png/
encoder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
use borrow::Cow;
use io::{Read, Write};
use ops::{Deref, DerefMut};
use std::{borrow, error, fmt, io, mem, ops, result};

use crc32fast::Hasher as Crc32;
use flate2::write::ZlibEncoder;

use crate::chunk::{self, ChunkType};
use crate::common::{
    AnimationControl, BitDepth, BlendOp, BytesPerPixel, ColorType, Compression, DisposeOp,
    FrameControl, Info, ParameterError, ParameterErrorKind, PixelDimensions, ScaledFloat,
};
use crate::filter::{filter, AdaptiveFilterType, FilterType};
use crate::text_metadata::{
    encode_iso_8859_1, EncodableTextChunk, ITXtChunk, TEXtChunk, TextEncodingError, ZTXtChunk,
};
use crate::traits::WriteBytesExt;

pub type Result<T> = result::Result<T, EncodingError>;

#[derive(Debug)]
pub enum EncodingError {
    IoError(io::Error),
    Format(FormatError),
    Parameter(ParameterError),
    LimitsExceeded,
}

#[derive(Debug)]
pub struct FormatError {
    inner: FormatErrorKind,
}

#[derive(Debug)]
enum FormatErrorKind {
    ZeroWidth,
    ZeroHeight,
    InvalidColorCombination(BitDepth, ColorType),
    NoPalette,
    // TODO: wait, what?
    WrittenTooMuch(usize),
    NotAnimated,
    OutOfBounds,
    EndReached,
    ZeroFrames,
    MissingFrames,
    MissingData(usize),
    Unrecoverable,
    BadTextEncoding(TextEncodingError),
}

impl error::Error for EncodingError {
    fn cause(&self) -> Option<&(dyn error::Error + 'static)> {
        match self {
            EncodingError::IoError(err) => Some(err),
            _ => None,
        }
    }
}

impl fmt::Display for EncodingError {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> result::Result<(), fmt::Error> {
        use self::EncodingError::*;
        match self {
            IoError(err) => write!(fmt, "{}", err),
            Format(desc) => write!(fmt, "{}", desc),
            Parameter(desc) => write!(fmt, "{}", desc),
            LimitsExceeded => write!(fmt, "Limits are exceeded."),
        }
    }
}

impl fmt::Display for FormatError {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> result::Result<(), fmt::Error> {
        use FormatErrorKind::*;
        match self.inner {
            ZeroWidth => write!(fmt, "Zero width not allowed"),
            ZeroHeight => write!(fmt, "Zero height not allowed"),
            ZeroFrames => write!(fmt, "Zero frames not allowed"),
            InvalidColorCombination(depth, color) => write!(
                fmt,
                "Invalid combination of bit-depth '{:?}' and color-type '{:?}'",
                depth, color
            ),
            NoPalette => write!(fmt, "can't write indexed image without palette"),
            WrittenTooMuch(index) => write!(fmt, "wrong data size, got {} bytes too many", index),
            NotAnimated => write!(fmt, "not an animation"),
            OutOfBounds => write!(
                fmt,
                "the dimension and position go over the frame boundaries"
            ),
            EndReached => write!(fmt, "all the frames have been already written"),
            MissingFrames => write!(fmt, "there are still frames to be written"),
            MissingData(n) => write!(fmt, "there are still {} bytes to be written", n),
            Unrecoverable => write!(
                fmt,
                "a previous error put the writer into an unrecoverable state"
            ),
            BadTextEncoding(tee) => match tee {
                TextEncodingError::Unrepresentable => write!(
                    fmt,
                    "The text metadata cannot be encoded into valid ISO 8859-1"
                ),
                TextEncodingError::InvalidKeywordSize => write!(fmt, "Invalid keyword size"),
                TextEncodingError::CompressionError => {
                    write!(fmt, "Unable to compress text metadata")
                }
            },
        }
    }
}

impl From<io::Error> for EncodingError {
    fn from(err: io::Error) -> EncodingError {
        EncodingError::IoError(err)
    }
}

impl From<EncodingError> for io::Error {
    fn from(err: EncodingError) -> io::Error {
        io::Error::new(io::ErrorKind::Other, err.to_string())
    }
}

// Private impl.
impl From<FormatErrorKind> for FormatError {
    fn from(kind: FormatErrorKind) -> Self {
        FormatError { inner: kind }
    }
}

impl From<TextEncodingError> for EncodingError {
    fn from(tee: TextEncodingError) -> Self {
        EncodingError::Format(FormatError {
            inner: FormatErrorKind::BadTextEncoding(tee),
        })
    }
}

/// PNG Encoder.
///
/// This configures the PNG format options such as animation chunks, palette use, color types,
/// auxiliary chunks etc.
///
/// FIXME: Configuring APNG might be easier (less individual errors) if we had an _adapter_ which
/// borrows this mutably but guarantees that `info.frame_control` is not `None`.
pub struct Encoder<'a, W: Write> {
    w: W,
    info: Info<'a>,
    options: Options,
}

/// Decoding options, internal type, forwarded to the Writer.
#[derive(Default)]
struct Options {
    filter: FilterType,
    adaptive_filter: AdaptiveFilterType,
    sep_def_img: bool,
    validate_sequence: bool,
}

impl<'a, W: Write> Encoder<'a, W> {
    pub fn new(w: W, width: u32, height: u32) -> Encoder<'static, W> {
        Encoder {
            w,
            info: Info::with_size(width, height),
            options: Options::default(),
        }
    }

    pub fn with_info(w: W, info: Info<'a>) -> Result<Encoder<'a, W>> {
        if info.animation_control.is_some() != info.frame_control.is_some() {
            return Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()));
        }

        if let Some(actl) = info.animation_control {
            if actl.num_frames == 0 {
                return Err(EncodingError::Format(FormatErrorKind::ZeroFrames.into()));
            }
        }

        Ok(Encoder {
            w,
            info,
            options: Options::default(),
        })
    }

    /// Specify that the image is animated.
    ///
    /// `num_frames` controls how many frames the animation has, while
    /// `num_plays` controls how many times the animation should be
    /// repeated until it stops, if it's zero then it will repeat
    /// infinitely.
    ///
    /// When this method is returns successfully then the images written will be encoded as fdAT
    /// chunks, except for the first image that is still encoded as `IDAT`. You can control if the
    /// first frame should be treated as an animation frame with [`Encoder::set_sep_def_img()`].
    ///
    /// This method returns an error if `num_frames` is 0.
    pub fn set_animated(&mut self, num_frames: u32, num_plays: u32) -> Result<()> {
        if num_frames == 0 {
            return Err(EncodingError::Format(FormatErrorKind::ZeroFrames.into()));
        }

        let actl = AnimationControl {
            num_frames,
            num_plays,
        };

        let fctl = FrameControl {
            sequence_number: 0,
            width: self.info.width,
            height: self.info.height,
            ..Default::default()
        };

        self.info.animation_control = Some(actl);
        self.info.frame_control = Some(fctl);
        Ok(())
    }

