lyon_geom/
arc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
//! Elliptic arc related maths and tools.

use core::mem::swap;
use core::ops::Range;

use num_traits::NumCast;

use crate::scalar::{cast, Float, Scalar};
use crate::segment::{BoundingBox, Segment};
use crate::{point, vector, Angle, Box2D, Point, Rotation, Transform, Vector};
use crate::{CubicBezierSegment, Line, LineSegment, QuadraticBezierSegment};

/// An elliptic arc curve segment.
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
pub struct Arc<S> {
    pub center: Point<S>,
    pub radii: Vector<S>,
    pub start_angle: Angle<S>,
    pub sweep_angle: Angle<S>,
    pub x_rotation: Angle<S>,
}

/// An elliptic arc curve segment using the SVG's end-point notation.
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
pub struct SvgArc<S> {
    pub from: Point<S>,
    pub to: Point<S>,
    pub radii: Vector<S>,
    pub x_rotation: Angle<S>,
    pub flags: ArcFlags,
}

impl<S: Scalar> Arc<S> {
    pub fn cast<NewS: NumCast>(self) -> Arc<NewS> {
        Arc {
            center: self.center.cast(),
            radii: self.radii.cast(),
            start_angle: self.start_angle.cast(),
            sweep_angle: self.sweep_angle.cast(),
            x_rotation: self.x_rotation.cast(),
        }
    }

    /// Create simple circle.
    pub fn circle(center: Point<S>, radius: S) -> Self {
        Arc {
            center,
            radii: vector(radius, radius),
            start_angle: Angle::zero(),
            sweep_angle: Angle::two_pi(),
            x_rotation: Angle::zero(),
        }
    }

    /// Convert from the SVG arc notation.
    pub fn from_svg_arc(arc: &SvgArc<S>) -> Arc<S> {
        debug_assert!(!arc.from.x.is_nan());
        debug_assert!(!arc.from.y.is_nan());
        debug_assert!(!arc.to.x.is_nan());
        debug_assert!(!arc.to.y.is_nan());
        debug_assert!(!arc.radii.x.is_nan());
        debug_assert!(!arc.radii.y.is_nan());
        debug_assert!(!arc.x_rotation.get().is_nan());
        // The SVG spec specifies what we should do if one of the two
        // radii is zero and not the other, but it's better to handle
        // this out of arc code and generate a line_to instead of an arc.
        assert!(!arc.is_straight_line());

        let mut rx = S::abs(arc.radii.x);
        let mut ry = S::abs(arc.radii.y);

        let xr = arc.x_rotation.get() % (S::TWO * S::PI());
        let cos_phi = Float::cos(xr);
        let sin_phi = Float::sin(xr);
        let hd_x = (arc.from.x - arc.to.x) / S::TWO;
        let hd_y = (arc.from.y - arc.to.y) / S::TWO;
        let hs_x = (arc.from.x + arc.to.x) / S::TWO;
        let hs_y = (arc.from.y + arc.to.y) / S::TWO;

        // F6.5.1
        let p = Point::new(
            cos_phi * hd_x + sin_phi * hd_y,
            -sin_phi * hd_x + cos_phi * hd_y,
        );

        // Sanitize the radii.
        // If rf > 1 it means the radii are too small for the arc to
        // possibly connect the end points. In this situation we scale
        // them up according to the formula provided by the SVG spec.

        // F6.6.2
        let rf = p.x * p.x / (rx * rx) + p.y * p.y / (ry * ry);
        if rf > S::ONE {
            let scale = S::sqrt(rf);
            rx *= scale;
            ry *= scale;
        }

        let rxry = rx * ry;
        let rxpy = rx * p.y;
        let rypx = ry * p.x;
        let sum_of_sq = rxpy * rxpy + rypx * rypx;

        debug_assert_ne!(sum_of_sq, S::ZERO);

        // F6.5.2
        let sign_coe = if arc.flags.large_arc == arc.flags.sweep {
            -S::ONE
        } else {
            S::ONE
        };
        let coe = sign_coe * S::sqrt(S::abs((rxry * rxry - sum_of_sq) / sum_of_sq));
        let transformed_cx = coe * rxpy / ry;
        let transformed_cy = -coe * rypx / rx;

        // F6.5.3
        let center = point(
            cos_phi * transformed_cx - sin_phi * transformed_cy + hs_x,
            sin_phi * transformed_cx + cos_phi * transformed_cy + hs_y,
        );

        let start_v: Vector<S> = vector((p.x - transformed_cx) / rx, (p.y - transformed_cy) / ry);
        let end_v: Vector<S> = vector((-p.x - transformed_cx) / rx, (-p.y - transformed_cy) / ry);

        let two_pi = S::TWO * S::PI();

        let start_angle = start_v.angle_from_x_axis();

        let mut sweep_angle = (end_v.angle_from_x_axis() - start_angle).radians % two_pi;

        if arc.flags.sweep && sweep_angle < S::ZERO {
            sweep_angle += two_pi;
        } else if !arc.flags.sweep && sweep_angle > S::ZERO {
            sweep_angle -= two_pi;
        }

