memmap2/advice.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
/// Values supported by [`Mmap::advise`][crate::Mmap::advise] and [`MmapMut::advise`][crate::MmapMut::advise] functions.
///
/// See [madvise()](https://man7.org/linux/man-pages/man2/madvise.2.html) map page.
#[repr(i32)]
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub enum Advice {
/// **MADV_NORMAL**
///
/// No special treatment. This is the default.
Normal = libc::MADV_NORMAL,
/// **MADV_RANDOM**
///
/// Expect page references in random order. (Hence, read
/// ahead may be less useful than normally.)
Random = libc::MADV_RANDOM,
/// **MADV_SEQUENTIAL**
///
/// Expect page references in sequential order. (Hence, pages
/// in the given range can be aggressively read ahead, and may
/// be freed soon after they are accessed.)
Sequential = libc::MADV_SEQUENTIAL,
/// **MADV_WILLNEED**
///
/// Expect access in the near future. (Hence, it might be a
/// good idea to read some pages ahead.)
WillNeed = libc::MADV_WILLNEED,
/// **MADV_DONTFORK** - Linux only (since Linux 2.6.16)
///
/// Do not make the pages in this range available to the child
/// after a fork(2). This is useful to prevent copy-on-write
/// semantics from changing the physical location of a page if
/// the parent writes to it after a fork(2). (Such page
/// relocations cause problems for hardware that DMAs into the
/// page.)
#[cfg(target_os = "linux")]
DontFork = libc::MADV_DONTFORK,
/// **MADV_DOFORK** - Linux only (since Linux 2.6.16)
///
/// Undo the effect of MADV_DONTFORK, restoring the default
/// behavior, whereby a mapping is inherited across fork(2).
#[cfg(target_os = "linux")]
DoFork = libc::MADV_DOFORK,
/// **MADV_MERGEABLE** - Linux only (since Linux 2.6.32)
///
/// Enable Kernel Samepage Merging (KSM) for the pages in the
/// range specified by addr and length. The kernel regularly
/// scans those areas of user memory that have been marked as
/// mergeable, looking for pages with identical content.
/// These are replaced by a single write-protected page (which
/// is automatically copied if a process later wants to update
/// the content of the page). KSM merges only private
/// anonymous pages (see mmap(2)).
///
/// The KSM feature is intended for applications that generate
/// many instances of the same data (e.g., virtualization
/// systems such as KVM). It can consume a lot of processing
/// power; use with care. See the Linux kernel source file
/// Documentation/admin-guide/mm/ksm.rst for more details.
///
/// The MADV_MERGEABLE and MADV_UNMERGEABLE operations are
/// available only if the kernel was configured with
/// CONFIG_KSM.
#[cfg(target_os = "linux")]
Mergeable = libc::MADV_MERGEABLE,
/// **MADV_UNMERGEABLE** - Linux only (since Linux 2.6.32)
///
/// Undo the effect of an earlier MADV_MERGEABLE operation on
/// the specified address range; KSM unmerges whatever pages
/// it had merged in the address range specified by addr and
/// length.
#[cfg(target_os = "linux")]
Unmergeable = libc::MADV_UNMERGEABLE,
/// **MADV_HUGEPAGE** - Linux only (since Linux 2.6.38)
///
/// Enable Transparent Huge Pages (THP) for pages in the range
/// specified by addr and length. Currently, Transparent Huge
/// Pages work only with private anonymous pages (see
/// mmap(2)). The kernel will regularly scan the areas marked
/// as huge page candidates to replace them with huge pages.
/// The kernel will also allocate huge pages directly when the
/// region is naturally aligned to the huge page size (see
/// posix_memalign(2)).
///
/// This feature is primarily aimed at applications that use
/// large mappings of data and access large regions of that
/// memory at a time (e.g., virtualization systems such as
/// QEMU). It can very easily waste memory (e.g., a 2 MB
/// mapping that only ever accesses 1 byte will result in 2 MB
/// of wired memory instead of one 4 KB page). See the Linux
/// kernel source file
/// Documentation/admin-guide/mm/transhuge.rst for more
/// details.
///
/// Most common kernels configurations provide MADV_HUGEPAGE-
/// style behavior by default, and thus MADV_HUGEPAGE is
/// normally not necessary. It is mostly intended for
/// embedded systems, where MADV_HUGEPAGE-style behavior may
/// not be enabled by default in the kernel. On such systems,
/// this flag can be used in order to selectively enable THP.