    /// Mark the first animated frame as a 'separate default image'.
    ///
    /// In APNG each animated frame is preceded by a special control chunk, `fcTL`. It's up to the
    /// encoder to decide if the first image, the standard `IDAT` data, should be part of the
    /// animation by emitting this chunk or by not doing so. A default image that is _not_ part of
    /// the animation is often interpreted as a thumbnail.
    ///
    /// This method will return an error when animation control was not configured
    /// (which is done by calling [`Encoder::set_animated`]).
    pub fn set_sep_def_img(&mut self, sep_def_img: bool) -> Result<()> {
        if self.info.animation_control.is_some() {
            self.options.sep_def_img = sep_def_img;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Sets the raw byte contents of the PLTE chunk. This method accepts
    /// both borrowed and owned byte data.
    pub fn set_palette<T: Into<Cow<'a, [u8]>>>(&mut self, palette: T) {
        self.info.palette = Some(palette.into());
    }

    /// Sets the raw byte contents of the tRNS chunk. This method accepts
    /// both borrowed and owned byte data.
    pub fn set_trns<T: Into<Cow<'a, [u8]>>>(&mut self, trns: T) {
        self.info.trns = Some(trns.into());
    }

    /// Set the display gamma of the source system on which the image was generated or last edited.
    pub fn set_source_gamma(&mut self, source_gamma: ScaledFloat) {
        self.info.source_gamma = Some(source_gamma);
    }

    /// Set the chromaticities for the source system's display channels (red, green, blue) and the whitepoint
    /// of the source system on which the image was generated or last edited.
    pub fn set_source_chromaticities(
        &mut self,
        source_chromaticities: super::SourceChromaticities,
    ) {
        self.info.source_chromaticities = Some(source_chromaticities);
    }

    /// Mark the image data as conforming to the SRGB color space with the specified rendering intent.
    ///
    /// Matching source gamma and chromaticities chunks are added automatically.
    /// Any manually specified source gamma, chromaticities, or ICC profiles will be ignored.
    #[doc(hidden)]
    #[deprecated(note = "use set_source_srgb")]
    pub fn set_srgb(&mut self, rendering_intent: super::SrgbRenderingIntent) {
        self.info.set_source_srgb(rendering_intent);
        self.info.source_gamma = Some(crate::srgb::substitute_gamma());
        self.info.source_chromaticities = Some(crate::srgb::substitute_chromaticities());
    }

    /// Mark the image data as conforming to the SRGB color space with the specified rendering intent.
    ///
    /// Any ICC profiles will be ignored.
    ///
    /// Source gamma and chromaticities will be written only if they're set to fallback
    /// values specified in [11.3.2.5](https://www.w3.org/TR/png-3/#sRGB-gAMA-cHRM).
    pub fn set_source_srgb(&mut self, rendering_intent: super::SrgbRenderingIntent) {
        self.info.set_source_srgb(rendering_intent);
    }

    /// Start encoding by writing the header data.
    ///
    /// The remaining data can be supplied by methods on the returned [`Writer`].
    pub fn write_header(self) -> Result<Writer<W>> {
        Writer::new(self.w, PartialInfo::new(&self.info), self.options).init(&self.info)
    }

    /// Set the color of the encoded image.
    ///
    /// These correspond to the color types in the png IHDR data that will be written. The length
    /// of the image data that is later supplied must match the color type, otherwise an error will
    /// be emitted.
    pub fn set_color(&mut self, color: ColorType) {
        self.info.color_type = color;
    }

    /// Set the indicated depth of the image data.
    pub fn set_depth(&mut self, depth: BitDepth) {
        self.info.bit_depth = depth;
    }

    /// Set compression parameters.
    ///
    /// Accepts a `Compression` or any type that can transform into a `Compression`. Notably `deflate::Compression` and
    /// `deflate::CompressionOptions` which "just work".
    pub fn set_compression(&mut self, compression: Compression) {
        self.info.compression = compression;
    }

    /// Set the used filter type.
    ///
    /// The default filter is [`FilterType::Sub`] which provides a basic prediction algorithm for
    /// sample values based on the previous. For a potentially better compression ratio, at the
    /// cost of more complex processing, try out [`FilterType::Paeth`].
    pub fn set_filter(&mut self, filter: FilterType) {
        self.options.filter = filter;
    }

    /// Set the adaptive filter type.
    ///
    /// Adaptive filtering attempts to select the best filter for each line
    /// based on heuristics which minimize the file size for compression rather
    /// than use a single filter for the entire image. The default method is
    /// [`AdaptiveFilterType::NonAdaptive`].
    pub fn set_adaptive_filter(&mut self, adaptive_filter: AdaptiveFilterType) {
        self.options.adaptive_filter = adaptive_filter;
    }

    /// Set the fraction of time every frame is going to be displayed, in seconds.
    ///
    /// *Note that this parameter can be set for each individual frame after
    /// [`Encoder::write_header`] is called. (see [`Writer::set_frame_delay`])*
    ///
    /// If the denominator is 0, it is to be treated as if it were 100
    /// (that is, the numerator then specifies 1/100ths of a second).
    /// If the value of the numerator is 0 the decoder should render the next frame
    /// as quickly as possible, though viewers may impose a reasonable lower bound.
    ///
    /// The default value is 0 for both the numerator and denominator.
    ///
    /// This method will return an error if the image is not animated.
    /// (see [`set_animated`])
    ///
    /// [`write_header`]: Self::write_header
    /// [`set_animated`]: Self::set_animated
    pub fn set_frame_delay(&mut self, numerator: u16, denominator: u16) -> Result<()> {
        if let Some(ref mut fctl) = self.info.frame_control {
            fctl.delay_den = denominator;
            fctl.delay_num = numerator;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Set the blend operation for every frame.
    ///
    /// The blend operation specifies whether the frame is to be alpha blended
    /// into the current output buffer content, or whether it should completely
    /// replace its region in the output buffer.
    ///
    /// *Note that this parameter can be set for each individual frame after
    /// [`write_header`] is called. (see [`Writer::set_blend_op`])*
    ///
    /// See the [`BlendOp`] documentation for the possible values and their effects.
    ///
    /// *Note that for the first frame the two blend modes are functionally
    /// equivalent due to the clearing of the output buffer at the beginning
    /// of each play.*
    ///
    /// The default value is [`BlendOp::Source`].
    ///
    /// This method will return an error if the image is not animated.
    /// (see [`set_animated`])
    ///
    /// [`write_header`]: Self::write_header
    /// [`set_animated`]: Self::set_animated
    pub fn set_blend_op(&mut self, op: BlendOp) -> Result<()> {
        if let Some(ref mut fctl) = self.info.frame_control {
            fctl.blend_op = op;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Set the dispose operation for every frame.
    ///
    /// The dispose operation specifies how the output buffer should be changed
    /// at the end of the delay (before rendering the next frame)
    ///
    /// *Note that this parameter can be set for each individual frame after
    /// [`write_header`] is called (see [`Writer::set_dispose_op`])*
    ///
    /// See the [`DisposeOp`] documentation for the possible values and their effects.
    ///
    /// *Note that if the first frame uses [`DisposeOp::Previous`]
    /// it will be treated as [`DisposeOp::Background`].*
    ///
    /// The default value is [`DisposeOp::None`].
    ///
    /// This method will return an error if the image is not animated.
    /// (see [`set_animated`])
    ///
    /// [`set_animated`]: Self::set_animated
    /// [`write_header`]: Self::write_header
    pub fn set_dispose_op(&mut self, op: DisposeOp) -> Result<()> {
        if let Some(ref mut fctl) = self.info.frame_control {
            fctl.dispose_op = op;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }
    pub fn set_pixel_dims(&mut self, pixel_dims: Option<PixelDimensions>) {
        self.info.pixel_dims = pixel_dims
    }
    /// Convenience function to add tEXt chunks to [`Info`] struct
    pub fn add_text_chunk(&mut self, keyword: String, text: String) -> Result<()> {
        let text_chunk = TEXtChunk::new(keyword, text);
        self.info.uncompressed_latin1_text.push(text_chunk);
        Ok(())
    }