        Arc {
            center,
            radii: vector(rx, ry),
            start_angle,
            sweep_angle: Angle::radians(sweep_angle),
            x_rotation: arc.x_rotation,
        }
    }

    /// Convert to the SVG arc notation.
    pub fn to_svg_arc(&self) -> SvgArc<S> {
        let from = self.sample(S::ZERO);
        let to = self.sample(S::ONE);
        let flags = ArcFlags {
            sweep: self.sweep_angle.get() >= S::ZERO,
            large_arc: S::abs(self.sweep_angle.get()) >= S::PI(),
        };
        SvgArc {
            from,
            to,
            radii: self.radii,
            x_rotation: self.x_rotation,
            flags,
        }
    }

    /// Approximate the arc with a sequence of quadratic bézier curves.
    #[inline]
    pub fn for_each_quadratic_bezier<F>(&self, cb: &mut F)
    where
        F: FnMut(&QuadraticBezierSegment<S>),
    {
        arc_to_quadratic_beziers_with_t(self, &mut |curve, _| cb(curve));
    }

    /// Approximate the arc with a sequence of quadratic bézier curves.
    #[inline]
    pub fn for_each_quadratic_bezier_with_t<F>(&self, cb: &mut F)
    where
        F: FnMut(&QuadraticBezierSegment<S>, Range<S>),
    {
        arc_to_quadratic_beziers_with_t(self, cb);
    }

    /// Approximate the arc with a sequence of cubic bézier curves.
    #[inline]
    pub fn for_each_cubic_bezier<F>(&self, cb: &mut F)
    where
        F: FnMut(&CubicBezierSegment<S>),
    {
        arc_to_cubic_beziers(self, cb);
    }

    /// Sample the curve at t (expecting t between 0 and 1).
    #[inline]
    pub fn sample(&self, t: S) -> Point<S> {
        let angle = self.get_angle(t);
        self.center + sample_ellipse(self.radii, self.x_rotation, angle).to_vector()
    }

    #[inline]
    pub fn x(&self, t: S) -> S {
        self.sample(t).x
    }

    #[inline]
    pub fn y(&self, t: S) -> S {
        self.sample(t).y
    }

    /// Sample the curve's tangent at t (expecting t between 0 and 1).
    #[inline]
    pub fn sample_tangent(&self, t: S) -> Vector<S> {
        self.tangent_at_angle(self.get_angle(t))
    }

    /// Sample the curve's angle at t (expecting t between 0 and 1).
    #[inline]
    pub fn get_angle(&self, t: S) -> Angle<S> {
        self.start_angle + Angle::radians(self.sweep_angle.get() * t)
    }

    #[inline]
    pub fn end_angle(&self) -> Angle<S> {
        self.start_angle + self.sweep_angle
    }

    #[inline]
    pub fn from(&self) -> Point<S> {
        self.sample(S::ZERO)
    }

    #[inline]
    pub fn to(&self) -> Point<S> {
        self.sample(S::ONE)
    }

    /// Return the sub-curve inside a given range of t.
    ///
    /// This is equivalent splitting at the range's end points.
    pub fn split_range(&self, t_range: Range<S>) -> Self {
        let angle_1 = Angle::radians(self.sweep_angle.get() * t_range.start);
        let angle_2 = Angle::radians(self.sweep_angle.get() * t_range.end);

        Arc {
            center: self.center,
            radii: self.radii,
            start_angle: self.start_angle + angle_1,
            sweep_angle: angle_2 - angle_1,
            x_rotation: self.x_rotation,
        }
    }

    /// Split this curve into two sub-curves.
    pub fn split(&self, t: S) -> (Arc<S>, Arc<S>) {
        let split_angle = Angle::radians(self.sweep_angle.get() * t);
        (
            Arc {
                center: self.center,
                radii: self.radii,
                start_angle: self.start_angle,
                sweep_angle: split_angle,
                x_rotation: self.x_rotation,
            },
            Arc {
                center: self.center,
                radii: self.radii,
                start_angle: self.start_angle + split_angle,
                sweep_angle: self.sweep_angle - split_angle,
                x_rotation: self.x_rotation,
            },
        )
    }

