lyon_geom/
cubic_bezier.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
use crate::cubic_bezier_intersections::cubic_bezier_intersections_t;
use crate::scalar::Scalar;
use crate::segment::{BoundingBox, Segment};
use crate::traits::Transformation;
use crate::utils::{cubic_polynomial_roots, min_max};
use crate::{point, Box2D, Point, Vector};
use crate::{Line, LineEquation, LineSegment, QuadraticBezierSegment};
use arrayvec::ArrayVec;

use core::cmp::Ordering::{Equal, Greater, Less};
use core::ops::Range;

#[cfg(test)]
use std::vec::Vec;

/// A 2d curve segment defined by four points: the beginning of the segment, two control
/// points and the end of the segment.
///
/// The curve is defined by equation:²
/// ```∀ t ∈ [0..1],  P(t) = (1 - t)³ * from + 3 * (1 - t)² * t * ctrl1 + 3 * t² * (1 - t) * ctrl2 + t³ * to```
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
pub struct CubicBezierSegment<S> {
    pub from: Point<S>,
    pub ctrl1: Point<S>,
    pub ctrl2: Point<S>,
    pub to: Point<S>,
}

impl<S: Scalar> CubicBezierSegment<S> {
    /// Sample the curve at t (expecting t between 0 and 1).
    pub fn sample(&self, t: S) -> Point<S> {
        let t2 = t * t;
        let t3 = t2 * t;
        let one_t = S::ONE - t;
        let one_t2 = one_t * one_t;
        let one_t3 = one_t2 * one_t;

        self.from * one_t3
            + self.ctrl1.to_vector() * S::THREE * one_t2 * t
            + self.ctrl2.to_vector() * S::THREE * one_t * t2
            + self.to.to_vector() * t3
    }

    /// Sample the x coordinate of the curve at t (expecting t between 0 and 1).
    pub fn x(&self, t: S) -> S {
        let t2 = t * t;
        let t3 = t2 * t;
        let one_t = S::ONE - t;
        let one_t2 = one_t * one_t;
        let one_t3 = one_t2 * one_t;

        self.from.x * one_t3
            + self.ctrl1.x * S::THREE * one_t2 * t
            + self.ctrl2.x * S::THREE * one_t * t2
            + self.to.x * t3
    }

    /// Sample the y coordinate of the curve at t (expecting t between 0 and 1).
    pub fn y(&self, t: S) -> S {
        let t2 = t * t;
        let t3 = t2 * t;
        let one_t = S::ONE - t;
        let one_t2 = one_t * one_t;
        let one_t3 = one_t2 * one_t;

        self.from.y * one_t3
            + self.ctrl1.y * S::THREE * one_t2 * t
            + self.ctrl2.y * S::THREE * one_t * t2
            + self.to.y * t3
    }

    /// Return the parameter values corresponding to a given x coordinate.
    pub fn solve_t_for_x(&self, x: S) -> ArrayVec<S, 3> {
        let (min, max) = self.fast_bounding_range_x();
        if min > x || max < x {
            return ArrayVec::new();
        }

        self.parameters_for_xy_value(x, self.from.x, self.ctrl1.x, self.ctrl2.x, self.to.x)
    }

    /// Return the parameter values corresponding to a given y coordinate.
    pub fn solve_t_for_y(&self, y: S) -> ArrayVec<S, 3> {
        let (min, max) = self.fast_bounding_range_y();
        if min > y || max < y {
            return ArrayVec::new();
        }

        self.parameters_for_xy_value(y, self.from.y, self.ctrl1.y, self.ctrl2.y, self.to.y)
    }

    fn parameters_for_xy_value(
        &self,
        value: S,
        from: S,
        ctrl1: S,
        ctrl2: S,
        to: S,
    ) -> ArrayVec<S, 3> {
        let mut result = ArrayVec::new();

        let a = -from + S::THREE * ctrl1 - S::THREE * ctrl2 + to;
        let b = S::THREE * from - S::SIX * ctrl1 + S::THREE * ctrl2;
        let c = -S::THREE * from + S::THREE * ctrl1;
        let d = from - value;

        let roots = cubic_polynomial_roots(a, b, c, d);
        for root in roots {
            if root > S::ZERO && root < S::ONE {
                result.push(root);
            }
        }

        result
    }

    #[inline]
    fn derivative_coefficients(&self, t: S) -> (S, S, S, S) {
        let t2 = t * t;
        (
            -S::THREE * t2 + S::SIX * t - S::THREE,
            S::NINE * t2 - S::value(12.0) * t + S::THREE,
            -S::NINE * t2 + S::SIX * t,
            S::THREE * t2,
        )
    }

    /// Sample the curve's derivative at t (expecting t between 0 and 1).
    pub fn derivative(&self, t: S) -> Vector<S> {
        let (c0, c1, c2, c3) = self.derivative_coefficients(t);
        self.from.to_vector() * c0
            + self.ctrl1.to_vector() * c1
            + self.ctrl2.to_vector() * c2
            + self.to.to_vector() * c3
    }

    /// Sample the x coordinate of the curve's derivative at t (expecting t between 0 and 1).
    pub fn dx(&self, t: S) -> S {
        let (c0, c1, c2, c3) = self.derivative_coefficients(t);
        self.from.x * c0 + self.ctrl1.x * c1 + self.ctrl2.x * c2 + self.to.x * c3
    }

    /// Sample the y coordinate of the curve's derivative at t (expecting t between 0 and 1).
    pub fn dy(&self, t: S) -> S {
        let (c0, c1, c2, c3) = self.derivative_coefficients(t);
        self.from.y * c0 + self.ctrl1.y * c1 + self.ctrl2.y * c2 + self.to.y * c3
    }

    /// Return the sub-curve inside a given range of t.
    ///
    /// This is equivalent to splitting at the range's end points.
    pub fn split_range(&self, t_range: Range<S>) -> Self {
        let (t0, t1) = (t_range.start, t_range.end);
        let from = self.sample(t0);
        let to = self.sample(t1);

        let d = QuadraticBezierSegment {
            from: (self.ctrl1 - self.from).to_point(),
            ctrl: (self.ctrl2 - self.ctrl1).to_point(),
            to: (self.to - self.ctrl2).to_point(),
        };

        let dt = t1 - t0;
        let ctrl1 = from + d.sample(t0).to_vector() * dt;
        let ctrl2 = to - d.sample(t1).to_vector() * dt;

        CubicBezierSegment {
            from,
            ctrl1,
            ctrl2,
            to,
        }
    }

    /// Split this curve into two sub-curves.
    pub fn split(&self, t: S) -> (CubicBezierSegment<S>, CubicBezierSegment<S>) {
        let ctrl1a = self.from + (self.ctrl1 - self.from) * t;
        let ctrl2a = self.ctrl1 + (self.ctrl2 - self.ctrl1) * t;
        let ctrl1aa = ctrl1a + (ctrl2a - ctrl1a) * t;
        let ctrl3a = self.ctrl2 + (self.to - self.ctrl2) * t;
        let ctrl2aa = ctrl2a + (ctrl3a - ctrl2a) * t;
        let ctrl1aaa = ctrl1aa + (ctrl2aa - ctrl1aa) * t;

        (
            CubicBezierSegment {
                from: self.from,
                ctrl1: ctrl1a,
                ctrl2: ctrl1aa,
                to: ctrl1aaa,
            },
            CubicBezierSegment {
                from: ctrl1aaa,
                ctrl1: ctrl2aa,
                ctrl2: ctrl3a,
                to: self.to,
            },
        )
    }

    /// Return the curve before the split point.
    pub fn before_split(&self, t: S) -> CubicBezierSegment<S> {
        let ctrl1a = self.from + (self.ctrl1 - self.from) * t;
        let ctrl2a = self.ctrl1 + (self.ctrl2 - self.ctrl1) * t;
        let ctrl1aa = ctrl1a + (ctrl2a - ctrl1a) * t;
        let ctrl3a = self.ctrl2 + (self.to - self.ctrl2) * t;
        let ctrl2aa = ctrl2a + (ctrl3a - ctrl2a) * t;
        let ctrl1aaa = ctrl1aa + (ctrl2aa - ctrl1aa) * t;

        CubicBezierSegment {
            from: self.from,
            ctrl1: ctrl1a,
            ctrl2: ctrl1aa,
            to: ctrl1aaa,
        }
    }