    /// Convenience function to add zTXt chunks to [`Info`] struct
    pub fn add_ztxt_chunk(&mut self, keyword: String, text: String) -> Result<()> {
        let text_chunk = ZTXtChunk::new(keyword, text);
        self.info.compressed_latin1_text.push(text_chunk);
        Ok(())
    }

    /// Convenience function to add iTXt chunks to [`Info`] struct
    ///
    /// This function only sets the `keyword` and `text` field of the iTXt chunk.
    /// To set the other fields, create a [`ITXtChunk`] directly, and then encode it to the output stream.
    pub fn add_itxt_chunk(&mut self, keyword: String, text: String) -> Result<()> {
        let text_chunk = ITXtChunk::new(keyword, text);
        self.info.utf8_text.push(text_chunk);
        Ok(())
    }

    /// Validate the written image sequence.
    ///
    /// When validation is turned on (it's turned off by default) then attempts to write more than
    /// one `IDAT` image or images beyond the number of frames indicated in the animation control
    /// chunk will fail and return an error result instead. Attempts to [finish][finish] the image
    /// with missing frames will also return an error.
    ///
    /// [finish]: StreamWriter::finish
    ///
    /// (It's possible to circumvent these checks by writing raw chunks instead.)
    pub fn validate_sequence(&mut self, validate: bool) {
        self.options.validate_sequence = validate;
    }
}

/// PNG writer
///
/// Progresses through the image by writing images, frames, or raw individual chunks. This is
/// constructed through [`Encoder::write_header()`].
///
/// FIXME: Writing of animated chunks might be clearer if we had an _adapter_ that you would call
/// to guarantee the next image to be prefaced with a fcTL-chunk, and all other chunks would be
/// guaranteed to be `IDAT`/not affected by APNG's frame control.
pub struct Writer<W: Write> {
    /// The underlying writer.
    w: W,
    /// The local version of the `Info` struct.
    info: PartialInfo,
    /// Global encoding options.
    options: Options,
    /// The total number of image frames, counting all consecutive IDAT and fdAT chunks.
    images_written: u64,
    /// The total number of animation frames, that is equivalent to counting fcTL chunks.
    animation_written: u32,
    /// A flag to note when the IEND chunk was already added.
    /// This is only set on code paths that drop `Self` to control the destructor.
    iend_written: bool,
}

/// Contains the subset of attributes of [Info] needed for [Writer] to function
struct PartialInfo {
    width: u32,
    height: u32,
    bit_depth: BitDepth,
    color_type: ColorType,
    frame_control: Option<FrameControl>,
    animation_control: Option<AnimationControl>,
    compression: Compression,
    has_palette: bool,
}

impl PartialInfo {
    fn new(info: &Info) -> Self {
        PartialInfo {
            width: info.width,
            height: info.height,
            bit_depth: info.bit_depth,
            color_type: info.color_type,
            frame_control: info.frame_control,
            animation_control: info.animation_control,
            compression: info.compression,
            has_palette: info.palette.is_some(),
        }
    }

    fn bpp_in_prediction(&self) -> BytesPerPixel {
        // Passthrough
        self.to_info().bpp_in_prediction()
    }

    fn raw_row_length(&self) -> usize {
        // Passthrough
        self.to_info().raw_row_length()
    }

    fn raw_row_length_from_width(&self, width: u32) -> usize {
        // Passthrough
        self.to_info().raw_row_length_from_width(width)
    }

    /// Converts this partial info to an owned Info struct,
    /// setting missing values to their defaults
    fn to_info(&self) -> Info<'static> {
        Info {
            width: self.width,
            height: self.height,
            bit_depth: self.bit_depth,
            color_type: self.color_type,
            frame_control: self.frame_control,
            animation_control: self.animation_control,
            compression: self.compression,
            ..Default::default()
        }
    }
}

const DEFAULT_BUFFER_LENGTH: usize = 4 * 1024;

pub(crate) fn write_chunk<W: Write>(mut w: W, name: chunk::ChunkType, data: &[u8]) -> Result<()> {
    w.write_be(data.len() as u32)?;
    w.write_all(&name.0)?;
    w.write_all(data)?;
    let mut crc = Crc32::new();
    crc.update(&name.0);
    crc.update(data);
    w.write_be(crc.finalize())?;
    Ok(())
}

impl<W: Write> Writer<W> {
    fn new(w: W, info: PartialInfo, options: Options) -> Writer<W> {
        Writer {
            w,
            info,
            options,
            images_written: 0,
            animation_written: 0,
            iend_written: false,
        }
    }

    fn init(mut self, info: &Info<'_>) -> Result<Self> {
        if self.info.width == 0 {
            return Err(EncodingError::Format(FormatErrorKind::ZeroWidth.into()));
        }

        if self.info.height == 0 {
            return Err(EncodingError::Format(FormatErrorKind::ZeroHeight.into()));
        }

        if self
            .info
            .color_type
            .is_combination_invalid(self.info.bit_depth)
        {
            return Err(EncodingError::Format(
                FormatErrorKind::InvalidColorCombination(self.info.bit_depth, self.info.color_type)
                    .into(),
            ));
        }

        self.w.write_all(&[137, 80, 78, 71, 13, 10, 26, 10])?; // PNG signature
        #[allow(deprecated)]
        info.encode(&mut self.w)?;

        Ok(self)
    }

    /// Write a raw chunk of PNG data.
    ///
    /// The chunk will have its CRC calculated and correctly. The data is not filtered in any way,
    /// but the chunk needs to be short enough to have its length encoded correctly.
    pub fn write_chunk(&mut self, name: ChunkType, data: &[u8]) -> Result<()> {
        use std::convert::TryFrom;

        if u32::try_from(data.len()).map_or(true, |length| length > i32::MAX as u32) {
            let kind = FormatErrorKind::WrittenTooMuch(data.len() - i32::MAX as usize);
            return Err(EncodingError::Format(kind.into()));
        }

        write_chunk(&mut self.w, name, data)
    }

    pub fn write_text_chunk<T: EncodableTextChunk>(&mut self, text_chunk: &T) -> Result<()> {
        text_chunk.encode(&mut self.w)
    }

    /// Check if we should allow writing another image.
    fn validate_new_image(&self) -> Result<()> {
        if !self.options.validate_sequence {
            return Ok(());
        }

        match self.info.animation_control {
            None => {
                if self.images_written == 0 {
                    Ok(())
                } else {
                    Err(EncodingError::Format(FormatErrorKind::EndReached.into()))
                }
            }
            Some(_) => {
                if self.info.frame_control.is_some() {
                    Ok(())
                } else {
                    Err(EncodingError::Format(FormatErrorKind::EndReached.into()))
                }
            }
        }
    }

    fn validate_sequence_done(&self) -> Result<()> {
        if !self.options.validate_sequence {
            return Ok(());
        }

        if (self.info.animation_control.is_some() && self.info.frame_control.is_some())
            || self.images_written == 0
        {
            Err(EncodingError::Format(FormatErrorKind::MissingFrames.into()))
        } else {
            Ok(())
        }
    }

    const MAX_IDAT_CHUNK_LEN: u32 = u32::MAX >> 1;
    #[allow(non_upper_case_globals)]
    const MAX_fdAT_CHUNK_LEN: u32 = (u32::MAX >> 1) - 4;