    /// Return the curve before the split point.
    pub fn before_split(&self, t: S) -> Arc<S> {
        let split_angle = Angle::radians(self.sweep_angle.get() * t);
        Arc {
            center: self.center,
            radii: self.radii,
            start_angle: self.start_angle,
            sweep_angle: split_angle,
            x_rotation: self.x_rotation,
        }
    }

    /// Return the curve after the split point.
    pub fn after_split(&self, t: S) -> Arc<S> {
        let split_angle = Angle::radians(self.sweep_angle.get() * t);
        Arc {
            center: self.center,
            radii: self.radii,
            start_angle: self.start_angle + split_angle,
            sweep_angle: self.sweep_angle - split_angle,
            x_rotation: self.x_rotation,
        }
    }

    /// Swap the direction of the segment.
    pub fn flip(&self) -> Self {
        let mut arc = *self;
        arc.start_angle += self.sweep_angle;
        arc.sweep_angle = -self.sweep_angle;

        arc
    }

    /// Approximates the curve with sequence of line segments.
    ///
    /// The `tolerance` parameter defines the maximum distance between the curve and
    /// its approximation.
    pub fn for_each_flattened<F>(&self, tolerance: S, callback: &mut F)
    where
        F: FnMut(&LineSegment<S>),
    {
        let mut from = self.from();
        let mut iter = *self;
        loop {
            let t = iter.flattening_step(tolerance);
            if t >= S::ONE {
                break;
            }
            iter = iter.after_split(t);
            let to = iter.from();
            callback(&LineSegment { from, to });
            from = to;
        }

        callback(&LineSegment {
            from,
            to: self.to(),
        });
    }

    /// Approximates the curve with sequence of line segments.
    ///
    /// The `tolerance` parameter defines the maximum distance between the curve and
    /// its approximation.
    ///
    /// The end of the t parameter range at the final segment is guaranteed to be equal to `1.0`.
    pub fn for_each_flattened_with_t<F>(&self, tolerance: S, callback: &mut F)
    where
        F: FnMut(&LineSegment<S>, Range<S>),
    {
        let mut iter = *self;
        let mut t0 = S::ZERO;
        let mut from = self.from();
        loop {
            let step = iter.flattening_step(tolerance);

            if step >= S::ONE {
                break;
            }

            iter = iter.after_split(step);
            let t1 = t0 + step * (S::ONE - t0);
            let to = iter.from();
            callback(&LineSegment { from, to }, t0..t1);
            from = to;
            t0 = t1;
        }

        callback(
            &LineSegment {
                from,
                to: self.to(),
            },
            t0..S::ONE,
        );
    }

    /// Finds the interval of the beginning of the curve that can be approximated with a
    /// line segment.
    fn flattening_step(&self, tolerance: S) -> S {
        // cos(theta) = (r - tolerance) / r
        // angle = 2 * theta
        // s = angle / sweep

        // Here we make the approximation that for small tolerance values we consider
        // the radius to be constant over each approximated segment.
        let r = (self.from() - self.center).length();
        let a = S::TWO * S::acos((r - tolerance) / r);
        let result = S::min(a / self.sweep_angle.radians.abs(), S::ONE);

        if result < S::EPSILON {
            return S::ONE;
        }

        result
    }

    /// Returns the flattened representation of the curve as an iterator, starting *after* the
    /// current point.
    pub fn flattened(&self, tolerance: S) -> Flattened<S> {
        Flattened::new(*self, tolerance)
    }

    /// Returns a conservative rectangle that contains the curve.
    pub fn fast_bounding_box(&self) -> Box2D<S> {
        Transform::rotation(self.x_rotation).outer_transformed_box(&Box2D {
            min: self.center - self.radii,
            max: self.center + self.radii,
        })
    }

    /// Returns a conservative rectangle that contains the curve.
    pub fn bounding_box(&self) -> Box2D<S> {
        let from = self.from();
        let to = self.to();
        let mut min = Point::min(from, to);
        let mut max = Point::max(from, to);
        self.for_each_local_x_extremum_t(&mut |t| {
            let p = self.sample(t);
            min.x = S::min(min.x, p.x);
            max.x = S::max(max.x, p.x);
        });
        self.for_each_local_y_extremum_t(&mut |t| {
            let p = self.sample(t);
            min.y = S::min(min.y, p.y);
            max.y = S::max(max.y, p.y);
        });