    /// Return the curve after the split point.
    pub fn after_split(&self, t: S) -> CubicBezierSegment<S> {
        let ctrl1a = self.from + (self.ctrl1 - self.from) * t;
        let ctrl2a = self.ctrl1 + (self.ctrl2 - self.ctrl1) * t;
        let ctrl1aa = ctrl1a + (ctrl2a - ctrl1a) * t;
        let ctrl3a = self.ctrl2 + (self.to - self.ctrl2) * t;
        let ctrl2aa = ctrl2a + (ctrl3a - ctrl2a) * t;

        CubicBezierSegment {
            from: ctrl1aa + (ctrl2aa - ctrl1aa) * t,
            ctrl1: ctrl2a + (ctrl3a - ctrl2a) * t,
            ctrl2: ctrl3a,
            to: self.to,
        }
    }

    #[inline]
    pub fn baseline(&self) -> LineSegment<S> {
        LineSegment {
            from: self.from,
            to: self.to,
        }
    }

    /// Returns true if the curve can be approximated with a single line segment, given
    /// a tolerance threshold.
    pub fn is_linear(&self, tolerance: S) -> bool {
        // Similar to Line::square_distance_to_point, except we keep
        // the sign of c1 and c2 to compute tighter upper bounds as we
        // do in fat_line_min_max.
        let baseline = self.to - self.from;
        let v1 = self.ctrl1 - self.from;
        let v2 = self.ctrl2 - self.from;
        let c1 = baseline.cross(v1);
        let c2 = baseline.cross(v2);
        // TODO: it would be faster to multiply the threshold with baseline_len2
        // instead of dividing d1 and d2, but it changes the behavior when the
        // baseline length is zero in ways that breaks some of the cubic intersection
        // tests.
        let inv_baseline_len2 = S::ONE / baseline.square_length();
        let d1 = (c1 * c1) * inv_baseline_len2;
        let d2 = (c2 * c2) * inv_baseline_len2;

        let factor = if (c1 * c2) > S::ZERO {
            S::THREE / S::FOUR
        } else {
            S::FOUR / S::NINE
        };

        let f2 = factor * factor;
        let threshold = tolerance * tolerance;

        d1 * f2 <= threshold && d2 * f2 <= threshold
    }

    /// Returns whether the curve can be approximated with a single point, given
    /// a tolerance threshold.
    pub(crate) fn is_a_point(&self, tolerance: S) -> bool {
        let tolerance_squared = tolerance * tolerance;
        // Use <= so that tolerance can be zero.
        (self.from - self.to).square_length() <= tolerance_squared
            && (self.from - self.ctrl1).square_length() <= tolerance_squared
            && (self.to - self.ctrl2).square_length() <= tolerance_squared
    }

    /// Computes the signed distances (min <= 0 and max >= 0) from the baseline of this
    /// curve to its two "fat line" boundary lines.
    ///
    /// A fat line is two conservative lines between which the segment
    /// is fully contained.
    pub(crate) fn fat_line_min_max(&self) -> (S, S) {
        let baseline = self.baseline().to_line().equation();
        let (d1, d2) = min_max(
            baseline.signed_distance_to_point(&self.ctrl1),
            baseline.signed_distance_to_point(&self.ctrl2),
        );

        let factor = if (d1 * d2) > S::ZERO {
            S::THREE / S::FOUR
        } else {
            S::FOUR / S::NINE
        };

        let d_min = factor * S::min(d1, S::ZERO);
        let d_max = factor * S::max(d2, S::ZERO);

        (d_min, d_max)
    }

    /// Computes a "fat line" of this segment.
    ///
    /// A fat line is two conservative lines between which the segment
    /// is fully contained.
    pub fn fat_line(&self) -> (LineEquation<S>, LineEquation<S>) {
        let baseline = self.baseline().to_line().equation();
        let (d1, d2) = self.fat_line_min_max();

        (baseline.offset(d1), baseline.offset(d2))
    }

    /// Applies the transform to this curve and returns the results.
    #[inline]
    pub fn transformed<T: Transformation<S>>(&self, transform: &T) -> Self {
        CubicBezierSegment {
            from: transform.transform_point(self.from),
            ctrl1: transform.transform_point(self.ctrl1),
            ctrl2: transform.transform_point(self.ctrl2),
            to: transform.transform_point(self.to),
        }
    }

    /// Swap the beginning and the end of the segment.
    pub fn flip(&self) -> Self {
        CubicBezierSegment {
            from: self.to,
            ctrl1: self.ctrl2,
            ctrl2: self.ctrl1,
            to: self.from,
        }
    }

    /// Approximate the curve with a single quadratic bézier segment.
    ///
    /// This is terrible as a general approximation but works if the cubic
    /// curve does not have inflection points and is "flat" enough. Typically
    /// usable after subdividing the curve a few times.
    pub fn to_quadratic(&self) -> QuadraticBezierSegment<S> {
        let c1 = (self.ctrl1 * S::THREE - self.from) * S::HALF;
        let c2 = (self.ctrl2 * S::THREE - self.to) * S::HALF;
        QuadraticBezierSegment {
            from: self.from,
            ctrl: ((c1 + c2) * S::HALF).to_point(),
            to: self.to,
        }
    }

    /// Evaluates an upper bound on the maximum distance between the curve
    /// and its quadratic approximation obtained using `to_quadratic`.
    pub fn to_quadratic_error(&self) -> S {
        // See http://caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
        S::sqrt(S::THREE) / S::value(36.0)
            * ((self.to - self.ctrl2 * S::THREE) + (self.ctrl1 * S::THREE - self.from)).length()
    }

    /// Returns true if the curve can be safely approximated with a single quadratic bézier
    /// segment given the provided tolerance threshold.
    ///
    /// Equivalent to comparing `to_quadratic_error` with the tolerance threshold, avoiding
    /// the cost of two square roots.
    pub fn is_quadratic(&self, tolerance: S) -> bool {
        S::THREE / S::value(1296.0)
            * ((self.to - self.ctrl2 * S::THREE) + (self.ctrl1 * S::THREE - self.from))
                .square_length()
            <= tolerance * tolerance
    }

    /// Computes the number of quadratic bézier segments required to approximate this cubic curve
    /// given a tolerance threshold.
    ///
    /// Derived by Raph Levien from section 10.6 of Sedeberg's CAGD notes
    /// <https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1000&context=facpub#section.10.6>
    /// and the error metric from the caffein owl blog post <http://caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html>
    pub fn num_quadratics(&self, tolerance: S) -> u32 {
        self.num_quadratics_impl(tolerance).to_u32().unwrap_or(1)
    }

    fn num_quadratics_impl(&self, tolerance: S) -> S {
        debug_assert!(tolerance > S::ZERO);

        let x = self.from.x - S::THREE * self.ctrl1.x + S::THREE * self.ctrl2.x - self.to.x;
        let y = self.from.y - S::THREE * self.ctrl1.y + S::THREE * self.ctrl2.y - self.to.y;

        let err = x * x + y * y;

        (err / (S::value(432.0) * tolerance * tolerance))
            .powf(S::ONE / S::SIX)
            .ceil()
            .max(S::ONE)
    }

    /// Returns the flattened representation of the curve as an iterator, starting *after* the
    /// current point.
    pub fn flattened(&self, tolerance: S) -> Flattened<S> {
        Flattened::new(self, tolerance)
    }

    /// Invokes a callback for each monotonic part of the segment.
    pub fn for_each_monotonic_range<F>(&self, cb: &mut F)
    where
        F: FnMut(Range<S>),
    {
        let mut extrema: ArrayVec<S, 4> = ArrayVec::new();
        self.for_each_local_x_extremum_t(&mut |t| extrema.push(t));
        self.for_each_local_y_extremum_t(&mut |t| extrema.push(t));
        extrema.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());

        let mut t0 = S::ZERO;
        for &t in &extrema {
            if t != t0 {
                cb(t0..t);
                t0 = t;
            }
        }

        cb(t0..S::ONE);
    }

    /// Invokes a callback for each monotonic part of the segment.
    pub fn for_each_monotonic<F>(&self, cb: &mut F)
    where
        F: FnMut(&CubicBezierSegment<S>),
    {
        self.for_each_monotonic_range(&mut |range| {
            let mut sub = self.split_range(range);
            // Due to finite precision the split may actually result in sub-curves
            // that are almost but not-quite monotonic. Make sure they actually are.
            let min_x = sub.from.x.min(sub.to.x);
            let max_x = sub.from.x.max(sub.to.x);
            let min_y = sub.from.y.min(sub.to.y);
            let max_y = sub.from.y.max(sub.to.y);
            sub.ctrl1.x = sub.ctrl1.x.max(min_x).min(max_x);
            sub.ctrl1.y = sub.ctrl1.y.max(min_y).min(max_y);
            sub.ctrl2.x = sub.ctrl2.x.max(min_x).min(max_x);
            sub.ctrl2.y = sub.ctrl2.y.max(min_y).min(max_y);
            cb(&sub);
        });
    }