/// Whenever MADV_HUGEPAGE is used, it should always be in
/// regions of memory with an access pattern that the
/// developer knows in advance won't risk to increase the
/// memory footprint of the application when transparent
/// hugepages are enabled.
///
/// The MADV_HUGEPAGE and MADV_NOHUGEPAGE operations are
/// available only if the kernel was configured with
/// CONFIG_TRANSPARENT_HUGEPAGE.
#[cfg(target_os = "linux")]
HugePage = libc::MADV_HUGEPAGE,
/// **MADV_NOHUGEPAGE** - Linux only (since Linux 2.6.38)
///
/// Ensures that memory in the address range specified by addr
/// and length will not be backed by transparent hugepages.
#[cfg(target_os = "linux")]
NoHugePage = libc::MADV_NOHUGEPAGE,
/// **MADV_DONTDUMP** - Linux only (since Linux 3.4)
///
/// Exclude from a core dump those pages in the range
/// specified by addr and length. This is useful in
/// applications that have large areas of memory that are
/// known not to be useful in a core dump. The effect of
/// **MADV_DONTDUMP** takes precedence over the bit mask that is
/// set via the `/proc/[pid]/coredump_filter` file (see
/// core(5)).
#[cfg(target_os = "linux")]
DontDump = libc::MADV_DONTDUMP,
/// **MADV_DODUMP** - Linux only (since Linux 3.4)
///
/// Undo the effect of an earlier MADV_DONTDUMP.
#[cfg(target_os = "linux")]
DoDump = libc::MADV_DODUMP,
/// **MADV_HWPOISON** - Linux only (since Linux 2.6.32)
///
/// Poison the pages in the range specified by addr and length
/// and handle subsequent references to those pages like a
/// hardware memory corruption. This operation is available
/// only for privileged (CAP_SYS_ADMIN) processes. This
/// operation may result in the calling process receiving a
/// SIGBUS and the page being unmapped.
///
/// This feature is intended for testing of memory error-
/// handling code; it is available only if the kernel was
/// configured with CONFIG_MEMORY_FAILURE.
#[cfg(target_os = "linux")]
HwPoison = libc::MADV_HWPOISON,
/// **MADV_POPULATE_READ** - Linux only (since Linux 5.14)
///
/// Populate (prefault) page tables readable, faulting in all
/// pages in the range just as if manually reading from each
/// page; however, avoid the actual memory access that would have
/// been performed after handling the fault.
///
/// In contrast to MAP_POPULATE, MADV_POPULATE_READ does not hide
/// errors, can be applied to (parts of) existing mappings and
/// will always populate (prefault) page tables readable. One
/// example use case is prefaulting a file mapping, reading all
/// file content from disk; however, pages won't be dirtied and
/// consequently won't have to be written back to disk when
/// evicting the pages from memory.
///
/// Depending on the underlying mapping, map the shared zeropage,
/// preallocate memory or read the underlying file; files with
/// holes might or might not preallocate blocks. If populating
/// fails, a SIGBUS signal is not generated; instead, an error is
/// returned.
///
/// If MADV_POPULATE_READ succeeds, all page tables have been
/// populated (prefaulted) readable once. If MADV_POPULATE_READ
/// fails, some page tables might have been populated.
///
/// MADV_POPULATE_READ cannot be applied to mappings without read
/// permissions and special mappings, for example, mappings
/// marked with kernel-internal flags such as VM_PFNMAP or VM_IO,
/// or secret memory regions created using memfd_secret(2).
///
/// Note that with MADV_POPULATE_READ, the process can be killed
/// at any moment when the system runs out of memory.
#[cfg(target_os = "linux")]
PopulateRead = libc::MADV_POPULATE_READ,
/// **MADV_POPULATE_WRITE** - Linux only (since Linux 5.14)
///
/// Populate (prefault) page tables writable, faulting in all
/// pages in the range just as if manually writing to each each
/// page; however, avoid the actual memory access that would have
/// been performed after handling the fault.
///
/// In contrast to MAP_POPULATE, MADV_POPULATE_WRITE does not
/// hide errors, can be applied to (parts of) existing mappings
/// and will always populate (prefault) page tables writable.
/// One example use case is preallocating memory, breaking any
/// CoW (Copy on Write).
///
/// Depending on the underlying mapping, preallocate memory or
/// read the underlying file; files with holes will preallocate
/// blocks. If populating fails, a SIGBUS signal is not gener‐
/// ated; instead, an error is returned.