        Box2D { min, max }
    }

    pub fn for_each_local_x_extremum_t<F>(&self, cb: &mut F)
    where
        F: FnMut(S),
    {
        let rx = self.radii.x;
        let ry = self.radii.y;
        let a1 = Angle::radians(-S::atan(ry * Float::tan(self.x_rotation.radians) / rx));
        let a2 = Angle::pi() + a1;

        self.for_each_extremum_inner(a1, a2, cb);
    }

    pub fn for_each_local_y_extremum_t<F>(&self, cb: &mut F)
    where
        F: FnMut(S),
    {
        let rx = self.radii.x;
        let ry = self.radii.y;
        let a1 = Angle::radians(S::atan(ry / (Float::tan(self.x_rotation.radians) * rx)));
        let a2 = Angle::pi() + a1;

        self.for_each_extremum_inner(a1, a2, cb);
    }

    fn for_each_extremum_inner<F>(&self, a1: Angle<S>, a2: Angle<S>, cb: &mut F)
    where
        F: FnMut(S),
    {
        let sweep = self.sweep_angle.radians;
        let abs_sweep = S::abs(sweep);
        let sign = S::signum(sweep);

        let mut a1 = (a1 - self.start_angle).positive().radians;
        let mut a2 = (a2 - self.start_angle).positive().radians;
        if a1 * sign > a2 * sign {
            swap(&mut a1, &mut a2);
        }

        let two_pi = S::TWO * S::PI();
        if sweep >= S::ZERO {
            if a1 < abs_sweep {
                cb(a1 / abs_sweep);
            }
            if a2 < abs_sweep {
                cb(a2 / abs_sweep);
            }
        } else {
            if a1 > two_pi - abs_sweep {
                cb(a1 / abs_sweep);
            }
            if a2 > two_pi - abs_sweep {
                cb(a2 / abs_sweep);
            }
        }
    }

    pub fn bounding_range_x(&self) -> (S, S) {
        let r = self.bounding_box();
        (r.min.x, r.max.x)
    }

    pub fn bounding_range_y(&self) -> (S, S) {
        let r = self.bounding_box();
        (r.min.y, r.max.y)
    }

    pub fn fast_bounding_range_x(&self) -> (S, S) {
        let r = self.fast_bounding_box();
        (r.min.x, r.max.x)
    }

    pub fn fast_bounding_range_y(&self) -> (S, S) {
        let r = self.fast_bounding_box();
        (r.min.y, r.max.y)
    }

    pub fn approximate_length(&self, tolerance: S) -> S {
        let mut len = S::ZERO;
        self.for_each_flattened(tolerance, &mut |segment| {
            len += segment.length();
        });

        len
    }

    #[inline]
    fn tangent_at_angle(&self, angle: Angle<S>) -> Vector<S> {
        let a = angle.get();
        Rotation::new(self.x_rotation).transform_vector(vector(
            -self.radii.x * Float::sin(a),
            self.radii.y * Float::cos(a),
        ))
    }
}

impl<S: Scalar> From<SvgArc<S>> for Arc<S> {
    fn from(svg: SvgArc<S>) -> Self {
        svg.to_arc()
    }
}

impl<S: Scalar> SvgArc<S> {
    /// Converts this arc from endpoints to center notation.
    pub fn to_arc(&self) -> Arc<S> {
        Arc::from_svg_arc(self)
    }

    /// Per SVG spec, this arc should be rendered as a line_to segment.
    ///
    /// Do not convert an `SvgArc` into an `arc` if this returns true.
    pub fn is_straight_line(&self) -> bool {
        S::abs(self.radii.x) <= S::EPSILON
            || S::abs(self.radii.y) <= S::EPSILON
            || self.from == self.to
    }

    /// Approximates the arc with a sequence of quadratic bézier segments.
    pub fn for_each_quadratic_bezier<F>(&self, cb: &mut F)
    where
        F: FnMut(&QuadraticBezierSegment<S>),
    {
        if self.is_straight_line() {
            cb(&QuadraticBezierSegment {
                from: self.from,
                ctrl: self.from,
                to: self.to,
            });
            return;
        }

        Arc::from_svg_arc(self).for_each_quadratic_bezier(cb);
    }

    /// Approximates the arc with a sequence of quadratic bézier segments.
    pub fn for_each_quadratic_bezier_with_t<F>(&self, cb: &mut F)
    where
        F: FnMut(&QuadraticBezierSegment<S>, Range<S>),
    {
        if self.is_straight_line() {
            cb(
                &QuadraticBezierSegment {
                    from: self.from,
                    ctrl: self.from,
                    to: self.to,
                },
                S::ZERO..S::ONE,
            );
            return;
        }

        Arc::from_svg_arc(self).for_each_quadratic_bezier_with_t(cb);
    }

    /// Approximates the arc with a sequence of cubic bézier segments.
    pub fn for_each_cubic_bezier<F>(&self, cb: &mut F)
    where
        F: FnMut(&CubicBezierSegment<S>),
    {
        if self.is_straight_line() {
            cb(&CubicBezierSegment {
                from: self.from,
                ctrl1: self.from,
                ctrl2: self.to,
                to: self.to,
            });
            return;
        }

