lyon_path/
iterator.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
//! Tools to iterate over paths.
//!
//! # Lyon path iterators
//!
//! ## Overview
//!
//! This module provides a collection of traits to extend the `Iterator` trait when
//! iterating over paths.
//!
//! ## Examples
//!
//! ```
//! use lyon_path::iterator::*;
//! use lyon_path::math::{point, vector};
//! use lyon_path::{Path, PathEvent};
//!
//! // Start with a path.
//! let mut builder = Path::builder();
//! builder.begin(point(0.0, 0.0));
//! builder.line_to(point(10.0, 0.0));
//! builder.cubic_bezier_to(point(10.0, 10.0), point(0.0, 10.0), point(0.0, 5.0));
//! builder.end(true);
//! let path = builder.build();
//!
//! // A simple std::iter::Iterator<PathEvent>,
//! let simple_iter = path.iter();
//!
//! // Make it an iterator over simpler primitives flattened events,
//! // which do not contain any curve. To do so we approximate each curve
//! // linear segments according to a tolerance threshold which controls
//! // the tradeoff between fidelity of the approximation and amount of
//! // generated events. Let's use a tolerance threshold of 0.01.
//! // The beauty of this approach is that the flattening happens lazily
//! // while iterating without allocating memory for the path.
//! let flattened_iter = path.iter().flattened(0.01);
//!
//! for evt in flattened_iter {
//!     match evt {
//!         PathEvent::Begin { at } => { println!(" - move to {:?}", at); }
//!         PathEvent::Line { from, to } => { println!(" - line {:?} -> {:?}", from, to); }
//!         PathEvent::End { last, first, close } => {
//!             if close {
//!                 println!(" - close {:?} -> {:?}", last, first);
//!             } else {
//!                 println!(" - end");
//!             }
//!         }
//!         _ => { panic!() }
//!     }
//! }
//! ```
//!
//! Chaining the provided iterators allow performing some path manipulations lazily
//! without allocating actual path objects to hold the result of the transformations.
//!
//! ```
//! extern crate lyon_path;
//! use lyon_path::iterator::*;
//! use lyon_path::math::{point, Angle, Rotation};
//! use lyon_path::Path;
//!
//! fn main() {
//!     // In practice it is more common to iterate over Path objects than vectors
//!     // of SVG commands (the former can be constructed from the latter).
//!     let mut builder = Path::builder();
//!     builder.begin(point(1.0, 1.0));
//!     builder.line_to(point(2.0, 1.0));
//!     builder.quadratic_bezier_to(point(2.0, 2.0), point(1.0, 2.0));
//!     builder.cubic_bezier_to(point(0.0, 2.0), point(0.0, 0.0), point(1.0, 0.0));
//!     builder.end(true);
//!     let path = builder.build();
//!
//!     let transform = Rotation::new(Angle::radians(1.0));
//!
//!     for evt in path.iter().transformed(&transform).flattened(0.1) {
//!         // ...
//!     }
//! }
//! ```

use crate::geom::traits::Transformation;
use crate::geom::{cubic_bezier, quadratic_bezier, CubicBezierSegment, QuadraticBezierSegment};
use crate::math::*;
use crate::{Attributes, Event, PathEvent};

// TODO: It would be great to add support for attributes in PathIterator.

/// An extension trait for `PathEvent` iterators.
pub trait PathIterator: Iterator<Item = PathEvent> + Sized {
    /// Returns an iterator that turns curves into line segments.
    fn flattened(self, tolerance: f32) -> Flattened<Self> {
        Flattened::new(tolerance, self)
    }

    /// Returns an iterator applying a 2D transform to all of its events.
    fn transformed<T: Transformation<f32>>(self, mat: &T) -> Transformed<Self, T> {
        Transformed::new(mat, self)
    }
}

impl<Iter> PathIterator for Iter where Iter: Iterator<Item = PathEvent> {}

pub struct NoAttributes<Iter>(pub(crate) Iter);

impl<'l, Iter> NoAttributes<Iter>
where
    Iter: Iterator<Item = Event<(Point, Attributes<'l>), Point>>,
{
    pub fn with_attributes(self) -> Iter {
        self.0
    }
}

impl<'l, Iter> Iterator for NoAttributes<Iter>
where
    Iter: Iterator<Item = Event<(Point, Attributes<'l>), Point>>,
{
    type Item = PathEvent;
    fn next(&mut self) -> Option<PathEvent> {
        self.0.next().map(|event| event.with_points())
    }
}