///
/// If MADV_POPULATE_WRITE succeeds, all page tables have been
/// populated (prefaulted) writable once. If MADV_POPULATE_WRITE
/// fails, some page tables might have been populated.
///
/// MADV_POPULATE_WRITE cannot be applied to mappings without
/// write permissions and special mappings, for example, mappings
/// marked with kernel-internal flags such as VM_PFNMAP or VM_IO,
/// or secret memory regions created using memfd_secret(2).
///
/// Note that with MADV_POPULATE_WRITE, the process can be killed
/// at any moment when the system runs out of memory.
#[cfg(target_os = "linux")]
PopulateWrite = libc::MADV_POPULATE_WRITE,
/// **MADV_ZERO_WIRED_PAGES** - Darwin only
///
/// Indicates that the application would like the wired pages in this address range to be
/// zeroed out if the address range is deallocated without first unwiring the pages (i.e.
/// a munmap(2) without a preceding munlock(2) or the application quits). This is used
/// with madvise() system call.
#[cfg(any(target_os = "macos", target_os = "ios"))]
ZeroWiredPages = libc::MADV_ZERO_WIRED_PAGES,
}
/// Values supported by [`Mmap::unsafe_advise`][crate::Mmap::unsafe_advise] and [`MmapMut::unsafe_advise`][crate::MmapMut::unsafe_advise] functions.
///
/// These flags can be passed to the [madvise (2)][man_page] system call
/// and effects on the mapped pages which are conceptually writes,
/// i.e. the change the observable contents of these pages which
/// implies undefined behaviour if the mapping is still borrowed.
///
/// Hence, these potentially unsafe flags must be used with the unsafe
/// methods and the programmer has to justify that the code
/// does not keep any borrows of the mapping active while the mapped pages
/// are updated by the kernel's memory management subsystem.
///
/// [man_page]: https://man7.org/linux/man-pages/man2/madvise.2.html
#[repr(i32)]
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub enum UncheckedAdvice {
/// **MADV_DONTNEED**
///
/// Do not expect access in the near future. (For the time
/// being, the application is finished with the given range,
/// so the kernel can free resources associated with it.)
///
/// After a successful MADV_DONTNEED operation, the semantics
/// of memory access in the specified region are changed:
/// subsequent accesses of pages in the range will succeed,
/// but will result in either repopulating the memory contents
/// from the up-to-date contents of the underlying mapped file
/// (for shared file mappings, shared anonymous mappings, and
/// shmem-based techniques such as System V shared memory
/// segments) or zero-fill-on-demand pages for anonymous
/// private mappings.
///
/// Note that, when applied to shared mappings, MADV_DONTNEED
/// might not lead to immediate freeing of the pages in the
/// range. The kernel is free to delay freeing the pages
/// until an appropriate moment. The resident set size (RSS)
/// of the calling process will be immediately reduced
/// however.
///
/// **MADV_DONTNEED** cannot be applied to locked pages, Huge TLB
/// pages, or VM_PFNMAP pages. (Pages marked with the kernel-
/// internal VM_PFNMAP flag are special memory areas that are
/// not managed by the virtual memory subsystem. Such pages
/// are typically created by device drivers that map the pages
/// into user space.)
///
/// # Safety
///
/// Using the returned value with conceptually write to the
/// mapped pages, i.e. borrowing the mapping when the pages
/// are freed results in undefined behaviour.
DontNeed = libc::MADV_DONTNEED,
//
// The rest are Linux-specific
//
/// **MADV_FREE** - Linux (since Linux 4.5) and Darwin
///
/// The application no longer requires the pages in the range
/// specified by addr and len. The kernel can thus free these
/// pages, but the freeing could be delayed until memory
/// pressure occurs. For each of the pages that has been
/// marked to be freed but has not yet been freed, the free
/// operation will be canceled if the caller writes into the
/// page. After a successful MADV_FREE operation, any stale
/// data (i.e., dirty, unwritten pages) will be lost when the
/// kernel frees the pages. However, subsequent writes to
/// pages in the range will succeed and then kernel cannot
/// free those dirtied pages, so that the caller can always
/// see just written data. If there is no subsequent write,
/// the kernel can free the pages at any time. Once pages in
/// the range have been freed, the caller will see zero-fill-
/// on-demand pages upon subsequent page references.
