1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
//! Types for the HSV color space.

use core::{any::TypeId, marker::PhantomData};

use crate::{
    angle::{FromAngle, RealAngle},
    bool_mask::{BitOps, BoolMask, HasBoolMask, LazySelect, Select},
    convert::FromColorUnclamped,
    encoding::Srgb,
    hues::RgbHueIter,
    num::{Arithmetics, IsValidDivisor, MinMax, One, PartialCmp, Real, Zero},
    rgb::{Rgb, RgbSpace, RgbStandard},
    stimulus::{FromStimulus, Stimulus},
    Alpha, FromColor, Hsl, Hwb, RgbHue, Xyz,
};

/// Linear HSV with an alpha component. See the [`Hsva` implementation in
/// `Alpha`](crate::Alpha#Hsva).
pub type Hsva<S = Srgb, T = f32> = Alpha<Hsv<S, T>, T>;

/// HSV color space.
///
/// HSV is a cylindrical version of [RGB](crate::rgb::Rgb) and it's very similar
/// to [HSL](crate::Hsl). The difference is that the `value` component in HSV
/// determines the _brightness_ of the color, and not the _lightness_. The
/// difference is that, for example, red (100% R, 0% G, 0% B) and white (100% R,
/// 100% G, 100% B) has the same brightness (or value), but not the same
/// lightness.
///
/// HSV component values are typically real numbers (such as floats), but may
/// also be converted to and from `u8` for storage and interoperability
/// purposes. The hue is then within the range `[0, 255]`.
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::Hsv;
///
/// let hsv_u8 = Hsv::new_srgb(128u8, 85, 51);
/// let hsv_f32 = hsv_u8.into_format::<f32>();
///
/// assert_relative_eq!(hsv_f32, Hsv::new(180.0, 1.0 / 3.0, 0.2));
/// ```
#[derive(Debug, ArrayCast, FromColorUnclamped, WithAlpha)]
#[cfg_attr(feature = "serializing", derive(Serialize, Deserialize))]
#[palette(
    palette_internal,
    rgb_standard = "S",
    component = "T",
    skip_derives(Rgb, Hsl, Hwb, Hsv)
)]
#[repr(C)]
#[doc(alias = "hsb")]
pub struct Hsv<S = Srgb, T = f32> {
    /// The hue of the color, in degrees. Decides if it's red, blue, purple,
    /// etc.
    #[palette(unsafe_same_layout_as = "T")]
    pub hue: RgbHue<T>,

    /// The colorfulness of the color. 0.0 gives gray scale colors and 1.0 will
    /// give absolutely clear colors.
    pub saturation: T,

    /// Decides how bright the color will look. 0.0 will be black, and 1.0 will
    /// give a bright an clear color that goes towards white when `saturation`
    /// goes towards 0.0.
    pub value: T,

    /// The white point and RGB primaries this color is adapted to. The default
    /// is the sRGB standard.
    #[cfg_attr(feature = "serializing", serde(skip))]
    #[palette(unsafe_zero_sized)]
    pub standard: PhantomData<S>,
}

impl<T> Hsv<Srgb, T> {
    /// Create an sRGB HSV color. This method can be used instead of `Hsv::new`
    /// to help type inference.
    pub fn new_srgb<H: Into<RgbHue<T>>>(hue: H, saturation: T, value: T) -> Self {
        Self::new_const(hue.into(), saturation, value)
    }

    /// Create an sRGB HSV color. This is the same as `Hsv::new_srgb` without
    /// the generic hue type. It's temporary until `const fn` supports traits.
    pub const fn new_srgb_const(hue: RgbHue<T>, saturation: T, value: T) -> Self {
        Self::new_const(hue, saturation, value)
    }
}

impl<S, T> Hsv<S, T> {
    /// Create an HSV color.
    pub fn new<H: Into<RgbHue<T>>>(hue: H, saturation: T, value: T) -> Self {
        Self::new_const(hue.into(), saturation, value)
    }