    /// Writes the next image data.
    pub fn write_image_data(&mut self, data: &[u8]) -> Result<()> {
        if self.info.color_type == ColorType::Indexed && !self.info.has_palette {
            return Err(EncodingError::Format(FormatErrorKind::NoPalette.into()));
        }

        self.validate_new_image()?;

        let width: usize;
        let height: usize;
        if let Some(ref mut fctl) = self.info.frame_control {
            width = fctl.width as usize;
            height = fctl.height as usize;
        } else {
            width = self.info.width as usize;
            height = self.info.height as usize;
        }

        let in_len = self.info.raw_row_length_from_width(width as u32) - 1;
        let data_size = in_len * height;
        if data_size != data.len() {
            return Err(EncodingError::Parameter(
                ParameterErrorKind::ImageBufferSize {
                    expected: data_size,
                    actual: data.len(),
                }
                .into(),
            ));
        }

        let prev = vec![0; in_len];
        let mut prev = prev.as_slice();

        let bpp = self.info.bpp_in_prediction();
        let filter_method = self.options.filter;
        let adaptive_method = self.options.adaptive_filter;

        let zlib_encoded = match self.info.compression {
            Compression::Fast => {
                let mut compressor = fdeflate::Compressor::new(std::io::Cursor::new(Vec::new()))?;

                let mut current = vec![0; in_len + 1];
                for line in data.chunks(in_len) {
                    let filter_type = filter(
                        filter_method,
                        adaptive_method,
                        bpp,
                        prev,
                        line,
                        &mut current[1..],
                    );

                    current[0] = filter_type as u8;
                    compressor.write_data(&current)?;
                    prev = line;
                }

                let compressed = compressor.finish()?.into_inner();
                if compressed.len()
                    > fdeflate::StoredOnlyCompressor::<()>::compressed_size((in_len + 1) * height)
                {
                    // Write uncompressed data since the result from fast compression would take
                    // more space than that.
                    //
                    // We always use FilterType::NoFilter here regardless of the filter method
                    // requested by the user. Doing filtering again would only add performance
                    // cost for both encoding and subsequent decoding, without improving the
                    // compression ratio.
                    let mut compressor =
                        fdeflate::StoredOnlyCompressor::new(std::io::Cursor::new(Vec::new()))?;
                    for line in data.chunks(in_len) {
                        compressor.write_data(&[0])?;
                        compressor.write_data(line)?;
                    }
                    compressor.finish()?.into_inner()
                } else {
                    compressed
                }
            }
            _ => {
                let mut current = vec![0; in_len];

                let mut zlib = ZlibEncoder::new(Vec::new(), self.info.compression.to_options());
                for line in data.chunks(in_len) {
                    let filter_type = filter(
                        filter_method,
                        adaptive_method,
                        bpp,
                        prev,
                        line,
                        &mut current,
                    );

                    zlib.write_all(&[filter_type as u8])?;
                    zlib.write_all(&current)?;
                    prev = line;
                }
                zlib.finish()?
            }
        };

        match self.info.frame_control {
            None => {
                self.write_zlib_encoded_idat(&zlib_encoded)?;
            }
            Some(_) if self.should_skip_frame_control_on_default_image() => {
                self.write_zlib_encoded_idat(&zlib_encoded)?;
            }
            Some(ref mut fctl) => {
                fctl.encode(&mut self.w)?;
                fctl.sequence_number = fctl.sequence_number.wrapping_add(1);
                self.animation_written += 1;

                // If the default image is the first frame of an animation, it's still an IDAT.
                if self.images_written == 0 {
                    self.write_zlib_encoded_idat(&zlib_encoded)?;
                } else {
                    let buff_size = zlib_encoded.len().min(Self::MAX_fdAT_CHUNK_LEN as usize);
                    let mut alldata = vec![0u8; 4 + buff_size];
                    for chunk in zlib_encoded.chunks(Self::MAX_fdAT_CHUNK_LEN as usize) {
                        alldata[..4].copy_from_slice(&fctl.sequence_number.to_be_bytes());
                        alldata[4..][..chunk.len()].copy_from_slice(chunk);
                        write_chunk(&mut self.w, chunk::fdAT, &alldata[..4 + chunk.len()])?;
                        fctl.sequence_number = fctl.sequence_number.wrapping_add(1);
                    }
                }
            }
        }

        self.increment_images_written();

        Ok(())
    }

    fn increment_images_written(&mut self) {
        self.images_written = self.images_written.saturating_add(1);

        if let Some(actl) = self.info.animation_control {
            if actl.num_frames <= self.animation_written {
                // If we've written all animation frames, all following will be normal image chunks.
                self.info.frame_control = None;
            }
        }
    }

    fn write_iend(&mut self) -> Result<()> {
        self.iend_written = true;
        self.write_chunk(chunk::IEND, &[])
    }

    fn should_skip_frame_control_on_default_image(&self) -> bool {
        self.options.sep_def_img && self.images_written == 0
    }

    fn write_zlib_encoded_idat(&mut self, zlib_encoded: &[u8]) -> Result<()> {
        for chunk in zlib_encoded.chunks(Self::MAX_IDAT_CHUNK_LEN as usize) {
            self.write_chunk(chunk::IDAT, chunk)?;
        }
        Ok(())
    }

    /// Set the used filter type for the following frames.
    ///
    /// The default filter is [`FilterType::Sub`] which provides a basic prediction algorithm for
    /// sample values based on the previous. For a potentially better compression ratio, at the
    /// cost of more complex processing, try out [`FilterType::Paeth`].
    pub fn set_filter(&mut self, filter: FilterType) {
        self.options.filter = filter;
    }

    /// Set the adaptive filter type for the following frames.
    ///
    /// Adaptive filtering attempts to select the best filter for each line
    /// based on heuristics which minimize the file size for compression rather
    /// than use a single filter for the entire image. The default method is
    /// [`AdaptiveFilterType::NonAdaptive`].
    pub fn set_adaptive_filter(&mut self, adaptive_filter: AdaptiveFilterType) {
        self.options.adaptive_filter = adaptive_filter;
    }