        Arc::from_svg_arc(self).for_each_cubic_bezier(cb);
    }

    /// Approximates the curve with sequence of line segments.
    ///
    /// The `tolerance` parameter defines the maximum distance between the curve and
    /// its approximation.
    pub fn for_each_flattened<F: FnMut(&LineSegment<S>)>(&self, tolerance: S, cb: &mut F) {
        if self.is_straight_line() {
            cb(&LineSegment {
                from: self.from,
                to: self.to,
            });
            return;
        }

        Arc::from_svg_arc(self).for_each_flattened(tolerance, cb);
    }

    /// Approximates the curve with sequence of line segments.
    ///
    /// The `tolerance` parameter defines the maximum distance between the curve and
    /// its approximation.
    ///
    /// The end of the t parameter range at the final segment is guaranteed to be equal to `1.0`.
    pub fn for_each_flattened_with_t<F: FnMut(&LineSegment<S>, Range<S>)>(
        &self,
        tolerance: S,
        cb: &mut F,
    ) {
        if self.is_straight_line() {
            cb(
                &LineSegment {
                    from: self.from,
                    to: self.to,
                },
                S::ZERO..S::ONE,
            );
            return;
        }

        Arc::from_svg_arc(self).for_each_flattened_with_t(tolerance, cb);
    }
}

/// Flag parameters for arcs as described by the SVG specification.
///
/// For most situations using the SVG arc notation, there are four different arcs
/// (two different ellipses, each with two different arc sweeps) that satisfy the
/// arc parameters. The `large_arc` and `sweep` flags indicate which one of the
/// four arcs are drawn, as follows:
///
/// See more examples in the [SVG specification](https://svgwg.org/specs/paths/)
#[derive(Copy, Clone, Debug, PartialEq, Default)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
pub struct ArcFlags {
    /// Of the four candidate arc sweeps, two will represent an arc sweep of greater
    /// than or equal to 180 degrees (the "large-arc"), and two will represent an arc
    /// sweep of less than or equal to 180 degrees (the "small arc"). If `large_arc`
    /// is `true`, then one of the two larger arc sweeps will be chosen; otherwise, if
    /// `large_arc` is `false`, one of the smaller arc sweeps will be chosen.
    pub large_arc: bool,
    /// If `sweep` is `true`, then the arc will be drawn in a "positive-angle" direction
    /// (the ellipse formula `x=cx+rx*cos(theta)` and `y=cy+ry*sin(theta)` is evaluated
    /// such that theta starts at an angle corresponding to the current point and increases
    /// positively until the arc reaches the destination position). A value of `false`
    /// causes the arc to be drawn in a "negative-angle" direction (theta starts at an
    /// angle value corresponding to the current point and decreases until the arc reaches
    /// the destination position).
    pub sweep: bool,
}

fn arc_to_quadratic_beziers_with_t<S, F>(arc: &Arc<S>, callback: &mut F)
where
    S: Scalar,
    F: FnMut(&QuadraticBezierSegment<S>, Range<S>),
{
    let sign = arc.sweep_angle.get().signum();
    let sweep_angle = S::abs(arc.sweep_angle.get()).min(S::PI() * S::TWO);

    let n_steps = S::ceil(sweep_angle / S::FRAC_PI_4());
    let step = Angle::radians(sweep_angle / n_steps * sign);

    let mut t0 = S::ZERO;
    let dt = S::ONE / n_steps;

    let n = cast::<S, i32>(n_steps).unwrap();
    for i in 0..n {
        let a1 = arc.start_angle + step * cast(i).unwrap();
        let a2 = arc.start_angle + step * cast(i + 1).unwrap();

        let v1 = sample_ellipse(arc.radii, arc.x_rotation, a1).to_vector();
        let v2 = sample_ellipse(arc.radii, arc.x_rotation, a2).to_vector();
        let from = arc.center + v1;
        let to = arc.center + v2;
        let l1 = Line {
            point: from,
            vector: arc.tangent_at_angle(a1),
        };
        let l2 = Line {
            point: to,
            vector: arc.tangent_at_angle(a2),
        };
        let ctrl = l2.intersection(&l1).unwrap_or(from);

        let t1 = if i + 1 == n { S::ONE } else { t0 + dt };

        callback(&QuadraticBezierSegment { from, ctrl, to }, t0..t1);
        t0 = t1;
    }
}