    /// Create an HSV color. This is the same as `Hsv::new` without the generic
    /// hue type. It's temporary until `const fn` supports traits.
    pub const fn new_const(hue: RgbHue<T>, saturation: T, value: T) -> Self {
        Hsv {
            hue,
            saturation,
            value,
            standard: PhantomData,
        }
    }

    /// Convert into another component type.
    pub fn into_format<U>(self) -> Hsv<S, U>
    where
        U: FromStimulus<T> + FromAngle<T>,
    {
        Hsv {
            hue: self.hue.into_format(),
            saturation: U::from_stimulus(self.saturation),
            value: U::from_stimulus(self.value),
            standard: PhantomData,
        }
    }

    /// Convert from another component type.
    pub fn from_format<U>(color: Hsv<S, U>) -> Self
    where
        T: FromStimulus<U> + FromAngle<U>,
    {
        color.into_format()
    }

    /// Convert to a `(hue, saturation, value)` tuple.
    pub fn into_components(self) -> (RgbHue<T>, T, T) {
        (self.hue, self.saturation, self.value)
    }

    /// Convert from a `(hue, saturation, value)` tuple.
    pub fn from_components<H: Into<RgbHue<T>>>((hue, saturation, value): (H, T, T)) -> Self {
        Self::new(hue, saturation, value)
    }

    #[inline]
    fn reinterpret_as<St>(self) -> Hsv<St, T> {
        Hsv {
            hue: self.hue,
            saturation: self.saturation,
            value: self.value,
            standard: PhantomData,
        }
    }
}

impl<S, T> Hsv<S, T>
where
    T: Stimulus,
{
    /// Return the `saturation` value minimum.
    pub fn min_saturation() -> T {
        T::zero()
    }

    /// Return the `saturation` value maximum.
    pub fn max_saturation() -> T {
        T::max_intensity()
    }

    /// Return the `value` value minimum.
    pub fn min_value() -> T {
        T::zero()
    }

    /// Return the `value` value maximum.
    pub fn max_value() -> T {
        T::max_intensity()
    }
}

///<span id="Hsva"></span>[`Hsva`](crate::Hsva) implementations.
impl<T, A> Alpha<Hsv<Srgb, T>, A> {
    /// Create an sRGB HSV color with transparency. This method can be used
    /// instead of `Hsva::new` to help type inference.
    pub fn new_srgb<H: Into<RgbHue<T>>>(hue: H, saturation: T, value: T, alpha: A) -> Self {
        Self::new_const(hue.into(), saturation, value, alpha)
    }

    /// Create an sRGB HSV color with transparency. This is the same as
    /// `Hsva::new_srgb` without the generic hue type. It's temporary until
    /// `const fn` supports traits.
    pub const fn new_srgb_const(hue: RgbHue<T>, saturation: T, value: T, alpha: A) -> Self {
        Self::new_const(hue, saturation, value, alpha)
    }
}

///<span id="Hsva"></span>[`Hsva`](crate::Hsva) implementations.
impl<S, T, A> Alpha<Hsv<S, T>, A> {
    /// Create an HSV color with transparency.
    pub fn new<H: Into<RgbHue<T>>>(hue: H, saturation: T, value: T, alpha: A) -> Self {
        Self::new_const(hue.into(), saturation, value, alpha)
    }

    /// Create an HSV color with transparency. This is the same as `Hsva::new`
    /// without the generic hue type. It's temporary until `const fn` supports
    /// traits.
    pub const fn new_const(hue: RgbHue<T>, saturation: T, value: T, alpha: A) -> Self {
        Alpha {
            color: Hsv::new_const(hue, saturation, value),
            alpha,
        }
    }

    /// Convert into another component type.
    pub fn into_format<U, B>(self) -> Alpha<Hsv<S, U>, B>
    where
        U: FromStimulus<T> + FromAngle<T>,
        B: FromStimulus<A>,
    {
        Alpha {
            color: self.color.into_format(),
            alpha: B::from_stimulus(self.alpha),
        }
    }