    /// Set the fraction of time the following frames are going to be displayed,
    /// in seconds
    ///
    /// If the denominator is 0, it is to be treated as if it were 100
    /// (that is, the numerator then specifies 1/100ths of a second).
    /// If the value of the numerator is 0 the decoder should render the next frame
    /// as quickly as possible, though viewers may impose a reasonable lower bound.
    ///
    /// This method will return an error if the image is not animated.
    pub fn set_frame_delay(&mut self, numerator: u16, denominator: u16) -> Result<()> {
        if let Some(ref mut fctl) = self.info.frame_control {
            fctl.delay_den = denominator;
            fctl.delay_num = numerator;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Set the dimension of the following frames.
    ///
    /// This function will return an error when:
    /// - The image is not an animated;
    ///
    /// - The selected dimension, considering also the current frame position,
    ///   goes outside the image boundaries;
    ///
    /// - One or both the width and height are 0;
    ///
    // ??? TODO ???
    // - The next frame is the default image
    pub fn set_frame_dimension(&mut self, width: u32, height: u32) -> Result<()> {
        if let Some(ref mut fctl) = self.info.frame_control {
            if Some(width) > self.info.width.checked_sub(fctl.x_offset)
                || Some(height) > self.info.height.checked_sub(fctl.y_offset)
            {
                return Err(EncodingError::Format(FormatErrorKind::OutOfBounds.into()));
            } else if width == 0 {
                return Err(EncodingError::Format(FormatErrorKind::ZeroWidth.into()));
            } else if height == 0 {
                return Err(EncodingError::Format(FormatErrorKind::ZeroHeight.into()));
            }
            fctl.width = width;
            fctl.height = height;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Set the position of the following frames.
    ///
    /// An error will be returned if:
    /// - The image is not animated;
    ///
    /// - The selected position, considering also the current frame dimension,
    ///   goes outside the image boundaries;
    ///
    // ??? TODO ???
    // - The next frame is the default image
    pub fn set_frame_position(&mut self, x: u32, y: u32) -> Result<()> {
        if let Some(ref mut fctl) = self.info.frame_control {
            if Some(x) > self.info.width.checked_sub(fctl.width)
                || Some(y) > self.info.height.checked_sub(fctl.height)
            {
                return Err(EncodingError::Format(FormatErrorKind::OutOfBounds.into()));
            }
            fctl.x_offset = x;
            fctl.y_offset = y;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Set the frame dimension to occupy all the image, starting from
    /// the current position.
    ///
    /// To reset the frame to the full image size [`reset_frame_position`]
    /// should be called first.
    ///
    /// This method will return an error if the image is not animated.
    ///
    /// [`reset_frame_position`]: Writer::reset_frame_position
    pub fn reset_frame_dimension(&mut self) -> Result<()> {
        if let Some(ref mut fctl) = self.info.frame_control {
            fctl.width = self.info.width - fctl.x_offset;
            fctl.height = self.info.height - fctl.y_offset;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Set the frame position to (0, 0).
    ///
    /// Equivalent to calling [`set_frame_position(0, 0)`].
    ///
    /// This method will return an error if the image is not animated.
    ///
    /// [`set_frame_position(0, 0)`]: Writer::set_frame_position
    pub fn reset_frame_position(&mut self) -> Result<()> {
        if let Some(ref mut fctl) = self.info.frame_control {
            fctl.x_offset = 0;
            fctl.y_offset = 0;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Set the blend operation for the following frames.
    ///
    /// The blend operation specifies whether the frame is to be alpha blended
    /// into the current output buffer content, or whether it should completely
    /// replace its region in the output buffer.
    ///
    /// See the [`BlendOp`] documentation for the possible values and their effects.
    ///
    /// *Note that for the first frame the two blend modes are functionally
    /// equivalent due to the clearing of the output buffer at the beginning
    /// of each play.*
    ///
    /// This method will return an error if the image is not animated.
    pub fn set_blend_op(&mut self, op: BlendOp) -> Result<()> {
        if let Some(ref mut fctl) = self.info.frame_control {
            fctl.blend_op = op;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Set the dispose operation for the following frames.
    ///
    /// The dispose operation specifies how the output buffer should be changed
    /// at the end of the delay (before rendering the next frame)
    ///
    /// See the [`DisposeOp`] documentation for the possible values and their effects.
    ///
    /// *Note that if the first frame uses [`DisposeOp::Previous`]
    /// it will be treated as [`DisposeOp::Background`].*
    ///
    /// This method will return an error if the image is not animated.
    pub fn set_dispose_op(&mut self, op: DisposeOp) -> Result<()> {
        if let Some(ref mut fctl) = self.info.frame_control {
            fctl.dispose_op = op;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Create a stream writer.
    ///
    /// This allows you to create images that do not fit in memory. The default
    /// chunk size is 4K, use `stream_writer_with_size` to set another chunk
    /// size.
    ///
    /// This borrows the writer which allows for manually appending additional
    /// chunks after the image data has been written.
    pub fn stream_writer(&mut self) -> Result<StreamWriter<W>> {
        self.stream_writer_with_size(DEFAULT_BUFFER_LENGTH)
    }

    /// Create a stream writer with custom buffer size.
    ///
    /// See [`stream_writer`].
    ///
    /// [`stream_writer`]: Self::stream_writer
    pub fn stream_writer_with_size(&mut self, size: usize) -> Result<StreamWriter<W>> {
        StreamWriter::new(ChunkOutput::Borrowed(self), size)
    }

    /// Turn this into a stream writer for image data.
    ///
    /// This allows you to create images that do not fit in memory. The default
    /// chunk size is 4K, use [`stream_writer_with_size`] to set another chunk
    /// size.
    ///
    /// [`stream_writer_with_size`]: Self::stream_writer_with_size
    pub fn into_stream_writer(self) -> Result<StreamWriter<'static, W>> {
        self.into_stream_writer_with_size(DEFAULT_BUFFER_LENGTH)
    }

    /// Turn this into a stream writer with custom buffer size.
    ///
    /// See [`into_stream_writer`].
    ///
    /// [`into_stream_writer`]: Self::into_stream_writer
    pub fn into_stream_writer_with_size(self, size: usize) -> Result<StreamWriter<'static, W>> {
        StreamWriter::new(ChunkOutput::Owned(self), size)
    }

    /// Consume the stream writer with validation.
    ///
    /// Unlike a simple drop this ensures that the final chunk was written correctly. When other
    /// validation options (chunk sequencing) had been turned on in the configuration then it will
    /// also do a check on their correctness _before_ writing the final chunk.
    pub fn finish(mut self) -> Result<()> {
        self.validate_sequence_done()?;
        self.write_iend()?;
        self.w.flush()?;

        // Explicitly drop `self` just for clarity.
        drop(self);
        Ok(())
    }
}

impl<W: Write> Drop for Writer<W> {
    fn drop(&mut self) {
        if !self.iend_written {
            let _ = self.write_iend();
        }
    }
}

// This should be moved to Writer after `Info::encoding` is gone
pub(crate) fn write_iccp_chunk<W: Write>(
    w: &mut W,
    profile_name: &str,
    icc_profile: &[u8],
) -> Result<()> {
    let profile_name = encode_iso_8859_1(profile_name)?;
    if profile_name.len() < 1 || profile_name.len() > 79 {
        return Err(TextEncodingError::InvalidKeywordSize.into());
    }

    let estimated_compressed_size = icc_profile.len() * 3 / 4;
    let chunk_size = profile_name
        .len()
        .checked_add(2) // string NUL + compression type. Checked add optimizes out later Vec reallocations.
        .and_then(|s| s.checked_add(estimated_compressed_size))
        .ok_or(EncodingError::LimitsExceeded)?;

    let mut data = Vec::new();
    data.try_reserve_exact(chunk_size)
        .map_err(|_| EncodingError::LimitsExceeded)?;

    data.extend(profile_name.into_iter().chain([0, 0]));

    let mut encoder = ZlibEncoder::new(data, flate2::Compression::default());
    encoder.write_all(icc_profile)?;

    write_chunk(w, chunk::iCCP, &encoder.finish()?)
}

enum ChunkOutput<'a, W: Write> {
    Borrowed(&'a mut Writer<W>),
    Owned(Writer<W>),
}