    /// Invokes a callback for each y-monotonic part of the segment.
    pub fn for_each_y_monotonic_range<F>(&self, cb: &mut F)
    where
        F: FnMut(Range<S>),
    {
        let mut t0 = S::ZERO;
        self.for_each_local_y_extremum_t(&mut |t| {
            cb(t0..t);
            t0 = t;
        });

        cb(t0..S::ONE);
    }

    /// Invokes a callback for each y-monotonic part of the segment.
    pub fn for_each_y_monotonic<F>(&self, cb: &mut F)
    where
        F: FnMut(&CubicBezierSegment<S>),
    {
        self.for_each_y_monotonic_range(&mut |range| {
            let mut sub = self.split_range(range);
            // Due to finite precision the split may actually result in sub-curves
            // that are almost but not-quite monotonic. Make sure they actually are.
            let min_y = sub.from.y.min(sub.to.y);
            let max_y = sub.from.y.max(sub.to.y);
            sub.ctrl1.y = sub.ctrl1.y.max(min_y).min(max_y);
            sub.ctrl2.y = sub.ctrl2.y.max(min_y).min(max_y);
            cb(&sub);
        });
    }

    /// Invokes a callback for each x-monotonic part of the segment.
    pub fn for_each_x_monotonic_range<F>(&self, cb: &mut F)
    where
        F: FnMut(Range<S>),
    {
        let mut t0 = S::ZERO;
        self.for_each_local_x_extremum_t(&mut |t| {
            cb(t0..t);
            t0 = t;
        });

        cb(t0..S::ONE);
    }

    /// Invokes a callback for each x-monotonic part of the segment.
    pub fn for_each_x_monotonic<F>(&self, cb: &mut F)
    where
        F: FnMut(&CubicBezierSegment<S>),
    {
        self.for_each_x_monotonic_range(&mut |range| {
            let mut sub = self.split_range(range);
            // Due to finite precision the split may actually result in sub-curves
            // that are almost but not-quite monotonic. Make sure they actually are.
            let min_x = sub.from.x.min(sub.to.x);
            let max_x = sub.from.x.max(sub.to.x);
            sub.ctrl1.x = sub.ctrl1.x.max(min_x).min(max_x);
            sub.ctrl2.x = sub.ctrl2.x.max(min_x).min(max_x);
            cb(&sub);
        });
    }

    /// Approximates the cubic bézier curve with sequence of quadratic ones,
    /// invoking a callback at each step.
    pub fn for_each_quadratic_bezier<F>(&self, tolerance: S, cb: &mut F)
    where
        F: FnMut(&QuadraticBezierSegment<S>),
    {
        self.for_each_quadratic_bezier_with_t(tolerance, &mut |quad, _range| cb(quad));
    }

    /// Approximates the cubic bézier curve with sequence of quadratic ones,
    /// invoking a callback at each step.
    pub fn for_each_quadratic_bezier_with_t<F>(&self, tolerance: S, cb: &mut F)
    where
        F: FnMut(&QuadraticBezierSegment<S>, Range<S>),
    {
        debug_assert!(tolerance >= S::EPSILON * S::EPSILON);

        let num_quadratics = self.num_quadratics_impl(tolerance);
        let step = S::ONE / num_quadratics;
        let n = num_quadratics.to_u32().unwrap_or(1);
        let mut t0 = S::ZERO;
        for _ in 0..(n - 1) {
            let t1 = t0 + step;

            let quad = self.split_range(t0..t1).to_quadratic();
            cb(&quad, t0..t1);

            t0 = t1;
        }

        // Do the last step manually to make sure we finish at t = 1.0 exactly.
        let quad = self.split_range(t0..S::ONE).to_quadratic();
        cb(&quad, t0..S::ONE)
    }

    /// Approximates the curve with sequence of line segments.
    ///
    /// The `tolerance` parameter defines the maximum distance between the curve and
    /// its approximation.
    pub fn for_each_flattened<F: FnMut(&LineSegment<S>)>(&self, tolerance: S, callback: &mut F) {
        debug_assert!(tolerance >= S::EPSILON * S::EPSILON);
        let quadratics_tolerance = tolerance * S::value(0.4);
        let flattening_tolerance = tolerance * S::value(0.8);

        self.for_each_quadratic_bezier(quadratics_tolerance, &mut |quad| {
            quad.for_each_flattened(flattening_tolerance, &mut |segment| {
                callback(segment);
            });
        });
    }

    /// Approximates the curve with sequence of line segments.
    ///
    /// The `tolerance` parameter defines the maximum distance between the curve and
    /// its approximation.
    ///
    /// The end of the t parameter range at the final segment is guaranteed to be equal to `1.0`.
    pub fn for_each_flattened_with_t<F: FnMut(&LineSegment<S>, Range<S>)>(
        &self,
        tolerance: S,
        callback: &mut F,
    ) {
        debug_assert!(tolerance >= S::EPSILON * S::EPSILON);
        let quadratics_tolerance = tolerance * S::value(0.4);
        let flattening_tolerance = tolerance * S::value(0.8);

        let mut t_from = S::ZERO;
        self.for_each_quadratic_bezier_with_t(quadratics_tolerance, &mut |quad, range| {
            let last_quad = range.end == S::ONE;
            let range_len = range.end - range.start;
            quad.for_each_flattened_with_t(flattening_tolerance, &mut |segment, range_sub| {
                let last_seg = range_sub.end == S::ONE;
                let t = if last_quad && last_seg {
                    S::ONE
                } else {
                    range_sub.end * range_len + range.start
                };
                callback(segment, t_from..t);
                t_from = t;
            });
        });
    }

    /// Compute the length of the segment using a flattened approximation.
    pub fn approximate_length(&self, tolerance: S) -> S {
        let mut length = S::ZERO;

        self.for_each_quadratic_bezier(tolerance, &mut |quad| {
            length += quad.length();
        });

        length
    }

    /// Invokes a callback at each inflection point if any.
    pub fn for_each_inflection_t<F>(&self, cb: &mut F)
    where
        F: FnMut(S),
    {
        // Find inflection points.
        // See www.faculty.idc.ac.il/arik/quality/appendixa.html for an explanation
        // of this approach.
        let pa = self.ctrl1 - self.from;
        let pb = self.ctrl2.to_vector() - (self.ctrl1.to_vector() * S::TWO) + self.from.to_vector();
        let pc = self.to.to_vector() - (self.ctrl2.to_vector() * S::THREE)
            + (self.ctrl1.to_vector() * S::THREE)
            - self.from.to_vector();

        let a = pb.cross(pc);
        let b = pa.cross(pc);
        let c = pa.cross(pb);

        if S::abs(a) < S::EPSILON {
            // Not a quadratic equation.
            if S::abs(b) < S::EPSILON {
                // Instead of a linear acceleration change we have a constant
                // acceleration change. This means the equation has no solution
                // and there are no inflection points, unless the constant is 0.
                // In that case the curve is a straight line, essentially that means
                // the easiest way to deal with is is by saying there's an inflection
                // point at t == 0. The inflection point approximation range found will
                // automatically extend into infinity.
                if S::abs(c) < S::EPSILON {
                    cb(S::ZERO);
                }
            } else {
                let t = -c / b;
                if in_range(t) {
                    cb(t);
                }
            }

            return;
        }

        fn in_range<S: Scalar>(t: S) -> bool {
            t >= S::ZERO && t < S::ONE
        }

        let discriminant = b * b - S::FOUR * a * c;

        if discriminant < S::ZERO {
            return;
        }

        if discriminant < S::EPSILON {
            let t = -b / (S::TWO * a);

            if in_range(t) {
                cb(t);
            }

            return;
        }

        // This code is derived from https://www2.units.it/ipl/students_area/imm2/files/Numerical_Recipes.pdf page 184.
        // Computing the roots this way avoids precision issues when a, c or both are small.
        let discriminant_sqrt = S::sqrt(discriminant);
        let sign_b = if b >= S::ZERO { S::ONE } else { -S::ONE };
        let q = -S::HALF * (b + sign_b * discriminant_sqrt);
        let mut first_inflection = q / a;
        let mut second_inflection = c / q;

        if first_inflection > second_inflection {
            core::mem::swap(&mut first_inflection, &mut second_inflection);
        }

        if in_range(first_inflection) {
            cb(first_inflection);
        }

        if in_range(second_inflection) {
            cb(second_inflection);
        }
    }