/// An iterator that consumes `Event` iterator and yields flattened path events (with no curves).
pub struct Flattened<Iter> {
    it: Iter,
    current_position: Point,
    current_curve: TmpFlatteningIter,
    tolerance: f32,
}

enum TmpFlatteningIter {
    Quadratic(quadratic_bezier::Flattened<f32>),
    Cubic(cubic_bezier::Flattened<f32>),
    None,
}

impl<Iter: Iterator<Item = PathEvent>> Flattened<Iter> {
    /// Create the iterator.
    pub fn new(tolerance: f32, it: Iter) -> Self {
        Flattened {
            it,
            current_position: point(0.0, 0.0),
            current_curve: TmpFlatteningIter::None,
            tolerance,
        }
    }
}

impl<Iter> Iterator for Flattened<Iter>
where
    Iter: Iterator<Item = PathEvent>,
{
    type Item = PathEvent;
    fn next(&mut self) -> Option<PathEvent> {
        match self.current_curve {
            TmpFlatteningIter::Quadratic(ref mut it) => {
                if let Some(to) = it.next() {
                    let from = self.current_position;
                    self.current_position = to;
                    return Some(PathEvent::Line { from, to });
                }
            }
            TmpFlatteningIter::Cubic(ref mut it) => {
                if let Some(to) = it.next() {
                    let from = self.current_position;
                    self.current_position = to;
                    return Some(PathEvent::Line { from, to });
                }
            }
            _ => {}
        }
        self.current_curve = TmpFlatteningIter::None;
        match self.it.next() {
            Some(PathEvent::Begin { at }) => Some(PathEvent::Begin { at }),
            Some(PathEvent::Line { from, to }) => Some(PathEvent::Line { from, to }),
            Some(PathEvent::End { last, first, close }) => {
                Some(PathEvent::End { last, first, close })
            }
            Some(PathEvent::Quadratic { from, ctrl, to }) => {
                self.current_position = from;
                self.current_curve = TmpFlatteningIter::Quadratic(
                    QuadraticBezierSegment { from, ctrl, to }.flattened(self.tolerance),
                );
                self.next()
            }
            Some(PathEvent::Cubic {
                from,
                ctrl1,
                ctrl2,
                to,
            }) => {
                self.current_position = from;
                self.current_curve = TmpFlatteningIter::Cubic(
                    CubicBezierSegment {
                        from,
                        ctrl1,
                        ctrl2,
                        to,
                    }
                    .flattened(self.tolerance),
                );
                self.next()
            }
            None => None,
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        // At minimum, the inner iterator size hint plus the flattening iterator size hint can form the lower
        // bracket.
        // We can't determine a maximum limit.
        let mut lo = self.it.size_hint().0;
        match &self.current_curve {
            TmpFlatteningIter::Quadratic(t) => {
                lo += t.size_hint().0;
            }
            TmpFlatteningIter::Cubic(t) => {
                lo += t.size_hint().0;
            }
            _ => {}
        }
        (lo, None)
    }
}

/// Applies a 2D transform to a path iterator and yields the resulting path iterator.
pub struct Transformed<'l, I, T> {
    it: I,
    transform: &'l T,
}

impl<'l, I, T: Transformation<f32>> Transformed<'l, I, T>
where
    I: Iterator<Item = PathEvent>,
{
    /// Creates a new transformed path iterator from a path iterator.
    #[inline]
    pub fn new(transform: &'l T, it: I) -> Transformed<'l, I, T> {
        Transformed { it, transform }
    }
}

impl<'l, I, T> Iterator for Transformed<'l, I, T>
where
    I: Iterator<Item = PathEvent>,
    T: Transformation<f32>,
{
    type Item = PathEvent;
    fn next(&mut self) -> Option<PathEvent> {
        match self.it.next() {
            None => None,
            Some(ref evt) => Some(evt.transformed(self.transform)),
        }
    }
}