// opted for deref for practical reasons
impl<'a, W: Write> Deref for ChunkOutput<'a, W> {
    type Target = Writer<W>;

    fn deref(&self) -> &Self::Target {
        match self {
            ChunkOutput::Borrowed(writer) => writer,
            ChunkOutput::Owned(writer) => writer,
        }
    }
}

impl<'a, W: Write> DerefMut for ChunkOutput<'a, W> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        match self {
            ChunkOutput::Borrowed(writer) => writer,
            ChunkOutput::Owned(writer) => writer,
        }
    }
}

/// This writer is used between the actual writer and the
/// ZlibEncoder and has the job of packaging the compressed
/// data into a PNG chunk, based on the image metadata
///
/// Currently the way it works is that the specified buffer
/// will hold one chunk at the time and buffer the incoming
/// data until `flush` is called or the maximum chunk size
/// is reached.
///
/// The maximum chunk is the smallest between the selected buffer size
/// and `u32::MAX >> 1` (`0x7fffffff` or `2147483647` dec)
///
/// When a chunk has to be flushed the length (that is now known)
/// and the CRC will be written at the correct locations in the chunk.
struct ChunkWriter<'a, W: Write> {
    writer: ChunkOutput<'a, W>,
    buffer: Vec<u8>,
    /// keeps track of where the last byte was written
    index: usize,
    curr_chunk: ChunkType,
}

impl<'a, W: Write> ChunkWriter<'a, W> {
    fn new(writer: ChunkOutput<'a, W>, buf_len: usize) -> ChunkWriter<'a, W> {
        // currently buf_len will determine the size of each chunk
        // the len is capped to the maximum size every chunk can hold
        // (this wont ever overflow an u32)
        //
        // TODO (maybe): find a way to hold two chunks at a time if `usize`
        //               is 64 bits.
        const CAP: usize = u32::MAX as usize >> 1;
        let curr_chunk = if writer.images_written == 0 {
            chunk::IDAT
        } else {
            chunk::fdAT
        };
        ChunkWriter {
            writer,
            buffer: vec![0; CAP.min(buf_len)],
            index: 0,
            curr_chunk,
        }
    }

    /// Returns the size of each scanline for the next frame
    /// paired with the size of the whole frame
    ///
    /// This is used by the `StreamWriter` to know when the scanline ends
    /// so it can filter compress it and also to know when to start
    /// the next one
    fn next_frame_info(&self) -> (usize, usize) {
        let wrt = self.writer.deref();

        let width: usize;
        let height: usize;
        if let Some(fctl) = wrt.info.frame_control {
            width = fctl.width as usize;
            height = fctl.height as usize;
        } else {
            width = wrt.info.width as usize;
            height = wrt.info.height as usize;
        }

        let in_len = wrt.info.raw_row_length_from_width(width as u32) - 1;
        let data_size = in_len * height;

        (in_len, data_size)
    }

    /// NOTE: this bypasses the internal buffer so the flush method should be called before this
    ///       in the case there is some data left in the buffer when this is called, it will panic
    fn write_header(&mut self) -> Result<()> {
        assert_eq!(self.index, 0, "Called when not flushed");
        let wrt = self.writer.deref_mut();

        self.curr_chunk = if wrt.images_written == 0 {
            chunk::IDAT
        } else {
            chunk::fdAT
        };

        match wrt.info.frame_control {
            Some(_) if wrt.should_skip_frame_control_on_default_image() => {}
            Some(ref mut fctl) => {
                fctl.encode(&mut wrt.w)?;
                fctl.sequence_number += 1;
            }
            _ => {}
        }

        Ok(())
    }

    /// Set the [`FrameControl`] for the following frame
    ///
    /// It will ignore the `sequence_number` of the parameter
    /// as it is updated internally.
    fn set_fctl(&mut self, f: FrameControl) {
        if let Some(ref mut fctl) = self.writer.info.frame_control {
            // Ignore the sequence number
            *fctl = FrameControl {
                sequence_number: fctl.sequence_number,
                ..f
            };
        } else {
            panic!("This function must be called on an animated PNG")
        }
    }

    /// Flushes the current chunk
    fn flush_inner(&mut self) -> io::Result<()> {
        if self.index > 0 {
            // flush the chunk and reset everything
            write_chunk(
                &mut self.writer.w,
                self.curr_chunk,
                &self.buffer[..self.index],
            )?;

            self.index = 0;
        }
        Ok(())
    }
}

impl<'a, W: Write> Write for ChunkWriter<'a, W> {
    fn write(&mut self, mut data: &[u8]) -> io::Result<usize> {
        if data.is_empty() {
            return Ok(0);
        }

        // index == 0 means a chunk has been flushed out
        if self.index == 0 {
            let wrt = self.writer.deref_mut();

            // Prepare the next animated frame, if any.
            let no_fctl = wrt.should_skip_frame_control_on_default_image();
            if wrt.info.frame_control.is_some() && !no_fctl {
                let fctl = wrt.info.frame_control.as_mut().unwrap();
                self.buffer[0..4].copy_from_slice(&fctl.sequence_number.to_be_bytes());
                fctl.sequence_number += 1;
                self.index = 4;
            }
        }

        // Cap the buffer length to the maximum number of bytes that can't still
        // be added to the current chunk
        let written = data.len().min(self.buffer.len() - self.index);
        data = &data[..written];

        self.buffer[self.index..][..written].copy_from_slice(data);
        self.index += written;

        // if the maximum data for this chunk as been reached it needs to be flushed
        if self.index == self.buffer.len() {
            self.flush_inner()?;
        }

        Ok(written)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.flush_inner()
    }
}

impl<W: Write> Drop for ChunkWriter<'_, W> {
    fn drop(&mut self) {
        let _ = self.flush();
    }
}

// TODO: find a better name
//
/// This enum is used to be allow the `StreamWriter` to keep
/// its inner `ChunkWriter` without wrapping it inside a
/// `ZlibEncoder`. This is used in the case that between the
/// change of state that happens when the last write of a frame
/// is performed an error occurs, which obviously has to be returned.
/// This creates the problem of where to store the writer before
/// exiting the function, and this is where `Wrapper` comes in.
///
/// Unfortunately the `ZlibWriter` can't be used because on the
/// write following the error, `finish` would be called and that
/// would write some data even if 0 bytes where compressed.
///
/// If the `finish` function fails then there is nothing much to
/// do as the `ChunkWriter` would get lost so the `Unrecoverable`
/// variant is used to signal that.
enum Wrapper<'a, W: Write> {
    Chunk(ChunkWriter<'a, W>),
    Zlib(ZlibEncoder<ChunkWriter<'a, W>>),
    Unrecoverable,
    /// This is used in-between, should never be matched
    None,
}

impl<'a, W: Write> Wrapper<'a, W> {
    /// Like `Option::take` this returns the `Wrapper` contained
    /// in `self` and replaces it with `Wrapper::None`
    fn take(&mut self) -> Wrapper<'a, W> {
        let mut swap = Wrapper::None;
        mem::swap(self, &mut swap);
        swap
    }
}