    /// Return local x extrema or None if this curve is monotonic.
    ///
    /// This returns the advancements along the curve, not the actual x position.
    pub fn for_each_local_x_extremum_t<F>(&self, cb: &mut F)
    where
        F: FnMut(S),
    {
        Self::for_each_local_extremum(self.from.x, self.ctrl1.x, self.ctrl2.x, self.to.x, cb)
    }

    /// Return local y extrema or None if this curve is monotonic.
    ///
    /// This returns the advancements along the curve, not the actual y position.
    pub fn for_each_local_y_extremum_t<F>(&self, cb: &mut F)
    where
        F: FnMut(S),
    {
        Self::for_each_local_extremum(self.from.y, self.ctrl1.y, self.ctrl2.y, self.to.y, cb)
    }

    fn for_each_local_extremum<F>(p0: S, p1: S, p2: S, p3: S, cb: &mut F)
    where
        F: FnMut(S),
    {
        // See www.faculty.idc.ac.il/arik/quality/appendixa.html for an explanation
        // The derivative of a cubic bezier curve is a curve representing a second degree polynomial function
        // f(x) = a * x² + b * x + c such as :

        let a = S::THREE * (p3 + S::THREE * (p1 - p2) - p0);
        let b = S::SIX * (p2 - S::TWO * p1 + p0);
        let c = S::THREE * (p1 - p0);

        fn in_range<S: Scalar>(t: S) -> bool {
            t > S::ZERO && t < S::ONE
        }

        // If the derivative is a linear function
        if a == S::ZERO {
            if b != S::ZERO {
                let t = -c / b;
                if in_range(t) {
                    cb(t);
                }
            }
            return;
        }

        let discriminant = b * b - S::FOUR * a * c;

        // There is no Real solution for the equation
        if discriminant < S::ZERO {
            return;
        }

        // There is one Real solution for the equation
        if discriminant == S::ZERO {
            let t = -b / (S::TWO * a);
            if in_range(t) {
                cb(t);
            }
            return;
        }

        // There are two Real solutions for the equation
        let discriminant_sqrt = discriminant.sqrt();

        let mut first_extremum = (-b - discriminant_sqrt) / (S::TWO * a);
        let mut second_extremum = (-b + discriminant_sqrt) / (S::TWO * a);
        if first_extremum > second_extremum {
            core::mem::swap(&mut first_extremum, &mut second_extremum);
        }

        if in_range(first_extremum) {
            cb(first_extremum);
        }

        if in_range(second_extremum) {
            cb(second_extremum);
        }
    }

    /// Find the advancement of the y-most position in the curve.
    ///
    /// This returns the advancement along the curve, not the actual y position.
    pub fn y_maximum_t(&self) -> S {
        let mut max_t = S::ZERO;
        let mut max_y = self.from.y;
        if self.to.y > max_y {
            max_t = S::ONE;
            max_y = self.to.y;
        }
        self.for_each_local_y_extremum_t(&mut |t| {
            let y = self.y(t);
            if y > max_y {
                max_t = t;
                max_y = y;
            }
        });

        max_t
    }

    /// Find the advancement of the y-least position in the curve.
    ///
    /// This returns the advancement along the curve, not the actual y position.
    pub fn y_minimum_t(&self) -> S {
        let mut min_t = S::ZERO;
        let mut min_y = self.from.y;
        if self.to.y < min_y {
            min_t = S::ONE;
            min_y = self.to.y;
        }
        self.for_each_local_y_extremum_t(&mut |t| {
            let y = self.y(t);
            if y < min_y {
                min_t = t;
                min_y = y;
            }
        });

        min_t
    }

    /// Find the advancement of the x-most position in the curve.
    ///
    /// This returns the advancement along the curve, not the actual x position.
    pub fn x_maximum_t(&self) -> S {
        let mut max_t = S::ZERO;
        let mut max_x = self.from.x;
        if self.to.x > max_x {
            max_t = S::ONE;
            max_x = self.to.x;
        }
        self.for_each_local_x_extremum_t(&mut |t| {
            let x = self.x(t);
            if x > max_x {
                max_t = t;
                max_x = x;
            }
        });

        max_t
    }

    /// Find the x-least position in the curve.
    pub fn x_minimum_t(&self) -> S {
        let mut min_t = S::ZERO;
        let mut min_x = self.from.x;
        if self.to.x < min_x {
            min_t = S::ONE;
            min_x = self.to.x;
        }
        self.for_each_local_x_extremum_t(&mut |t| {
            let x = self.x(t);
            if x < min_x {
                min_t = t;
                min_x = x;
            }
        });

        min_t
    }

    /// Returns a conservative rectangle the curve is contained in.
    ///
    /// This method is faster than `bounding_box` but more conservative.
    pub fn fast_bounding_box(&self) -> Box2D<S> {
        let (min_x, max_x) = self.fast_bounding_range_x();
        let (min_y, max_y) = self.fast_bounding_range_y();

        Box2D {
            min: point(min_x, min_y),
            max: point(max_x, max_y),
        }
    }

    /// Returns a conservative range of x that contains this curve.
    #[inline]
    pub fn fast_bounding_range_x(&self) -> (S, S) {
        let min_x = self
            .from
            .x
            .min(self.ctrl1.x)
            .min(self.ctrl2.x)
            .min(self.to.x);
        let max_x = self
            .from
            .x
            .max(self.ctrl1.x)
            .max(self.ctrl2.x)
            .max(self.to.x);

        (min_x, max_x)
    }

    /// Returns a conservative range of y that contains this curve.
    #[inline]
    pub fn fast_bounding_range_y(&self) -> (S, S) {
        let min_y = self
            .from
            .y
            .min(self.ctrl1.y)
            .min(self.ctrl2.y)
            .min(self.to.y);
        let max_y = self
            .from
            .y
            .max(self.ctrl1.y)
            .max(self.ctrl2.y)
            .max(self.to.y);

        (min_y, max_y)
    }

    /// Returns a conservative rectangle that contains the curve.
    #[inline]
    pub fn bounding_box(&self) -> Box2D<S> {
        let (min_x, max_x) = self.bounding_range_x();
        let (min_y, max_y) = self.bounding_range_y();

        Box2D {
            min: point(min_x, min_y),
            max: point(max_x, max_y),
        }
    }

    /// Returns the smallest range of x that contains this curve.
    #[inline]
    pub fn bounding_range_x(&self) -> (S, S) {
        let min_x = self.x(self.x_minimum_t());
        let max_x = self.x(self.x_maximum_t());

        (min_x, max_x)
    }

    /// Returns the smallest range of y that contains this curve.
    #[inline]
    pub fn bounding_range_y(&self) -> (S, S) {
        let min_y = self.y(self.y_minimum_t());
        let max_y = self.y(self.y_maximum_t());

        (min_y, max_y)
    }

    /// Returns whether this segment is monotonic on the x axis.
    pub fn is_x_monotonic(&self) -> bool {
        let mut found = false;
        self.for_each_local_x_extremum_t(&mut |_| {
            found = true;
        });
        !found
    }

    /// Returns whether this segment is monotonic on the y axis.
    pub fn is_y_monotonic(&self) -> bool {
        let mut found = false;
        self.for_each_local_y_extremum_t(&mut |_| {
            found = true;
        });
        !found
    }

    /// Returns whether this segment is fully monotonic.
    pub fn is_monotonic(&self) -> bool {
        self.is_x_monotonic() && self.is_y_monotonic()
    }

    /// Computes the intersections (if any) between this segment and another one.
    ///
    /// The result is provided in the form of the `t` parameters of each point along the curves. To
    /// get the intersection points, sample the curves at the corresponding values.
    ///
    /// Returns endpoint intersections where an endpoint intersects the interior of the other curve,
    /// but not endpoint/endpoint intersections.
    ///
    /// Returns no intersections if either curve is a point.
    pub fn cubic_intersections_t(&self, curve: &CubicBezierSegment<S>) -> ArrayVec<(S, S), 9> {
        cubic_bezier_intersections_t(self, curve)
    }

    /// Computes the intersection points (if any) between this segment and another one.
    pub fn cubic_intersections(&self, curve: &CubicBezierSegment<S>) -> ArrayVec<Point<S>, 9> {
        let intersections = self.cubic_intersections_t(curve);

        let mut result_with_repeats = ArrayVec::<_, 9>::new();
        for (t, _) in intersections {
            result_with_repeats.push(self.sample(t));
        }

        // We can have up to nine "repeated" values here (for example: two lines, each of which
        // overlaps itself 3 times, intersecting in their 3-fold overlaps). We make an effort to
        // dedupe the results, but that's hindered by not having predictable control over how far
        // the repeated intersections can be from each other (and then by the fact that true
        // intersections can be arbitrarily close), so the results will never be perfect.