///
/// The MADV_FREE operation can be applied only to private
/// anonymous pages (see mmap(2)). In Linux before version
/// 4.12, when freeing pages on a swapless system, the pages
/// in the given range are freed instantly, regardless of
/// memory pressure.
///
/// # Safety
///
/// Using the returned value with conceptually write to the
/// mapped pages, i.e. borrowing the mapping while the pages
/// are still being freed results in undefined behaviour.
#[cfg(any(target_os = "linux", target_os = "macos", target_os = "ios"))]
Free = libc::MADV_FREE,
/// **MADV_REMOVE** - Linux only (since Linux 2.6.16)
///
/// Free up a given range of pages and its associated backing
/// store. This is equivalent to punching a hole in the
/// corresponding byte range of the backing store (see
/// fallocate(2)). Subsequent accesses in the specified
/// address range will see bytes containing zero.
///
/// The specified address range must be mapped shared and
/// writable. This flag cannot be applied to locked pages,
/// Huge TLB pages, or VM_PFNMAP pages.
///
/// In the initial implementation, only tmpfs(5) was supported
/// **MADV_REMOVE**; but since Linux 3.5, any filesystem which
/// supports the fallocate(2) FALLOC_FL_PUNCH_HOLE mode also
/// supports MADV_REMOVE. Hugetlbfs fails with the error
/// EINVAL and other filesystems fail with the error
/// EOPNOTSUPP.
///
/// # Safety
///
/// Using the returned value with conceptually write to the
/// mapped pages, i.e. borrowing the mapping when the pages
/// are freed results in undefined behaviour.
#[cfg(target_os = "linux")]
Remove = libc::MADV_REMOVE,
/// **MADV_FREE_REUSABLE** - Darwin only
///
/// Behaves like **MADV_FREE**, but the freed pages are accounted for in the RSS of the process.
///
/// # Safety
///
/// Using the returned value with conceptually write to the
/// mapped pages, i.e. borrowing the mapping while the pages
/// are still being freed results in undefined behaviour.
#[cfg(any(target_os = "macos", target_os = "ios"))]
FreeReusable = libc::MADV_FREE_REUSABLE,
/// **MADV_FREE_REUSE** - Darwin only
///
/// Marks a memory region previously freed by **MADV_FREE_REUSABLE** as non-reusable, accounts
/// for the pages in the RSS of the process. Pages that have been freed will be replaced by
/// zero-filled pages on demand, other pages will be left as is.
///
/// # Safety
///
/// Using the returned value with conceptually write to the
/// mapped pages, i.e. borrowing the mapping while the pages
/// are still being freed results in undefined behaviour.
#[cfg(any(target_os = "macos", target_os = "ios"))]
FreeReuse = libc::MADV_FREE_REUSE,
}
// Future expansion:
// MADV_SOFT_OFFLINE (since Linux 2.6.33)
// MADV_WIPEONFORK (since Linux 4.14)
// MADV_KEEPONFORK (since Linux 4.14)
// MADV_COLD (since Linux 5.4)
// MADV_PAGEOUT (since Linux 5.4)
#[cfg(target_os = "linux")]
impl Advice {
/// Performs a runtime check if this advice is supported by the kernel.
/// Only supported on Linux. See the [`madvise(2)`] man page.
///
/// [`madvise(2)`]: https://man7.org/linux/man-pages/man2/madvise.2.html#VERSIONS
pub fn is_supported(self) -> bool {
(unsafe { libc::madvise(std::ptr::null_mut(), 0, self as libc::c_int) }) == 0
}
}
#[cfg(target_os = "linux")]
impl UncheckedAdvice {
/// Performs a runtime check if this advice is supported by the kernel.
/// Only supported on Linux. See the [`madvise(2)`] man page.
///
/// [`madvise(2)`]: https://man7.org/linux/man-pages/man2/madvise.2.html#VERSIONS
pub fn is_supported(self) -> bool {
(unsafe { libc::madvise(std::ptr::null_mut(), 0, self as libc::c_int) }) == 0
}
}
#[cfg(test)]
mod tests {
#[cfg(target_os = "linux")]
#[test]
fn test_is_supported() {
use super::*;
assert!(Advice::Normal.is_supported());
assert!(Advice::Random.is_supported());
assert!(Advice::Sequential.is_supported());
assert!(Advice::WillNeed.is_supported());
assert!(UncheckedAdvice::DontNeed.is_supported());
}
}