sized + Default {
let mut value = T::default();
self.read_from_little_endian_into(&mut value)?;
Ok(value)
}
/// Read the byte value of the inferred type
#[inline]
fn read_from_big_endian(&mut self) -> Result<T> where T: Sized + Default {
let mut value = T::default();
self.read_from_big_endian_into(&mut value)?;
Ok(value)
}
/// Read the byte value of the inferred type
#[inline]
fn read_from_native_endian(&mut self) -> Result<T> where T: Sized + Default {
#[cfg(target_endian = "little")] { self.read_from_little_endian() }
#[cfg(target_endian = "big")] { self.read_from_big_endian() }
}
}
// implement primitive for all types that are implemented by `Read`
impl<R: Read + ReadEndian<P>, P: Default> ReadPrimitive<R> for P {}
/// Offers a prettier versions of reading a primitive number.
///
/// The default way of reading a value is:
/// ```rust
/// # use std::io::Read;
/// # use lebe::prelude::*;
/// # let mut reader : &[u8] = &[2, 1];
///
/// let number: u16 = reader.read_from_little_endian()?;
/// println!("{}", number);
/// # Ok::<(), std::io::Error>(())
///
/// ```
///
/// This trait enables you to use expressions:
/// ```rust
/// # use std::io::Read;
/// # use lebe::prelude::*;
/// # let mut reader : &[u8] = &[2, 1];
///
/// println!("{}", u16::read_from_little_endian(&mut reader)?);
/// # Ok::<(), std::io::Error>(())
/// ```
/// .
///
pub trait ReadPrimitive<R: Read + ReadEndian<Self>> : Sized + Default {
/// Read this value from the supplied reader. Same as `ReadEndian::read_from_little_endian()`.
fn read_from_little_endian(read: &mut R) -> Result<Self> {
read.read_from_little_endian()
}
/// Read this value from the supplied reader. Same as `ReadEndian::read_from_big_endian()`.
fn read_from_big_endian(read: &mut R) -> Result<Self> {
read.read_from_big_endian()
}
/// Read this value from the supplied reader. Same as `ReadEndian::read_from_native_endian()`.
fn read_from_native_endian(read: &mut R) -> Result<Self> {
read.read_from_native_endian()
}
}
macro_rules! implement_simple_primitive_write {
($type: ident) => {
impl<W: Write> WriteEndian<$type> for W {
fn write_as_little_endian(&mut self, value: &$type) -> Result<()> {
unsafe { bytes::write_value(self, &value.from_current_into_little_endian()) }
}
fn write_as_big_endian(&mut self, value: &$type) -> Result<()> {
unsafe { bytes::write_value(self, &value.from_current_into_big_endian()) }
}
}
impl<R: Read> ReadEndian<$type> for R {
#[inline]
fn read_from_little_endian_into(&mut self, value: &mut $type) -> Result<()> {
unsafe { bytes::read_value(self, value)?; }
value.convert_little_endian_to_current();
Ok(())
}
#[inline]
fn read_from_big_endian_into(&mut self, value: &mut $type) -> Result<()> {
unsafe { bytes::read_value(self, value)?; }
value.convert_big_endian_to_current();
Ok(())
}
}
};
}
call_single_arg_macro_for_each! {
implement_simple_primitive_write,
u8, u16, u32, u64, u128,
i8, i16, i32, i64, i128,
f32, f64
}
macro_rules! implement_slice_io {
($type: ident) => {
impl<W: Write> WriteEndian<[$type]> for W {
fn write_as_little_endian(&mut self, value: &[$type]) -> Result<()> {
#[cfg(target_endian = "big")] {
for number in value { // TODO SIMD!
self.write_as_little_endian(number)?;
}
}
// else write whole slice
#[cfg(target_endian = "little")]
unsafe { bytes::write_slice(self, value)?; }
Ok(())
}
fn write_as_big_endian(&mut self, value: &[$type]) -> Result<()> {
#[cfg(target_endian = "little")] {
for number in value { // TODO SIMD!
self.write_as_big_endian(number)?;
}
}
// else write whole slice
#[cfg(target_endian = "big")]
unsafe { bytes::write_slice(self, value)?; }
Ok(())
}
}
impl<R: Read> ReadEndian<[$type]> for R {
fn read_from_little_endian_into(&mut self, value: &mut [$type]) -> Result<()> {
unsafe { bytes::read_slice(self, value)? };
value.convert_little_endian_to_current();
Ok(())
}
fn read_from_big_endian_into(&mut self, value: &mut [$type]) -> Result<()> {
unsafe { bytes::read_slice(self, value)? };
value.convert_big_endian_to_current();
Ok(())
}
}
};
}
call_single_arg_macro_for_each! {
implement_slice_io,
u8, u16, u32, u64, u128,
i8, i16, i32, i64, i128,
f64, f32
}
// TODO: SIMD
/*impl<R: Read> ReadEndian<[f32]> for R {
fn read_from_little_endian_into(&mut self, value: &mut [f32]) -> Result<()> {
unsafe { bytes::read_slice(self, value)? };
value.convert_little_endian_to_current();
Ok(())
}
fn read_from_big_endian_into(&mut self, value: &mut [f32]) -> Result<()> {
unsafe { bytes::read_slice(self, value)? };
value.convert_big_endian_to_current();
Ok(())
}
}
impl<W: Write> WriteEndian<[f32]> for W {
fn write_as_big_endian(&mut self, value: &[f32]) -> Result<()> {
if cfg!(target_endian = "little") {
// FIX ME this SIMD optimization makes no difference ... why? like, ZERO difference, not even worse
// #[cfg(feature = "simd")]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
unsafe {
if is_x86_feature_detected!("avx2") {
write_bytes_avx(self, value);
return Ok(());
}
}
// otherwise (no avx2 available)
// for number in value {
// self.write_as_little_endian(number);
// }
//
// return Ok(());
unimplemented!();
#[target_feature(enable = "avx2")]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
unsafe fn write_bytes_avx(write: &mut impl Write, slice: &[f32]) -> Result<()> {
#[cfg(target_arch = "x86")] use std::arch::x86 as mm;
#[cfg(target_arch = "x86_64")] use std::arch::x86_64 as mm;
let bytes: &[u8] = crate::io::bytes::slice_as_bytes(slice);
let mut chunks = bytes.chunks_exact(32);
let indices = mm::_mm256_set_epi8(
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
// 3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12,
// 3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12
);
for chunk in &mut chunks {
let data = mm::_mm256_loadu_si256(chunk.as_ptr() as _);
let result = mm::_mm256_shuffle_epi8(data, indices);
let mut out = [0_u8; 32];
mm::_mm256_storeu_si256(out.as_mut_ptr() as _, result);
write.write_all(&out)?;
}
let remainder = chunks.remainder();
{ // copy remainder into larger slice, with zeroes at the end
let mut last_chunk = [0_u8; 32];
last_chunk[0..remainder.len()].copy_from_slice(remainder);
let data = mm::_mm256_loadu_si256(last_chunk.as_ptr() as _);
let result = mm::_mm256_shuffle_epi8(data, indices);
mm::_mm256_storeu_si256(last_chunk.as_mut_ptr() as _, result);
write.write_all(&last_chunk[0..remainder.len()])?;
}
Ok(())
}
}
else {
unsafe { bytes::write_slice(self, value)?; }
Ok(())
}
}
fn write_as_little_endian(&mut self, value: &[f32]) -> Result<()> {
for number in value {
self.write_as_little_endian(number)?;
}
Ok(())
}
}*/
}