        let pair_cmp = |s: &Point<S>, t: &Point<S>| {
            if s.x < t.x || (s.x == t.x && s.y < t.y) {
                Less
            } else if s.x == t.x && s.y == t.y {
                Equal
            } else {
                Greater
            }
        };
        result_with_repeats.sort_unstable_by(pair_cmp);
        if result_with_repeats.len() <= 1 {
            return result_with_repeats;
        }

        #[inline]
        fn dist_sq<S: Scalar>(p1: &Point<S>, p2: &Point<S>) -> S {
            (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y)
        }

        let epsilon_squared = S::EPSILON * S::EPSILON;
        let mut result = ArrayVec::new();
        let mut reference_intersection = &result_with_repeats[0];
        result.push(*reference_intersection);
        for i in 1..result_with_repeats.len() {
            let intersection = &result_with_repeats[i];
            if dist_sq(reference_intersection, intersection) < epsilon_squared {
                continue;
            } else {
                result.push(*intersection);
                reference_intersection = intersection;
            }
        }

        result
    }

    /// Computes the intersections (if any) between this segment a quadratic bézier segment.
    ///
    /// The result is provided in the form of the `t` parameters of each point along the curves. To
    /// get the intersection points, sample the curves at the corresponding values.
    ///
    /// Returns endpoint intersections where an endpoint intersects the interior of the other curve,
    /// but not endpoint/endpoint intersections.
    ///
    /// Returns no intersections if either curve is a point.
    pub fn quadratic_intersections_t(
        &self,
        curve: &QuadraticBezierSegment<S>,
    ) -> ArrayVec<(S, S), 9> {
        self.cubic_intersections_t(&curve.to_cubic())
    }

    /// Computes the intersection points (if any) between this segment and a quadratic bézier segment.
    pub fn quadratic_intersections(
        &self,
        curve: &QuadraticBezierSegment<S>,
    ) -> ArrayVec<Point<S>, 9> {
        self.cubic_intersections(&curve.to_cubic())
    }

    /// Computes the intersections (if any) between this segment and a line.
    ///
    /// The result is provided in the form of the `t` parameters of each
    /// point along curve. To get the intersection points, sample the curve
    /// at the corresponding values.
    pub fn line_intersections_t(&self, line: &Line<S>) -> ArrayVec<S, 3> {
        if line.vector.square_length() < S::EPSILON {
            return ArrayVec::new();
        }

        let from = self.from.to_vector();
        let ctrl1 = self.ctrl1.to_vector();
        let ctrl2 = self.ctrl2.to_vector();
        let to = self.to.to_vector();

        let p1 = to - from + (ctrl1 - ctrl2) * S::THREE;
        let p2 = from * S::THREE + (ctrl2 - ctrl1 * S::TWO) * S::THREE;
        let p3 = (ctrl1 - from) * S::THREE;
        let p4 = from;

        let c = line.point.y * line.vector.x - line.point.x * line.vector.y;

        let roots = cubic_polynomial_roots(
            line.vector.y * p1.x - line.vector.x * p1.y,
            line.vector.y * p2.x - line.vector.x * p2.y,
            line.vector.y * p3.x - line.vector.x * p3.y,
            line.vector.y * p4.x - line.vector.x * p4.y + c,
        );

        let mut result = ArrayVec::new();

        for root in roots {
            if root >= S::ZERO && root <= S::ONE {
                result.push(root);
            }
        }

        // TODO: sort the intersections?

        result
    }

    /// Computes the intersection points (if any) between this segment and a line.
    pub fn line_intersections(&self, line: &Line<S>) -> ArrayVec<Point<S>, 3> {
        let intersections = self.line_intersections_t(line);

        let mut result = ArrayVec::new();
        for t in intersections {
            result.push(self.sample(t));
        }

        result
    }

    /// Computes the intersections (if any) between this segment and a line segment.
    ///
    /// The result is provided in the form of the `t` parameters of each
    /// point along curve and segment. To get the intersection points, sample
    /// the segments at the corresponding values.
    pub fn line_segment_intersections_t(&self, segment: &LineSegment<S>) -> ArrayVec<(S, S), 3> {
        if !self
            .fast_bounding_box()
            .inflate(S::EPSILON, S::EPSILON)
            .intersects(&segment.bounding_box().inflate(S::EPSILON, S::EPSILON))
        {
            return ArrayVec::new();
        }

        let intersections = self.line_intersections_t(&segment.to_line());

        let mut result = ArrayVec::new();
        if intersections.is_empty() {
            return result;
        }

        let seg_is_mostly_vertical =
            S::abs(segment.from.y - segment.to.y) >= S::abs(segment.from.x - segment.to.x);
        let (seg_long_axis_min, seg_long_axis_max) = if seg_is_mostly_vertical {
            segment.bounding_range_y()
        } else {
            segment.bounding_range_x()
        };

        for t in intersections {
            let intersection_xy = if seg_is_mostly_vertical {
                self.y(t)
            } else {
                self.x(t)
            };
            if intersection_xy >= seg_long_axis_min && intersection_xy <= seg_long_axis_max {
                let t2 = (self.sample(t) - segment.from).length() / segment.length();
                // Don't take intersections that are on endpoints of both curves at the same time.
                if (t != S::ZERO && t != S::ONE) || (t2 != S::ZERO && t2 != S::ONE) {
                    result.push((t, t2));
                }
            }
        }

        result
    }

    #[inline]
    pub fn from(&self) -> Point<S> {
        self.from
    }

    #[inline]
    pub fn to(&self) -> Point<S> {
        self.to
    }

    pub fn line_segment_intersections(&self, segment: &LineSegment<S>) -> ArrayVec<Point<S>, 3> {
        let intersections = self.line_segment_intersections_t(segment);

        let mut result = ArrayVec::new();
        for (t, _) in intersections {
            result.push(self.sample(t));
        }

        result
    }

    fn baseline_projection(&self, t: S) -> S {
        // See https://pomax.github.io/bezierinfo/#abc
        // We are computing the interpolation factor between
        // `from` and `to` to get the position of C.
        let one_t = S::ONE - t;
        let one_t3 = one_t * one_t * one_t;
        let t3 = t * t * t;

        t3 / (t3 + one_t3)
    }

    fn abc_ratio(&self, t: S) -> S {
        // See https://pomax.github.io/bezierinfo/#abc
        let one_t = S::ONE - t;
        let one_t3 = one_t * one_t * one_t;
        let t3 = t * t * t;

        ((t3 + one_t3 - S::ONE) / (t3 + one_t3)).abs()
    }

    // Returns a quadratic bézier curve built by dragging this curve's point at `t`
    // to a new position, without moving the endpoints.
    //
    // The relative effect on control points is chosen to give a similar "feel" to
    // most vector graphics editors: dragging from near the first endpoint will affect
    // the first control point more than the second control point, etc.
    pub fn drag(&self, t: S, new_position: Point<S>) -> Self {
        // A lot of tweaking could go into making the weight feel as natural as possible.
        let min = S::value(0.1);
        let max = S::value(0.9);
        let weight = if t < min {
            S::ZERO
        } else if t > max {
            S::ONE
        } else {
            (t - min) / (max - min)
        };

        self.drag_with_weight(t, new_position, weight)
    }

    // Returns a quadratic bézier curve built by dragging this curve's point at `t`
    // to a new position, without moving the endpoints.
    //
    // The provided weight specifies the relative effect on control points.
    //  - with `weight = 0.5`, `ctrl1` and `ctrl2` are equally affected,
    //  - with `weight = 0.0`, only `ctrl1` is affected,
    //  - with `weight = 1.0`, only `ctrl2` is affected,
    //  - etc.
    pub fn drag_with_weight(&self, t: S, new_position: Point<S>, weight: S) -> Self {
        // See https://pomax.github.io/bezierinfo/#abc
        //
        //   From-----------Ctrl1
        //    |               \ d1     \
        //    C-------P--------A        \  d12
        //    |                 \d2      \
        //    |                  \        \
        //    To-----------------Ctrl2
        //
        // The ABC relation means we can place the new control points however we like
        // as long as the ratios CA/CP, d1/d12 and d2/d12 remain constant.
        //
        // we use the weight to guide our decisions. A weight of 0.5 would be a uniform
        // displacement (d1 and d2 do not change and both control points are moved by the
        // same amount).
        // The approach is to use the weight interpolate the most constrained control point
        // between it's old position and the position it would have with uniform displacement.
        // then we determine the position of the least constrained control point such that
        // the ratios mentioned earlier remain constant.