fn arc_to_cubic_beziers<S, F>(arc: &Arc<S>, callback: &mut F)
where
    S: Scalar,
    F: FnMut(&CubicBezierSegment<S>),
{
    let sign = arc.sweep_angle.get().signum();
    let sweep_angle = S::abs(arc.sweep_angle.get()).min(S::PI() * S::TWO);

    let n_steps = S::ceil(sweep_angle / S::FRAC_PI_2());
    let step = Angle::radians(sweep_angle / n_steps * sign);

    for i in 0..cast::<S, i32>(n_steps).unwrap() {
        let a1 = arc.start_angle + step * cast(i).unwrap();
        let a2 = arc.start_angle + step * cast(i + 1).unwrap();

        let v1 = sample_ellipse(arc.radii, arc.x_rotation, a1).to_vector();
        let v2 = sample_ellipse(arc.radii, arc.x_rotation, a2).to_vector();
        let from = arc.center + v1;
        let to = arc.center + v2;

        // From http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
        // Note that the parameterization used by Arc (see sample_ellipse for
        // example) is the same as the eta-parameterization used at the link.
        let delta_a = a2 - a1;
        let tan_da = Float::tan(delta_a.get() * S::HALF);
        let alpha_sqrt = S::sqrt(S::FOUR + S::THREE * tan_da * tan_da);
        let alpha = Float::sin(delta_a.get()) * (alpha_sqrt - S::ONE) / S::THREE;
        let ctrl1 = from + arc.tangent_at_angle(a1) * alpha;
        let ctrl2 = to - arc.tangent_at_angle(a2) * alpha;

        callback(&CubicBezierSegment {
            from,
            ctrl1,
            ctrl2,
            to,
        });
    }
}

fn sample_ellipse<S: Scalar>(radii: Vector<S>, x_rotation: Angle<S>, angle: Angle<S>) -> Point<S> {
    Rotation::new(x_rotation).transform_point(point(
        radii.x * Float::cos(angle.get()),
        radii.y * Float::sin(angle.get()),
    ))
}

impl<S: Scalar> Segment for Arc<S> {
    type Scalar = S;
    fn from(&self) -> Point<S> {
        self.from()
    }
    fn to(&self) -> Point<S> {
        self.to()
    }
    fn sample(&self, t: S) -> Point<S> {
        self.sample(t)
    }
    fn x(&self, t: S) -> S {
        self.x(t)
    }
    fn y(&self, t: S) -> S {
        self.y(t)
    }
    fn derivative(&self, t: S) -> Vector<S> {
        self.sample_tangent(t)
    }
    fn split(&self, t: S) -> (Self, Self) {
        self.split(t)
    }
    fn before_split(&self, t: S) -> Self {
        self.before_split(t)
    }
    fn after_split(&self, t: S) -> Self {
        self.after_split(t)
    }
    fn split_range(&self, t_range: Range<S>) -> Self {
        self.split_range(t_range)
    }
    fn flip(&self) -> Self {
        self.flip()
    }
    fn approximate_length(&self, tolerance: S) -> S {
        self.approximate_length(tolerance)
    }

    fn for_each_flattened_with_t(
        &self,
        tolerance: Self::Scalar,
        callback: &mut dyn FnMut(&LineSegment<S>, Range<S>),
    ) {
        self.for_each_flattened_with_t(tolerance, &mut |s, t| callback(s, t));
    }
}

impl<S: Scalar> BoundingBox for Arc<S> {
    type Scalar = S;
    fn bounding_range_x(&self) -> (S, S) {
        self.bounding_range_x()
    }
    fn bounding_range_y(&self) -> (S, S) {
        self.bounding_range_y()
    }
    fn fast_bounding_range_x(&self) -> (S, S) {
        self.fast_bounding_range_x()
    }
    fn fast_bounding_range_y(&self) -> (S, S) {
        self.fast_bounding_range_y()
    }
}

/// Flattening iterator for arcs.
///
/// The iterator starts at the first point *after* the origin of the curve and ends at the
/// destination.
pub struct Flattened<S> {
    arc: Arc<S>,
    tolerance: S,
    done: bool,
}

impl<S: Scalar> Flattened<S> {
    pub(crate) fn new(arc: Arc<S>, tolerance: S) -> Self {
        assert!(tolerance > S::ZERO);
        Flattened {
            arc,
            tolerance,
            done: false,
        }
    }
}
impl<S: Scalar> Iterator for Flattened<S> {
    type Item = Point<S>;
    fn next(&mut self) -> Option<Point<S>> {
        if self.done {
            return None;
        }

        let t = self.arc.flattening_step(self.tolerance);
        if t >= S::ONE {
            self.done = true;
            return Some(self.arc.to());
        }
        self.arc = self.arc.after_split(t);