/// Streaming PNG writer
///
/// This may silently fail in the destructor, so it is a good idea to call
/// [`finish`] or [`flush`] before dropping.
///
/// [`finish`]: Self::finish
/// [`flush`]: Write::flush
pub struct StreamWriter<'a, W: Write> {
    /// The option here is needed in order to access the inner `ChunkWriter` in-between
    /// each frame, which is needed for writing the fcTL chunks between each frame
    writer: Wrapper<'a, W>,
    prev_buf: Vec<u8>,
    curr_buf: Vec<u8>,
    /// Amount of data already written
    index: usize,
    /// length of the current scanline
    line_len: usize,
    /// size of the frame (width * height * sample_size)
    to_write: usize,

    width: u32,
    height: u32,

    bpp: BytesPerPixel,
    filter: FilterType,
    adaptive_filter: AdaptiveFilterType,
    fctl: Option<FrameControl>,
    compression: Compression,
}

impl<'a, W: Write> StreamWriter<'a, W> {
    fn new(writer: ChunkOutput<'a, W>, buf_len: usize) -> Result<StreamWriter<'a, W>> {
        let PartialInfo {
            width,
            height,
            frame_control: fctl,
            compression,
            ..
        } = writer.info;

        let bpp = writer.info.bpp_in_prediction();
        let in_len = writer.info.raw_row_length() - 1;
        let filter = writer.options.filter;
        let adaptive_filter = writer.options.adaptive_filter;
        let prev_buf = vec![0; in_len];
        let curr_buf = vec![0; in_len];

        let mut chunk_writer = ChunkWriter::new(writer, buf_len);
        let (line_len, to_write) = chunk_writer.next_frame_info();
        chunk_writer.write_header()?;
        let zlib = ZlibEncoder::new(chunk_writer, compression.to_options());

        Ok(StreamWriter {
            writer: Wrapper::Zlib(zlib),
            index: 0,
            prev_buf,
            curr_buf,
            bpp,
            filter,
            width,
            height,
            adaptive_filter,
            line_len,
            to_write,
            fctl,
            compression,
        })
    }

    /// Set the used filter type for the next frame.
    ///
    /// The default filter is [`FilterType::Sub`] which provides a basic prediction algorithm for
    /// sample values based on the previous.
    ///
    /// For optimal compression ratio you should enable adaptive filtering
    /// instead of setting a single filter for the entire image, see
    /// [set_adaptive_filter](Self::set_adaptive_filter).
    pub fn set_filter(&mut self, filter: FilterType) {
        self.filter = filter;
    }

    /// Set the adaptive filter type for the next frame.
    ///
    /// Adaptive filtering attempts to select the best filter for each line
    /// based on heuristics which minimize the file size for compression rather
    /// than use a single filter for the entire image.
    ///
    /// The default method is [`AdaptiveFilterType::NonAdaptive`].
    pub fn set_adaptive_filter(&mut self, adaptive_filter: AdaptiveFilterType) {
        self.adaptive_filter = adaptive_filter;
    }

    /// Set the fraction of time the following frames are going to be displayed,
    /// in seconds
    ///
    /// If the denominator is 0, it is to be treated as if it were 100
    /// (that is, the numerator then specifies 1/100ths of a second).
    /// If the value of the numerator is 0 the decoder should render the next frame
    /// as quickly as possible, though viewers may impose a reasonable lower bound.
    ///
    /// This method will return an error if the image is not animated.
    pub fn set_frame_delay(&mut self, numerator: u16, denominator: u16) -> Result<()> {
        if let Some(ref mut fctl) = self.fctl {
            fctl.delay_den = denominator;
            fctl.delay_num = numerator;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Set the dimension of the following frames.
    ///
    /// This function will return an error when:
    /// - The image is not an animated;
    ///
    /// - The selected dimension, considering also the current frame position,
    ///   goes outside the image boundaries;
    ///
    /// - One or both the width and height are 0;
    ///
    pub fn set_frame_dimension(&mut self, width: u32, height: u32) -> Result<()> {
        if let Some(ref mut fctl) = self.fctl {
            if Some(width) > self.width.checked_sub(fctl.x_offset)
                || Some(height) > self.height.checked_sub(fctl.y_offset)
            {
                return Err(EncodingError::Format(FormatErrorKind::OutOfBounds.into()));
            } else if width == 0 {
                return Err(EncodingError::Format(FormatErrorKind::ZeroWidth.into()));
            } else if height == 0 {
                return Err(EncodingError::Format(FormatErrorKind::ZeroHeight.into()));
            }
            fctl.width = width;
            fctl.height = height;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Set the position of the following frames.
    ///
    /// An error will be returned if:
    /// - The image is not animated;
    ///
    /// - The selected position, considering also the current frame dimension,
    ///   goes outside the image boundaries;
    ///
    pub fn set_frame_position(&mut self, x: u32, y: u32) -> Result<()> {
        if let Some(ref mut fctl) = self.fctl {
            if Some(x) > self.width.checked_sub(fctl.width)
                || Some(y) > self.height.checked_sub(fctl.height)
            {
                return Err(EncodingError::Format(FormatErrorKind::OutOfBounds.into()));
            }
            fctl.x_offset = x;
            fctl.y_offset = y;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Set the frame dimension to occupy all the image, starting from
    /// the current position.
    ///
    /// To reset the frame to the full image size [`reset_frame_position`]
    /// should be called first.
    ///
    /// This method will return an error if the image is not animated.
    ///
    /// [`reset_frame_position`]: Writer::reset_frame_position
    pub fn reset_frame_dimension(&mut self) -> Result<()> {
        if let Some(ref mut fctl) = self.fctl {
            fctl.width = self.width - fctl.x_offset;
            fctl.height = self.height - fctl.y_offset;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Set the frame position to (0, 0).
    ///
    /// Equivalent to calling [`set_frame_position(0, 0)`].
    ///
    /// This method will return an error if the image is not animated.
    ///
    /// [`set_frame_position(0, 0)`]: Writer::set_frame_position
    pub fn reset_frame_position(&mut self) -> Result<()> {
        if let Some(ref mut fctl) = self.fctl {
            fctl.x_offset = 0;
            fctl.y_offset = 0;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Set the blend operation for the following frames.
    ///
    /// The blend operation specifies whether the frame is to be alpha blended
    /// into the current output buffer content, or whether it should completely
    /// replace its region in the output buffer.
    ///
    /// See the [`BlendOp`] documentation for the possible values and their effects.
    ///
    /// *Note that for the first frame the two blend modes are functionally
    /// equivalent due to the clearing of the output buffer at the beginning
    /// of each play.*
    ///
    /// This method will return an error if the image is not animated.
    pub fn set_blend_op(&mut self, op: BlendOp) -> Result<()> {
        if let Some(ref mut fctl) = self.fctl {
            fctl.blend_op = op;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Set the dispose operation for the following frames.
    ///
    /// The dispose operation specifies how the output buffer should be changed
    /// at the end of the delay (before rendering the next frame)
    ///
    /// See the [`DisposeOp`] documentation for the possible values and their effects.
    ///
    /// *Note that if the first frame uses [`DisposeOp::Previous`]
    /// it will be treated as [`DisposeOp::Background`].*
    ///
    /// This method will return an error if the image is not animated.
    pub fn set_dispose_op(&mut self, op: DisposeOp) -> Result<()> {
        if let Some(ref mut fctl) = self.fctl {
            fctl.dispose_op = op;
            Ok(())
        } else {
            Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
        }
    }

    /// Consume the stream writer with validation.
    ///
    /// Unlike a simple drop this ensures that the all data was written correctly. When other
    /// validation options (chunk sequencing) had been turned on in the configuration of inner
    /// [`Writer`], then it will also do a check on their correctness. Differently from
    /// [`Writer::finish`], this just `flush`es, returns error if some data is abandoned.
    pub fn finish(mut self) -> Result<()> {
        if self.to_write > 0 {
            let err = FormatErrorKind::MissingData(self.to_write).into();
            return Err(EncodingError::Format(err));
        }