        let c = self.from.lerp(self.to, self.baseline_projection(t));
        let cacp_ratio = self.abc_ratio(t);

        let old_pos = self.sample(t);
        // Construct A before and after drag using the constance ca/cp ratio
        let old_a = old_pos + (old_pos - c) / cacp_ratio;
        let new_a = new_position + (new_position - c) / cacp_ratio;

        // Sort ctrl1 and ctrl2 such ctrl1 is the least affected (or most constrained).
        let mut ctrl1 = self.ctrl1;
        let mut ctrl2 = self.ctrl2;
        if t < S::HALF {
            core::mem::swap(&mut ctrl1, &mut ctrl2);
        }

        // Move the most constrained control point by a subset of the uniform displacement
        // depending on the weight.
        let uniform_displacement = new_a - old_a;
        let f = if t < S::HALF {
            S::TWO * weight
        } else {
            S::TWO * (S::ONE - weight)
        };
        let mut new_ctrl1 = ctrl1 + uniform_displacement * f;

        // Now that the most constrained control point is placed there is only one position
        // for the least constrained control point that satisfies the constant ratios.
        let d1_pre = (old_a - ctrl1).length();
        let d12_pre = (self.ctrl2 - self.ctrl1).length();

        let mut new_ctrl2 = new_ctrl1 + (new_a - new_ctrl1) * (d12_pre / d1_pre);

        if t < S::HALF {
            core::mem::swap(&mut new_ctrl1, &mut new_ctrl2);
        }

        CubicBezierSegment {
            from: self.from,
            ctrl1: new_ctrl1,
            ctrl2: new_ctrl2,
            to: self.to,
        }
    }

    pub fn to_f32(&self) -> CubicBezierSegment<f32> {
        CubicBezierSegment {
            from: self.from.to_f32(),
            ctrl1: self.ctrl1.to_f32(),
            ctrl2: self.ctrl2.to_f32(),
            to: self.to.to_f32(),
        }
    }

    pub fn to_f64(&self) -> CubicBezierSegment<f64> {
        CubicBezierSegment {
            from: self.from.to_f64(),
            ctrl1: self.ctrl1.to_f64(),
            ctrl2: self.ctrl2.to_f64(),
            to: self.to.to_f64(),
        }
    }
}

impl<S: Scalar> Segment for CubicBezierSegment<S> {
    impl_segment!(S);

    fn for_each_flattened_with_t(
        &self,
        tolerance: Self::Scalar,
        callback: &mut dyn FnMut(&LineSegment<S>, Range<S>),
    ) {
        self.for_each_flattened_with_t(tolerance, &mut |s, t| callback(s, t));
    }
}

impl<S: Scalar> BoundingBox for CubicBezierSegment<S> {
    type Scalar = S;
    fn bounding_range_x(&self) -> (S, S) {
        self.bounding_range_x()
    }
    fn bounding_range_y(&self) -> (S, S) {
        self.bounding_range_y()
    }
    fn fast_bounding_range_x(&self) -> (S, S) {
        self.fast_bounding_range_x()
    }
    fn fast_bounding_range_y(&self) -> (S, S) {
        self.fast_bounding_range_y()
    }
}

use crate::quadratic_bezier::FlattenedT as FlattenedQuadraticSegment;

pub struct Flattened<S: Scalar> {
    curve: CubicBezierSegment<S>,
    current_curve: FlattenedQuadraticSegment<S>,
    remaining_sub_curves: i32,
    tolerance: S,
    range_step: S,
    range_start: S,
}

impl<S: Scalar> Flattened<S> {
    pub(crate) fn new(curve: &CubicBezierSegment<S>, tolerance: S) -> Self {
        debug_assert!(tolerance >= S::EPSILON * S::EPSILON);

        let quadratics_tolerance = tolerance * S::value(0.4);
        let flattening_tolerance = tolerance * S::value(0.8);

        let num_quadratics = curve.num_quadratics_impl(quadratics_tolerance);

        let range_step = S::ONE / num_quadratics;

        let quadratic = curve.split_range(S::ZERO..range_step).to_quadratic();
        let current_curve = FlattenedQuadraticSegment::new(&quadratic, flattening_tolerance);

        Flattened {
            curve: *curve,
            current_curve,
            remaining_sub_curves: num_quadratics.to_i32().unwrap() - 1,
            tolerance: flattening_tolerance,
            range_start: S::ZERO,
            range_step,
        }
    }
}

impl<S: Scalar> Iterator for Flattened<S> {
    type Item = Point<S>;

    fn next(&mut self) -> Option<Point<S>> {
        if let Some(t_inner) = self.current_curve.next() {
            let t = self.range_start + t_inner * self.range_step;
            return Some(self.curve.sample(t));
        }

        if self.remaining_sub_curves <= 0 {
            return None;
        }

        self.range_start += self.range_step;
        let t0 = self.range_start;
        let t1 = self.range_start + self.range_step;
        self.remaining_sub_curves -= 1;

        let quadratic = self.curve.split_range(t0..t1).to_quadratic();
        self.current_curve = FlattenedQuadraticSegment::new(&quadratic, self.tolerance);

        let t_inner = self.current_curve.next().unwrap_or(S::ONE);
        let t = t0 + t_inner * self.range_step;

        Some(self.curve.sample(t))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (
            self.remaining_sub_curves as usize * self.current_curve.size_hint().0,
            None,
        )
    }
}

#[cfg(test)]
fn print_arrays(a: &[Point<f32>], b: &[Point<f32>]) {
    std::println!("left:  {a:?}");
    std::println!("right: {b:?}");
}

#[cfg(test)]
fn assert_approx_eq(a: &[Point<f32>], b: &[Point<f32>]) {
    if a.len() != b.len() {
        print_arrays(a, b);
        panic!("Lengths differ ({} != {})", a.len(), b.len());
    }
    for i in 0..a.len() {
        let threshold = 0.029;
        let dx = f32::abs(a[i].x - b[i].x);
        let dy = f32::abs(a[i].y - b[i].y);
        if dx > threshold || dy > threshold {
            print_arrays(a, b);
            std::println!("diff = {dx:?} {dy:?}");
            panic!("The arrays are not equal");
        }
    }
}

#[test]
fn test_iterator_builder_1() {
    let tolerance = 0.01;
    let c1 = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(1.0, 0.0),
        ctrl2: Point::new(1.0, 1.0),
        to: Point::new(0.0, 1.0),
    };
    let iter_points: Vec<Point<f32>> = c1.flattened(tolerance).collect();
    let mut builder_points = Vec::new();
    c1.for_each_flattened(tolerance, &mut |s| {
        builder_points.push(s.to);
    });

    assert!(iter_points.len() > 2);
    assert_approx_eq(&iter_points[..], &builder_points[..]);
}

#[test]
fn test_iterator_builder_2() {
    let tolerance = 0.01;
    let c1 = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(1.0, 0.0),
        ctrl2: Point::new(0.0, 1.0),
        to: Point::new(1.0, 1.0),
    };
    let iter_points: Vec<Point<f32>> = c1.flattened(tolerance).collect();
    let mut builder_points = Vec::new();
    c1.for_each_flattened(tolerance, &mut |s| {
        builder_points.push(s.to);
    });

    assert!(iter_points.len() > 2);
    assert_approx_eq(&iter_points[..], &builder_points[..]);
}

#[test]
fn test_iterator_builder_3() {
    let tolerance = 0.01;
    let c1 = CubicBezierSegment {
        from: Point::new(141.0, 135.0),
        ctrl1: Point::new(141.0, 130.0),
        ctrl2: Point::new(140.0, 130.0),
        to: Point::new(131.0, 130.0),
    };
    let iter_points: Vec<Point<f32>> = c1.flattened(tolerance).collect();
    let mut builder_points = Vec::new();
    c1.for_each_flattened(tolerance, &mut |s| {
        builder_points.push(s.to);
    });

    assert!(iter_points.len() > 2);
    assert_approx_eq(&iter_points[..], &builder_points[..]);
}