        Some(self.arc.from())
    }
}

#[test]
fn test_from_svg_arc() {
    use crate::vector;
    use euclid::approxeq::ApproxEq;

    let flags = ArcFlags {
        large_arc: false,
        sweep: false,
    };

    test_endpoints(&SvgArc {
        from: point(0.0, -10.0),
        to: point(10.0, 0.0),
        radii: vector(10.0, 10.0),
        x_rotation: Angle::radians(0.0),
        flags,
    });

    test_endpoints(&SvgArc {
        from: point(0.0, -10.0),
        to: point(10.0, 0.0),
        radii: vector(100.0, 10.0),
        x_rotation: Angle::radians(0.0),
        flags,
    });

    test_endpoints(&SvgArc {
        from: point(0.0, -10.0),
        to: point(10.0, 0.0),
        radii: vector(10.0, 30.0),
        x_rotation: Angle::radians(1.0),
        flags,
    });

    test_endpoints(&SvgArc {
        from: point(5.0, -10.0),
        to: point(5.0, 5.0),
        radii: vector(10.0, 30.0),
        x_rotation: Angle::radians(-2.0),
        flags,
    });

    // This arc has invalid radii (too small to connect the two endpoints),
    // but the conversion needs to be able to cope with that.
    test_endpoints(&SvgArc {
        from: point(0.0, 0.0),
        to: point(80.0, 60.0),
        radii: vector(40.0, 40.0),
        x_rotation: Angle::radians(0.0),
        flags,
    });

    fn test_endpoints(svg_arc: &SvgArc<f64>) {
        do_test_endpoints(&SvgArc {
            flags: ArcFlags {
                large_arc: false,
                sweep: false,
            },
            ..svg_arc.clone()
        });

        do_test_endpoints(&SvgArc {
            flags: ArcFlags {
                large_arc: true,
                sweep: false,
            },
            ..svg_arc.clone()
        });

        do_test_endpoints(&SvgArc {
            flags: ArcFlags {
                large_arc: false,
                sweep: true,
            },
            ..svg_arc.clone()
        });

        do_test_endpoints(&SvgArc {
            flags: ArcFlags {
                large_arc: true,
                sweep: true,
            },
            ..svg_arc.clone()
        });
    }

    fn do_test_endpoints(svg_arc: &SvgArc<f64>) {
        let eps = point(0.01, 0.01);
        let arc = svg_arc.to_arc();
        assert!(
            arc.from().approx_eq_eps(&svg_arc.from, &eps),
            "unexpected arc.from: {:?} == {:?}, flags: {:?}",
            arc.from(),
            svg_arc.from,
            svg_arc.flags,
        );
        assert!(
            arc.to().approx_eq_eps(&svg_arc.to, &eps),
            "unexpected arc.from: {:?} == {:?}, flags: {:?}",
            arc.to(),
            svg_arc.to,
            svg_arc.flags,
        );
    }
}

#[test]
fn test_to_quadratics_and_cubics() {
    use euclid::approxeq::ApproxEq;

    fn do_test(arc: &Arc<f32>, expected_quadratic_count: u32, expected_cubic_count: u32) {
        let last = arc.to();
        {
            let mut prev = arc.from();
            let mut count = 0;
            arc.for_each_quadratic_bezier(&mut |c| {
                assert!(c.from.approx_eq(&prev));
                prev = c.to;
                count += 1;
            });
            assert!(prev.approx_eq(&last));
            assert_eq!(count, expected_quadratic_count);
        }
        {
            let mut prev = arc.from();
            let mut count = 0;
            arc.for_each_cubic_bezier(&mut |c| {
                assert!(c.from.approx_eq(&prev));
                prev = c.to;
                count += 1;
            });
            assert!(prev.approx_eq(&last));
            assert_eq!(count, expected_cubic_count);
        }
    }

    do_test(
        &Arc {
            center: point(2.0, 3.0),
            radii: vector(10.0, 3.0),
            start_angle: Angle::radians(0.1),
            sweep_angle: Angle::radians(3.0),
            x_rotation: Angle::radians(0.5),
        },
        4,
        2,
    );

    do_test(
        &Arc {
            center: point(4.0, 5.0),
            radii: vector(3.0, 5.0),
            start_angle: Angle::radians(2.0),
            sweep_angle: Angle::radians(-3.0),
            x_rotation: Angle::radians(1.3),
        },
        4,
        2,
    );

    do_test(
        &Arc {
            center: point(0.0, 0.0),
            radii: vector(100.0, 0.01),
            start_angle: Angle::radians(-1.0),
            sweep_angle: Angle::radians(0.1),
            x_rotation: Angle::radians(0.3),
        },
        1,
        1,
    );

    do_test(
        &Arc {
            center: point(0.0, 0.0),
            radii: vector(1.0, 1.0),
            start_angle: Angle::radians(3.0),
            sweep_angle: Angle::radians(-0.1),
            x_rotation: Angle::radians(-0.3),
        },
        1,
        1,
    );
}