    /// Convert from another component type.
    pub fn from_format<U, B>(color: Alpha<Hsv<S, U>, B>) -> Self
    where
        T: FromStimulus<U> + FromAngle<U>,
        A: FromStimulus<B>,
    {
        color.into_format()
    }

    /// Convert to a `(hue, saturation, value, alpha)` tuple.
    pub fn into_components(self) -> (RgbHue<T>, T, T, A) {
        (
            self.color.hue,
            self.color.saturation,
            self.color.value,
            self.alpha,
        )
    }

    /// Convert from a `(hue, saturation, value, alpha)` tuple.
    pub fn from_components<H: Into<RgbHue<T>>>(
        (hue, saturation, value, alpha): (H, T, T, A),
    ) -> Self {
        Self::new(hue, saturation, value, alpha)
    }
}

impl_reference_component_methods_hue!(Hsv<S>, [saturation, value], standard);
impl_struct_of_arrays_methods_hue!(Hsv<S>, [saturation, value], standard);

impl<S1, S2, T> FromColorUnclamped<Hsv<S1, T>> for Hsv<S2, T>
where
    S1: RgbStandard + 'static,
    S2: RgbStandard + 'static,
    S1::Space: RgbSpace<WhitePoint = <S2::Space as RgbSpace>::WhitePoint>,
    Rgb<S1, T>: FromColorUnclamped<Hsv<S1, T>>,
    Rgb<S2, T>: FromColorUnclamped<Rgb<S1, T>>,
    Self: FromColorUnclamped<Rgb<S2, T>>,
{
    #[inline]
    fn from_color_unclamped(hsv: Hsv<S1, T>) -> Self {
        if TypeId::of::<S1>() == TypeId::of::<S2>() {
            hsv.reinterpret_as()
        } else {
            let rgb = Rgb::<S1, T>::from_color_unclamped(hsv);
            let converted_rgb = Rgb::<S2, T>::from_color_unclamped(rgb);
            Self::from_color_unclamped(converted_rgb)
        }
    }
}

impl<S, T> FromColorUnclamped<Rgb<S, T>> for Hsv<S, T>
where
    T: RealAngle + One + Zero + MinMax + Arithmetics + PartialCmp + Clone,
    T::Mask: BoolMask + BitOps + LazySelect<T> + Clone + 'static,
{
    fn from_color_unclamped(rgb: Rgb<S, T>) -> Self {
        // Avoid negative numbers
        let red = rgb.red.max(T::zero());
        let green = rgb.green.max(T::zero());
        let blue = rgb.blue.max(T::zero());

        // The SIMD optimized version showed significant slowdown for regular floats.
        if TypeId::of::<T::Mask>() == TypeId::of::<bool>() {
            let (max, min, sep, coeff) = {
                let (max, min, sep, coeff) = if red.gt(&green).is_true() {
                    (red.clone(), green.clone(), green.clone() - &blue, T::zero())
                } else {
                    (
                        green.clone(),
                        red.clone(),
                        blue.clone() - &red,
                        T::from_f64(2.0),
                    )
                };
                if blue.gt(&max).is_true() {
                    (blue, min, red - green, T::from_f64(4.0))
                } else {
                    let min_val = if blue.lt(&min).is_true() { blue } else { min };
                    (max, min_val, sep, coeff)
                }
            };

            let (h, s) = if max.neq(&min).is_true() {
                let d = max.clone() - min;
                let h = ((sep / &d) + coeff) * T::from_f64(60.0);
                let s = d / &max;

                (h, s)
            } else {
                (T::zero(), T::zero())
            };
            let v = max;

            Hsv {
                hue: h.into(),
                saturation: s,
                value: v,
                standard: PhantomData,
            }
        } else {
            // Based on OPTIMIZED RGB TO HSV COLOR CONVERSION USING SSE TECHNOLOGY
            // by KOBALICEK, Petr & BLIZNAK, Michal
            //
            // This implementation assumes less about the underlying mask and number
            // representation. The hue is also multiplied by 6 to avoid rounding
            // errors when using degrees.