#[test]
fn test_issue_19() {
    let tolerance = 0.15;
    let c1 = CubicBezierSegment {
        from: Point::new(11.71726, 9.07143),
        ctrl1: Point::new(1.889879, 13.22917),
        ctrl2: Point::new(18.142855, 19.27679),
        to: Point::new(18.142855, 19.27679),
    };
    let iter_points: Vec<Point<f32>> = c1.flattened(tolerance).collect();
    let mut builder_points = Vec::new();
    c1.for_each_flattened(tolerance, &mut |s| {
        builder_points.push(s.to);
    });

    assert_approx_eq(&iter_points[..], &builder_points[..]);

    assert!(iter_points.len() > 1);
}

#[test]
fn test_issue_194() {
    let segment = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(0.0, 0.0),
        ctrl2: Point::new(50.0, 70.0),
        to: Point::new(100.0, 100.0),
    };

    let mut points = Vec::new();
    segment.for_each_flattened(0.1, &mut |s| {
        points.push(s.to);
    });

    assert!(points.len() > 2);
}

#[test]
fn flatten_with_t() {
    let segment = CubicBezierSegment {
        from: Point::new(0.0f32, 0.0),
        ctrl1: Point::new(0.0, 0.0),
        ctrl2: Point::new(50.0, 70.0),
        to: Point::new(100.0, 100.0),
    };

    for tolerance in &[0.1, 0.01, 0.001, 0.0001] {
        let tolerance = *tolerance;

        let mut a = Vec::new();
        segment.for_each_flattened(tolerance, &mut |s| {
            a.push(*s);
        });

        let mut b = Vec::new();
        let mut ts = Vec::new();
        segment.for_each_flattened_with_t(tolerance, &mut |s, t| {
            b.push(*s);
            ts.push(t);
        });

        assert_eq!(a, b);

        for i in 0..b.len() {
            let sampled = segment.sample(ts[i].start);
            let point = b[i].from;
            let dist = (sampled - point).length();
            assert!(dist <= tolerance);

            let sampled = segment.sample(ts[i].end);
            let point = b[i].to;
            let dist = (sampled - point).length();
            assert!(dist <= tolerance);
        }
    }
}

#[test]
fn test_flatten_end() {
    let segment = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(100.0, 0.0),
        ctrl2: Point::new(100.0, 100.0),
        to: Point::new(100.0, 200.0),
    };

    let mut last = segment.from;
    segment.for_each_flattened(0.0001, &mut |s| {
        last = s.to;
    });

    assert_eq!(last, segment.to);
}

#[test]
fn test_flatten_point() {
    let segment = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(0.0, 0.0),
        ctrl2: Point::new(0.0, 0.0),
        to: Point::new(0.0, 0.0),
    };

    let mut last = segment.from;
    segment.for_each_flattened(0.0001, &mut |s| {
        last = s.to;
    });

    assert_eq!(last, segment.to);
}

#[test]
fn issue_652() {
    use crate::point;

    let curve = CubicBezierSegment {
        from: point(-1061.0, -3327.0),
        ctrl1: point(-1061.0, -3177.0),
        ctrl2: point(-1061.0, -3477.0),
        to: point(-1061.0, -3327.0),
    };

    for _ in curve.flattened(1.0) {}
    for _ in curve.flattened(0.1) {}
    for _ in curve.flattened(0.01) {}

    curve.for_each_flattened(1.0, &mut |_| {});
    curve.for_each_flattened(0.1, &mut |_| {});
    curve.for_each_flattened(0.01, &mut |_| {});
}

#[test]
fn fast_bounding_box_for_cubic_bezier_segment() {
    let a = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(0.5, 1.0),
        ctrl2: Point::new(1.5, -1.0),
        to: Point::new(2.0, 0.0),
    };

    let expected_aabb = Box2D {
        min: point(0.0, -1.0),
        max: point(2.0, 1.0),
    };

    let actual_aabb = a.fast_bounding_box();

    assert_eq!(expected_aabb, actual_aabb)
}

#[test]
fn minimum_bounding_box_for_cubic_bezier_segment() {
    let a = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(0.5, 2.0),
        ctrl2: Point::new(1.5, -2.0),
        to: Point::new(2.0, 0.0),
    };

    let expected_bigger_aabb: Box2D<f32> = Box2D {
        min: point(0.0, -0.6),
        max: point(2.0, 0.6),
    };
    let expected_smaller_aabb: Box2D<f32> = Box2D {
        min: point(0.1, -0.5),
        max: point(2.0, 0.5),
    };

    let actual_minimum_aabb = a.bounding_box();

    assert!(expected_bigger_aabb.contains_box(&actual_minimum_aabb));
    assert!(actual_minimum_aabb.contains_box(&expected_smaller_aabb));
}

#[test]
fn y_maximum_t_for_simple_cubic_segment() {
    let a = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(0.5, 1.0),
        ctrl2: Point::new(1.5, 1.0),
        to: Point::new(2.0, 2.0),
    };

    let expected_y_maximum = 1.0;

    let actual_y_maximum = a.y_maximum_t();

    assert_eq!(expected_y_maximum, actual_y_maximum)
}

#[test]
fn y_minimum_t_for_simple_cubic_segment() {
    let a = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(0.5, 1.0),
        ctrl2: Point::new(1.5, 1.0),
        to: Point::new(2.0, 0.0),
    };

    let expected_y_minimum = 0.0;

    let actual_y_minimum = a.y_minimum_t();

    assert_eq!(expected_y_minimum, actual_y_minimum)
}

#[test]
fn y_extrema_for_simple_cubic_segment() {
    let a = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(1.0, 2.0),
        ctrl2: Point::new(2.0, 2.0),
        to: Point::new(3.0, 0.0),
    };

    let mut n: u32 = 0;
    a.for_each_local_y_extremum_t(&mut |t| {
        assert_eq!(t, 0.5);
        n += 1;
    });
    assert_eq!(n, 1);
}

#[test]
fn x_extrema_for_simple_cubic_segment() {
    let a = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(1.0, 2.0),
        ctrl2: Point::new(1.0, 2.0),
        to: Point::new(0.0, 0.0),
    };

    let mut n: u32 = 0;
    a.for_each_local_x_extremum_t(&mut |t| {
        assert_eq!(t, 0.5);
        n += 1;
    });
    assert_eq!(n, 1);
}

#[test]
fn x_maximum_t_for_simple_cubic_segment() {
    let a = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(0.5, 1.0),
        ctrl2: Point::new(1.5, 1.0),
        to: Point::new(2.0, 0.0),
    };
    let expected_x_maximum = 1.0;

    let actual_x_maximum = a.x_maximum_t();

    assert_eq!(expected_x_maximum, actual_x_maximum)
}

#[test]
fn x_minimum_t_for_simple_cubic_segment() {
    let a = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(0.5, 1.0),
        ctrl2: Point::new(1.5, 1.0),
        to: Point::new(2.0, 0.0),
    };

    let expected_x_minimum = 0.0;

    let actual_x_minimum = a.x_minimum_t();

    assert_eq!(expected_x_minimum, actual_x_minimum)
}

#[test]
fn derivatives() {
    let c1 = CubicBezierSegment {
        from: Point::new(1.0, 1.0),
        ctrl1: Point::new(1.0, 2.0),
        ctrl2: Point::new(2.0, 1.0),
        to: Point::new(2.0, 2.0),
    };

    assert_eq!(c1.dx(0.0), 0.0);
    assert_eq!(c1.dx(1.0), 0.0);
    assert_eq!(c1.dy(0.5), 0.0);
}

#[test]
fn fat_line() {
    use crate::point;

    let c1 = CubicBezierSegment {
        from: point(1.0f32, 2.0),
        ctrl1: point(1.0, 3.0),
        ctrl2: point(11.0, 11.0),
        to: point(11.0, 12.0),
    };

    let (l1, l2) = c1.fat_line();

    for i in 0..100 {
        let t = i as f32 / 99.0;
        assert!(l1.signed_distance_to_point(&c1.sample(t)) >= -0.000001);
        assert!(l2.signed_distance_to_point(&c1.sample(t)) <= 0.000001);
    }

    let c2 = CubicBezierSegment {
        from: point(1.0f32, 2.0),
        ctrl1: point(1.0, 3.0),
        ctrl2: point(11.0, 14.0),
        to: point(11.0, 12.0),
    };

    let (l1, l2) = c2.fat_line();

    for i in 0..100 {
        let t = i as f32 / 99.0;
        assert!(l1.signed_distance_to_point(&c2.sample(t)) >= -0.000001);
        assert!(l2.signed_distance_to_point(&c2.sample(t)) <= 0.000001);
    }

    let c3 = CubicBezierSegment {
        from: point(0.0f32, 1.0),
        ctrl1: point(0.5, 0.0),
        ctrl2: point(0.5, 0.0),
        to: point(1.0, 1.0),
    };

    let (l1, l2) = c3.fat_line();

    for i in 0..100 {
        let t = i as f32 / 99.0;
        assert!(l1.signed_distance_to_point(&c3.sample(t)) >= -0.000001);
        assert!(l2.signed_distance_to_point(&c3.sample(t)) <= 0.000001);
    }
}