#[test]
fn test_bounding_box() {
    use euclid::approxeq::ApproxEq;

    fn approx_eq(r1: Box2D<f32>, r2: Box2D<f32>) -> bool {
        if !r1.min.x.approx_eq(&r2.min.x)
            || !r1.max.x.approx_eq(&r2.max.x)
            || !r1.min.y.approx_eq(&r2.min.y)
            || !r1.max.y.approx_eq(&r2.max.y)
        {
            std::println!("\n   left: {r1:?}\n   right: {r2:?}");
            return false;
        }

        true
    }

    let r = Arc {
        center: point(0.0, 0.0),
        radii: vector(1.0, 1.0),
        start_angle: Angle::radians(0.0),
        sweep_angle: Angle::pi(),
        x_rotation: Angle::zero(),
    }
    .bounding_box();
    assert!(approx_eq(
        r,
        Box2D {
            min: point(-1.0, 0.0),
            max: point(1.0, 1.0)
        }
    ));

    let r = Arc {
        center: point(0.0, 0.0),
        radii: vector(1.0, 1.0),
        start_angle: Angle::radians(0.0),
        sweep_angle: Angle::pi(),
        x_rotation: Angle::pi(),
    }
    .bounding_box();
    assert!(approx_eq(
        r,
        Box2D {
            min: point(-1.0, -1.0),
            max: point(1.0, 0.0)
        }
    ));

    let r = Arc {
        center: point(0.0, 0.0),
        radii: vector(2.0, 1.0),
        start_angle: Angle::radians(0.0),
        sweep_angle: Angle::pi(),
        x_rotation: Angle::pi() * 0.5,
    }
    .bounding_box();
    assert!(approx_eq(
        r,
        Box2D {
            min: point(-1.0, -2.0),
            max: point(0.0, 2.0)
        }
    ));

    let r = Arc {
        center: point(1.0, 1.0),
        radii: vector(1.0, 1.0),
        start_angle: Angle::pi(),
        sweep_angle: Angle::pi(),
        x_rotation: -Angle::pi() * 0.25,
    }
    .bounding_box();
    assert!(approx_eq(
        r,
        Box2D {
            min: point(0.0, 0.0),
            max: point(1.707107, 1.707107)
        }
    ));

    let mut angle = Angle::zero();
    for _ in 0..10 {
        std::println!("angle: {angle:?}");
        let r = Arc {
            center: point(0.0, 0.0),
            radii: vector(4.0, 4.0),
            start_angle: angle,
            sweep_angle: Angle::pi() * 2.0,
            x_rotation: Angle::pi() * 0.25,
        }
        .bounding_box();
        assert!(approx_eq(
            r,
            Box2D {
                min: point(-4.0, -4.0),
                max: point(4.0, 4.0)
            }
        ));
        angle += Angle::pi() * 2.0 / 10.0;
    }

    let mut angle = Angle::zero();
    for _ in 0..10 {
        std::println!("angle: {angle:?}");
        let r = Arc {
            center: point(0.0, 0.0),
            radii: vector(4.0, 4.0),
            start_angle: Angle::zero(),
            sweep_angle: Angle::pi() * 2.0,
            x_rotation: angle,
        }
        .bounding_box();
        assert!(approx_eq(
            r,
            Box2D {
                min: point(-4.0, -4.0),
                max: point(4.0, 4.0)
            }
        ));
        angle += Angle::pi() * 2.0 / 10.0;
    }
}

#[test]
fn negative_flattening_step() {
    // These parameters were running into a precision issue which led the
    // flattening step to never converge towards 1 and cause an infinite loop.

    let arc = Arc {
        center: point(-100.0, -150.0),
        radii: vector(50.0, 50.0),
        start_angle: Angle::radians(0.982944787),
        sweep_angle: Angle::radians(-898.0),
        x_rotation: Angle::zero(),
    };

    arc.for_each_flattened(0.100000001, &mut |_| {});

    // There was also an issue with negative sweep_angle leading to a negative step
    // causing the arc to be approximated with a single line segment.

    let arc = Arc {
        center: point(0.0, 0.0),
        radii: vector(100.0, 10.0),
        start_angle: Angle::radians(0.2),
        sweep_angle: Angle::radians(-2.0),
        x_rotation: Angle::zero(),
    };

    let flattened: std::vec::Vec<_> = arc.flattened(0.1).collect();

    assert!(flattened.len() > 1);
}