            let six = T::from_f64(6.0);

            let value = red.clone().max(green.clone()).max(blue.clone());
            let min = red.clone().min(green.clone()).min(blue.clone());

            let chroma = value.clone() - min;
            let saturation = chroma
                .eq(&T::zero())
                .lazy_select(|| T::zero(), || chroma.clone() / &value);

            // Each of these represents an RGB component. The maximum will be false
            // while the two other will be true. They are later used for determining
            // which branch in the hue equation we end up in.
            let x = value.neq(&red);
            let y = value.eq(&red) | value.neq(&green);
            let z = value.eq(&red) | value.eq(&green);

            // The hue base is the `1`, `2/6`, `4/6` or 0 part of the hue equation,
            // except it's multiplied by 6 here.
            let hue_base = x.clone().select(
                z.clone().select(T::from_f64(-4.0), T::from_f64(4.0)),
                T::zero(),
            ) + &six;

            // Each of these is a part of `G - B`, `B - R`, `R - G` or 0 from the
            // hue equation. They become positive, negative or 0, depending on which
            // branch we should be in. This makes the sum of all three combine as
            // expected.
            let red_m = lazy_select! {
               if x => y.clone().select(red.clone(), -red),
               else => T::zero(),
            };
            let green_m = lazy_select! {
               if y.clone() => z.clone().select(green.clone(), -green),
               else => T::zero(),
            };
            let blue_m = lazy_select! {
               if z => y.select(-blue.clone(), blue),
               else => T::zero(),
            };

            // This is the hue equation parts combined. The hue base is the constant
            // and the RGB components are masked so up to two of them are non-zero.
            // Once again, this is multiplied by 6, so the chroma isn't multiplied
            // before dividing.
            //
            // We also avoid dividing by 0 for non-SIMD values.
            let hue = lazy_select! {
                if chroma.eq(&T::zero()) => T::zero(),
                else => hue_base + (red_m + green_m + blue_m) / &chroma,
            };

            // hue will always be within [0, 12) (it's multiplied by 6, compared to
            // the paper), so we can subtract by 6 instead of using % to get it
            // within [0, 6).
            let hue_sub = hue.gt_eq(&six).select(six, T::zero());
            let hue = hue - hue_sub;

            Hsv {
                hue: RgbHue::from_degrees(hue * T::from_f64(60.0)),
                saturation,
                value,
                standard: PhantomData,
            }
        }
    }
}

impl<S, T> FromColorUnclamped<Hsl<S, T>> for Hsv<S, T>
where
    T: Real + Zero + One + IsValidDivisor + Arithmetics + PartialCmp + Clone,
    T::Mask: LazySelect<T>,
{
    #[inline]
    fn from_color_unclamped(hsl: Hsl<S, T>) -> Self {
        let x = lazy_select! {
            if hsl.lightness.lt(&T::from_f64(0.5)) => hsl.lightness.clone(),
            else => T::one() - &hsl.lightness,
        } * hsl.saturation;

        let value = hsl.lightness + &x;

        // avoid divide by zero
        let saturation = lazy_select! {
            if value.is_valid_divisor() => x * T::from_f64(2.0) / &value,
            else => T::zero(),
        };

        Hsv {
            hue: hsl.hue,
            saturation,
            value,
            standard: PhantomData,
        }
    }
}

impl<S, T> FromColorUnclamped<Hwb<S, T>> for Hsv<S, T>
where
    T: One + Zero + IsValidDivisor + Arithmetics,
    T::Mask: LazySelect<T>,
{
    #[inline]
    fn from_color_unclamped(hwb: Hwb<S, T>) -> Self {
        let Hwb {
            hue,
            whiteness,
            blackness,
            ..
        } = hwb;

        let value = T::one() - blackness;

        // avoid divide by zero
        let saturation = lazy_select! {
            if value.is_valid_divisor() => T::one() - (whiteness / &value),
            else => T::zero(),
        };