/// An iterator that consumes an iterator of `Point`s and produces `Event`s.
///
/// # Example
///
/// ```
/// # extern crate lyon_path;
/// # use lyon_path::iterator::FromPolyline;
/// # use lyon_path::math::point;
/// # fn main() {
/// let points = [
///     point(1.0, 1.0),
///     point(2.0, 1.0),
///     point(1.0, 2.0)
/// ];
/// let iter = FromPolyline::closed(points.iter().cloned());
/// # }
/// ```
pub struct FromPolyline<Iter> {
    iter: Iter,
    current: Point,
    first: Point,
    is_first: bool,
    done: bool,
    close: bool,
}

impl<Iter: Iterator<Item = Point>> FromPolyline<Iter> {
    pub fn new(close: bool, iter: Iter) -> Self {
        FromPolyline {
            iter,
            current: point(0.0, 0.0),
            first: point(0.0, 0.0),
            is_first: true,
            done: false,
            close,
        }
    }

    pub fn closed(iter: Iter) -> Self {
        FromPolyline::new(true, iter)
    }

    pub fn open(iter: Iter) -> Self {
        FromPolyline::new(false, iter)
    }
}

impl<Iter> Iterator for FromPolyline<Iter>
where
    Iter: Iterator<Item = Point>,
{
    type Item = PathEvent;

    fn next(&mut self) -> Option<PathEvent> {
        if self.done {
            return None;
        }

        if let Some(next) = self.iter.next() {
            debug_assert!(next.x.is_finite());
            debug_assert!(next.y.is_finite());
            let from = self.current;
            self.current = next;
            return if self.is_first {
                self.is_first = false;
                self.first = next;
                Some(PathEvent::Begin { at: next })
            } else {
                Some(PathEvent::Line { from, to: next })
            };
        }

        self.done = true;

        Some(PathEvent::End {
            last: self.current,
            first: self.first,
            close: self.close,
        })
    }
}

#[test]
fn test_from_polyline_open() {
    let points = &[
        point(1.0, 1.0),
        point(3.0, 1.0),
        point(4.0, 5.0),
        point(5.0, 2.0),
    ];

    let mut evts = FromPolyline::open(points.iter().cloned());

    assert_eq!(
        evts.next(),
        Some(PathEvent::Begin {
            at: point(1.0, 1.0)
        })
    );
    assert_eq!(
        evts.next(),
        Some(PathEvent::Line {
            from: point(1.0, 1.0),
            to: point(3.0, 1.0)
        })
    );
    assert_eq!(
        evts.next(),
        Some(PathEvent::Line {
            from: point(3.0, 1.0),
            to: point(4.0, 5.0)
        })
    );
    assert_eq!(
        evts.next(),
        Some(PathEvent::Line {
            from: point(4.0, 5.0),
            to: point(5.0, 2.0)
        })
    );
    assert_eq!(
        evts.next(),
        Some(PathEvent::End {
            last: point(5.0, 2.0),
            first: point(1.0, 1.0),
            close: false
        })
    );
    assert_eq!(evts.next(), None);
}

#[test]
fn test_from_polyline_closed() {
    let points = &[
        point(1.0, 1.0),
        point(3.0, 1.0),
        point(4.0, 5.0),
        point(5.0, 2.0),
    ];

    let mut evts = FromPolyline::closed(points.iter().cloned());

    assert_eq!(
        evts.next(),
        Some(PathEvent::Begin {
            at: point(1.0, 1.0)
        })
    );
    assert_eq!(
        evts.next(),
        Some(PathEvent::Line {
            from: point(1.0, 1.0),
            to: point(3.0, 1.0)
        })
    );
    assert_eq!(
        evts.next(),
        Some(PathEvent::Line {
            from: point(3.0, 1.0),
            to: point(4.0, 5.0)
        })
    );
    assert_eq!(
        evts.next(),
        Some(PathEvent::Line {
            from: point(4.0, 5.0),
            to: point(5.0, 2.0)
        })
    );
    assert_eq!(
        evts.next(),
        Some(PathEvent::End {
            last: point(5.0, 2.0),
            first: point(1.0, 1.0),
            close: true
        })
    );
    assert_eq!(evts.next(), None);
}