#[test]
fn is_linear() {
    let mut angle = 0.0;
    let center = Point::new(1000.0, -700.0);
    for _ in 0..100 {
        for i in 0..10 {
            for j in 0..10 {
                let (sin, cos) = f64::sin_cos(angle);
                let endpoint = Vector::new(cos * 100.0, sin * 100.0);
                let curve = CubicBezierSegment {
                    from: center - endpoint,
                    ctrl1: center + endpoint.lerp(-endpoint, i as f64 / 9.0),
                    ctrl2: center + endpoint.lerp(-endpoint, j as f64 / 9.0),
                    to: center + endpoint,
                };
                assert!(curve.is_linear(1e-10));
            }
        }
        angle += 0.001;
    }
}

#[test]
fn test_monotonic() {
    use crate::point;
    let curve = CubicBezierSegment {
        from: point(1.0, 1.0),
        ctrl1: point(10.0, 2.0),
        ctrl2: point(1.0, 3.0),
        to: point(10.0, 4.0),
    };

    curve.for_each_monotonic_range(&mut |range| {
        let sub_curve = curve.split_range(range);
        assert!(sub_curve.is_monotonic());
    });
}

#[test]
fn test_line_segment_intersections() {
    use crate::point;
    fn assert_approx_eq(a: ArrayVec<(f32, f32), 3>, b: &[(f32, f32)], epsilon: f32) {
        for i in 0..a.len() {
            if f32::abs(a[i].0 - b[i].0) > epsilon || f32::abs(a[i].1 - b[i].1) > epsilon {
                std::println!("{a:?} != {b:?}");
            }
            assert!((a[i].0 - b[i].0).abs() <= epsilon && (a[i].1 - b[i].1).abs() <= epsilon);
        }
        assert_eq!(a.len(), b.len());
    }

    let epsilon = 0.0001;

    // Make sure we find intersections with horizontal and vertical lines.

    let curve1 = CubicBezierSegment {
        from: point(-1.0, -1.0),
        ctrl1: point(0.0, 4.0),
        ctrl2: point(10.0, -4.0),
        to: point(11.0, 1.0),
    };
    let seg1 = LineSegment {
        from: point(0.0, 0.0),
        to: point(10.0, 0.0),
    };
    assert_approx_eq(
        curve1.line_segment_intersections_t(&seg1),
        &[(0.5, 0.5)],
        epsilon,
    );

    let curve2 = CubicBezierSegment {
        from: point(-1.0, 0.0),
        ctrl1: point(0.0, 5.0),
        ctrl2: point(0.0, 5.0),
        to: point(1.0, 0.0),
    };
    let seg2 = LineSegment {
        from: point(0.0, 0.0),
        to: point(0.0, 5.0),
    };
    assert_approx_eq(
        curve2.line_segment_intersections_t(&seg2),
        &[(0.5, 0.75)],
        epsilon,
    );
}

#[test]
fn test_parameters_for_value() {
    use crate::point;
    fn assert_approx_eq(a: ArrayVec<f32, 3>, b: &[f32], epsilon: f32) {
        for i in 0..a.len() {
            if f32::abs(a[i] - b[i]) > epsilon {
                std::println!("{a:?} != {b:?}");
            }
            assert!((a[i] - b[i]).abs() <= epsilon);
        }
        assert_eq!(a.len(), b.len());
    }

    {
        let curve = CubicBezierSegment {
            from: point(0.0, 0.0),
            ctrl1: point(0.0, 8.0),
            ctrl2: point(10.0, 8.0),
            to: point(10.0, 0.0),
        };

        let epsilon = 1e-4;
        assert_approx_eq(curve.solve_t_for_x(5.0), &[0.5], epsilon);
        assert_approx_eq(curve.solve_t_for_y(6.0), &[0.5], epsilon);
    }
    {
        let curve = CubicBezierSegment {
            from: point(0.0, 10.0),
            ctrl1: point(0.0, 10.0),
            ctrl2: point(10.0, 10.0),
            to: point(10.0, 10.0),
        };

        assert_approx_eq(curve.solve_t_for_y(10.0), &[], 0.0);
    }
}

#[test]
fn test_cubic_intersection_deduping() {
    use crate::point;

    let epsilon = 0.0001;

    // Two "line segments" with 3-fold overlaps, intersecting in their overlaps for a total of nine
    // parameter intersections.
    let line1 = CubicBezierSegment {
        from: point(-1_000_000.0, 0.0),
        ctrl1: point(2_000_000.0, 3_000_000.0),
        ctrl2: point(-2_000_000.0, -1_000_000.0),
        to: point(1_000_000.0, 2_000_000.0),
    };
    let line2 = CubicBezierSegment {
        from: point(-1_000_000.0, 2_000_000.0),
        ctrl1: point(2_000_000.0, -1_000_000.0),
        ctrl2: point(-2_000_000.0, 3_000_000.0),
        to: point(1_000_000.0, 0.0),
    };
    let intersections = line1.cubic_intersections(&line2);
    // (If you increase the coordinates above to 10s of millions, you get two returned intersection
    // points; i.e. the test fails.)
    assert_eq!(intersections.len(), 1);
    assert!(f64::abs(intersections[0].x) < epsilon);
    assert!(f64::abs(intersections[0].y - 1_000_000.0) < epsilon);

    // Two self-intersecting curves that intersect in their self-intersections, for a total of four
    // parameter intersections.
    let curve1 = CubicBezierSegment {
        from: point(-10.0, -13.636363636363636),
        ctrl1: point(15.0, 11.363636363636363),
        ctrl2: point(-15.0, 11.363636363636363),
        to: point(10.0, -13.636363636363636),
    };
    let curve2 = CubicBezierSegment {
        from: point(13.636363636363636, -10.0),
        ctrl1: point(-11.363636363636363, 15.0),
        ctrl2: point(-11.363636363636363, -15.0),
        to: point(13.636363636363636, 10.0),
    };
    let intersections = curve1.cubic_intersections(&curve2);
    assert_eq!(intersections.len(), 1);
    assert!(f64::abs(intersections[0].x) < epsilon);
    assert!(f64::abs(intersections[0].y) < epsilon);
}

#[test]
fn cubic_line_intersection_on_endpoint() {
    let l1 = LineSegment {
        from: Point::new(0.0, -100.0),
        to: Point::new(0.0, 100.0),
    };

    let cubic = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(20.0, 20.0),
        ctrl2: Point::new(20.0, 40.0),
        to: Point::new(0.0, 60.0),
    };

    let intersections = cubic.line_segment_intersections_t(&l1);

    assert_eq!(intersections.len(), 2);
    assert_eq!(intersections[0], (1.0, 0.8));
    assert_eq!(intersections[1], (0.0, 0.5));

    let l2 = LineSegment {
        from: Point::new(0.0, 0.0),
        to: Point::new(0.0, 60.0),
    };

    let intersections = cubic.line_segment_intersections_t(&l2);

    assert!(intersections.is_empty());

    let c1 = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(20.0, 0.0),
        ctrl2: Point::new(20.0, 20.0),
        to: Point::new(0.0, 60.0),
    };

    let c2 = CubicBezierSegment {
        from: Point::new(0.0, 60.0),
        ctrl1: Point::new(-40.0, 4.0),
        ctrl2: Point::new(-20.0, 20.0),
        to: Point::new(0.0, 00.0),
    };

    let intersections = c1.cubic_intersections_t(&c2);

    assert!(intersections.is_empty());
}

#[test]
fn test_cubic_to_quadratics() {
    use euclid::approxeq::ApproxEq;

    let quadratic = QuadraticBezierSegment {
        from: point(1.0, 2.0),
        ctrl: point(10.0, 5.0),
        to: point(0.0, 1.0),
    };

    let mut count = 0;
    assert_eq!(quadratic.to_cubic().num_quadratics(0.0001), 1);
    quadratic
        .to_cubic()
        .for_each_quadratic_bezier(0.0001, &mut |c| {
            assert_eq!(count, 0);
            assert!(c.from.approx_eq(&quadratic.from));
            assert!(c.ctrl.approx_eq(&quadratic.ctrl));
            assert!(c.to.approx_eq(&quadratic.to));
            count += 1;
        });

    let cubic = CubicBezierSegment {
        from: point(1.0f32, 1.0),
        ctrl1: point(10.0, 2.0),
        ctrl2: point(1.0, 3.0),
        to: point(10.0, 4.0),
    };

    let mut prev = cubic.from;
    let mut count = 0;
    cubic.for_each_quadratic_bezier(0.01, &mut |c| {
        assert!(c.from.approx_eq(&prev));
        prev = c.to;
        count += 1;
    });
    assert!(prev.approx_eq(&cubic.to));
    assert!(count < 10);
    assert!(count > 4);
}