        Hsv {
            hue,
            saturation,
            value,
            standard: PhantomData,
        }
    }
}

impl_tuple_conversion_hue!(Hsv<S> as (H, T, T), RgbHue);

impl_is_within_bounds! {
    Hsv<S> {
        saturation => [Self::min_saturation(), Self::max_saturation()],
        value => [Self::min_value(), Self::max_value()]
    }
    where T: Stimulus
}
impl_clamp! {
    Hsv<S> {
        saturation => [Self::min_saturation(), Self::max_saturation()],
        value => [Self::min_value(), Self::max_value()]
    }
    other {hue, standard}
    where T: Stimulus
}

impl_mix_hue!(Hsv<S> {saturation, value} phantom: standard);
impl_lighten!(Hsv<S> increase {value => [Self::min_value(), Self::max_value()]} other {hue, saturation} phantom: standard where T: Stimulus);
impl_saturate!(Hsv<S> increase {saturation => [Self::min_saturation(), Self::max_saturation()]} other {hue, value} phantom: standard where T: Stimulus);
impl_hue_ops!(Hsv<S>, RgbHue);

impl<S, T> HasBoolMask for Hsv<S, T>
where
    T: HasBoolMask,
{
    type Mask = T::Mask;
}

impl<S, T> Default for Hsv<S, T>
where
    T: Stimulus,
    RgbHue<T>: Default,
{
    fn default() -> Hsv<S, T> {
        Hsv::new(RgbHue::default(), Self::min_saturation(), Self::min_value())
    }
}

impl_color_add!(Hsv<S>, [hue, saturation, value], standard);
impl_color_sub!(Hsv<S>, [hue, saturation, value], standard);

impl_array_casts!(Hsv<S, T>, [T; 3]);
impl_simd_array_conversion_hue!(Hsv<S>, [saturation, value], standard);
impl_struct_of_array_traits_hue!(Hsv<S>, RgbHueIter, [saturation, value], standard);

impl_eq_hue!(Hsv<S>, RgbHue, [hue, saturation, value]);
impl_copy_clone!(Hsv<S>, [hue, saturation, value], standard);

#[allow(deprecated)]
impl<S, T> crate::RelativeContrast for Hsv<S, T>
where
    T: Real + Arithmetics + PartialCmp,
    T::Mask: LazySelect<T>,
    S: RgbStandard,
    Xyz<<S::Space as RgbSpace>::WhitePoint, T>: FromColor<Self>,
{
    type Scalar = T;

    #[inline]
    fn get_contrast_ratio(self, other: Self) -> T {
        let xyz1 = Xyz::from_color(self);
        let xyz2 = Xyz::from_color(other);

        crate::contrast_ratio(xyz1.y, xyz2.y)
    }
}

impl_rand_traits_hsv_cone!(
    UniformHsv,
    Hsv<S> {
        hue: UniformRgbHue => RgbHue,
        height: value,
        radius: saturation
    }
    phantom: standard: PhantomData<S>
);

#[cfg(feature = "bytemuck")]
unsafe impl<S, T> bytemuck::Zeroable for Hsv<S, T> where T: bytemuck::Zeroable {}

#[cfg(feature = "bytemuck")]
unsafe impl<S: 'static, T> bytemuck::Pod for Hsv<S, T> where T: bytemuck::Pod {}

#[cfg(test)]
mod test {
    use super::Hsv;

    test_convert_into_from_xyz!(Hsv);

    #[cfg(feature = "approx")]
    mod conversion {
        use crate::{FromColor, Hsl, Hsv, Srgb};

        #[test]
        fn red() {
            let a = Hsv::from_color(Srgb::new(1.0, 0.0, 0.0));
            let b = Hsv::new_srgb(0.0, 1.0, 1.0);
            let c = Hsv::from_color(Hsl::new_srgb(0.0, 1.0, 0.5));

            assert_relative_eq!(a, b);
            assert_relative_eq!(a, c);
        }

        #[test]
        fn orange() {
            let a = Hsv::from_color(Srgb::new(1.0, 0.5, 0.0));
            let b = Hsv::new_srgb(30.0, 1.0, 1.0);
            let c = Hsv::from_color(Hsl::new_srgb(30.0, 1.0, 0.5));

            assert_relative_eq!(a, b);
            assert_relative_eq!(a, c);
        }

        #[test]
        fn green() {
            let a = Hsv::from_color(Srgb::new(0.0, 1.0, 0.0));
            let b = Hsv::new_srgb(120.0, 1.0, 1.0);
            let c = Hsv::from_color(Hsl::new_srgb(120.0, 1.0, 0.5));

            assert_relative_eq!(a, b);
            assert_relative_eq!(a, c);
        }

        #[test]
        fn blue() {
            let a = Hsv::from_color(Srgb::new(0.0, 0.0, 1.0));
            let b = Hsv::new_srgb(240.0, 1.0, 1.0);
            let c = Hsv::from_color(Hsl::new_srgb(240.0, 1.0, 0.5));

            assert_relative_eq!(a, b);
            assert_relative_eq!(a, c);
        }

        #[test]
        fn purple() {
            let a = Hsv::from_color(Srgb::new(0.5, 0.0, 1.0));
            let b = Hsv::new_srgb(270.0, 1.0, 1.0);
            let c = Hsv::from_color(Hsl::new_srgb(270.0, 1.0, 0.5));

            assert_relative_eq!(a, b);
            assert_relative_eq!(a, c);
        }
    }

    #[test]
    fn ranges() {
        assert_ranges! {
            Hsv<crate::encoding::Srgb, f64>;
            clamped {
                saturation: 0.0 => 1.0,
                value: 0.0 => 1.0
            }
            clamped_min {}
            unclamped {
                hue: -360.0 => 360.0
            }
        }
    }

    raw_pixel_conversion_tests!(Hsv<crate::encoding::Srgb>: hue, saturation, value);
    raw_pixel_conversion_fail_tests!(Hsv<crate::encoding::Srgb>: hue, saturation, value);

    #[test]
    fn check_min_max_components() {
        use crate::encoding::Srgb;

        assert_eq!(Hsv::<Srgb>::min_saturation(), 0.0,);
        assert_eq!(Hsv::<Srgb>::min_value(), 0.0,);
        assert_eq!(Hsv::<Srgb>::max_saturation(), 1.0,);
        assert_eq!(Hsv::<Srgb>::max_value(), 1.0,);
    }

    struct_of_arrays_tests!(
        Hsv<crate::encoding::Srgb>[hue, saturation, value] phantom: standard,
        super::Hsva::new(0.1f32, 0.2, 0.3, 0.4),
        super::Hsva::new(0.2, 0.3, 0.4, 0.5),
        super::Hsva::new(0.3, 0.4, 0.5, 0.6)
    );

    #[cfg(feature = "serializing")]
    #[test]
    fn serialize() {
        let serialized = ::serde_json::to_string(&Hsv::new_srgb(0.3, 0.8, 0.1)).unwrap();

        assert_eq!(serialized, r#"{"hue":0.3,"saturation":0.8,"value":0.1}"#);
    }

    #[cfg(feature = "serializing")]
    #[test]
    fn deserialize() {
        let deserialized: Hsv =
            ::serde_json::from_str(r#"{"hue":0.3,"saturation":0.8,"value":0.1}"#).unwrap();

        assert_eq!(deserialized, Hsv::new(0.3, 0.8, 0.1));
    }

    test_uniform_distribution! {
        Hsv<crate::encoding::Srgb, f32> as crate::rgb::Rgb {
            red: (0.0, 1.0),
            green: (0.0, 1.0),
            blue: (0.0, 1.0)
        },
        min: Hsv::new(0.0f32, 0.0, 0.0),
        max: Hsv::new(360.0, 1.0, 1.0)
    }
}