        // TODO: call `writer.finish` somehow?
        self.flush()?;

        if let Wrapper::Chunk(wrt) = self.writer.take() {
            wrt.writer.validate_sequence_done()?;
        }

        Ok(())
    }

    /// Flushes the buffered chunk, checks if it was the last frame,
    /// writes the next frame header and gets the next frame scanline size
    /// and image size.
    /// NOTE: This method must only be called when the writer is the variant Chunk(_)
    fn new_frame(&mut self) -> Result<()> {
        let wrt = match &mut self.writer {
            Wrapper::Chunk(wrt) => wrt,
            Wrapper::Unrecoverable => {
                let err = FormatErrorKind::Unrecoverable.into();
                return Err(EncodingError::Format(err));
            }
            Wrapper::Zlib(_) => unreachable!("never called on a half-finished frame"),
            Wrapper::None => unreachable!(),
        };
        wrt.flush()?;
        wrt.writer.validate_new_image()?;

        if let Some(fctl) = self.fctl {
            wrt.set_fctl(fctl);
        }
        let (scansize, size) = wrt.next_frame_info();
        self.line_len = scansize;
        self.to_write = size;

        wrt.write_header()?;
        wrt.writer.increment_images_written();

        // now it can be taken because the next statements cannot cause any errors
        match self.writer.take() {
            Wrapper::Chunk(wrt) => {
                let encoder = ZlibEncoder::new(wrt, self.compression.to_options());
                self.writer = Wrapper::Zlib(encoder);
            }
            _ => unreachable!(),
        };

        Ok(())
    }
}

impl<'a, W: Write> Write for StreamWriter<'a, W> {
    fn write(&mut self, mut data: &[u8]) -> io::Result<usize> {
        if let Wrapper::Unrecoverable = self.writer {
            let err = FormatErrorKind::Unrecoverable.into();
            return Err(EncodingError::Format(err).into());
        }

        if data.is_empty() {
            return Ok(0);
        }

        if self.to_write == 0 {
            match self.writer.take() {
                Wrapper::Zlib(wrt) => match wrt.finish() {
                    Ok(chunk) => self.writer = Wrapper::Chunk(chunk),
                    Err(err) => {
                        self.writer = Wrapper::Unrecoverable;
                        return Err(err);
                    }
                },
                chunk @ Wrapper::Chunk(_) => self.writer = chunk,
                Wrapper::Unrecoverable => unreachable!(),
                Wrapper::None => unreachable!(),
            };

            // Transition Wrapper::Chunk to Wrapper::Zlib.
            self.new_frame()?;
        }

        let written = data.read(&mut self.curr_buf[..self.line_len][self.index..])?;
        self.index += written;
        self.to_write -= written;

        if self.index == self.line_len {
            // TODO: reuse this buffer between rows.
            let mut filtered = vec![0; self.curr_buf.len()];
            let filter_type = filter(
                self.filter,
                self.adaptive_filter,
                self.bpp,
                &self.prev_buf,
                &self.curr_buf,
                &mut filtered,
            );
            // This can't fail as the other variant is used only to allow the zlib encoder to finish
            let wrt = match &mut self.writer {
                Wrapper::Zlib(wrt) => wrt,
                _ => unreachable!(),
            };

            wrt.write_all(&[filter_type as u8])?;
            wrt.write_all(&filtered)?;
            mem::swap(&mut self.prev_buf, &mut self.curr_buf);
            self.index = 0;
        }

        Ok(written)
    }

    fn flush(&mut self) -> io::Result<()> {
        match &mut self.writer {
            Wrapper::Zlib(wrt) => wrt.flush()?,
            Wrapper::Chunk(wrt) => wrt.flush()?,
            // This handles both the case where we entered an unrecoverable state after zlib
            // decoding failure and after a panic while we had taken the chunk/zlib reader.
            Wrapper::Unrecoverable | Wrapper::None => {
                let err = FormatErrorKind::Unrecoverable.into();
                return Err(EncodingError::Format(err).into());
            }
        }

        if self.index > 0 {
            let err = FormatErrorKind::WrittenTooMuch(self.index).into();
            return Err(EncodingError::Format(err).into());
        }

        Ok(())
    }
}

impl<W: Write> Drop for StreamWriter<'_, W> {
    fn drop(&mut self) {
        let _ = self.flush();
    }
}

/// Mod to encapsulate the converters depending on the `deflate` crate.
///
/// Since this only contains trait impls, there is no need to make this public, they are simply
/// available when the mod is compiled as well.
impl Compression {
    fn to_options(self) -> flate2::Compression {
        #[allow(deprecated)]
        match self {
            Compression::Default => flate2::Compression::default(),
            Compression::Fast => flate2::Compression::fast(),
            Compression::Best => flate2::Compression::best(),
            #[allow(deprecated)]
            Compression::Huffman => flate2::Compression::none(),
            #[allow(deprecated)]
            Compression::Rle => flate2::Compression::none(),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::Decoder;

    use rand::{thread_rng, Rng};
    use std::cmp;
    use std::fs::File;
    use std::io::Cursor;

    #[test]
    fn roundtrip() {
        // More loops = more random testing, but also more test wait time
        for _ in 0..10 {
            for path in glob::glob("tests/pngsuite/*.png")
                .unwrap()
                .map(|r| r.unwrap())
            {
                if path.file_name().unwrap().to_str().unwrap().starts_with('x') {
                    // x* files are expected to fail to decode
                    continue;
                }
                eprintln!("{}", path.display());
                // Decode image
                let decoder = Decoder::new(File::open(path).unwrap());
                let mut reader = decoder.read_info().unwrap();
                let mut buf = vec![0; reader.output_buffer_size()];
                let info = reader.next_frame(&mut buf).unwrap();
                // Encode decoded image
                let mut out = Vec::new();
                {
                    let mut wrapper = RandomChunkWriter {
                        rng: thread_rng(),
                        w: &mut out,
                    };

                    let mut encoder = Encoder::new(&mut wrapper, info.width, info.height);
                    encoder.set_color(info.color_type);
                    encoder.set_depth(info.bit_depth);
                    if let Some(palette) = &reader.info().palette {
                        encoder.set_palette(palette.clone());
                    }
                    let mut encoder = encoder.write_header().unwrap();
                    encoder.write_image_data(&buf).unwrap();
                }
                // Decode encoded decoded image
                let decoder = Decoder::new(&*out);
                let mut reader = decoder.read_info().unwrap();
                let mut buf2 = vec![0; reader.output_buffer_size()];
                reader.next_frame(&mut buf2).unwrap();
                // check if the encoded image is ok:
                assert_eq!(buf, buf2);
            }
        }
    }

    #[test]
    fn roundtrip_stream() {
        // More loops = more random testing, but also more test wait time
        for _ in 0..10 {
            for path in glob::glob("tests/pngsuite/*.png")
                .unwrap()
                .map(|r| r.unwrap())
            {
                if path.file_name().unwrap().to_str().unwrap().starts_with('x') {
                    // x* files are expected to fail to decode
                    continue;
                }
                // Decode image
                let decoder = Decoder::new(File::open(path).unwrap());
                let mut reader = decoder.read_info().unwrap();
                let mut buf = vec![0; reader.output_buffer_size()];
                let info = reader.next_frame(&mut buf).unwrap();
                // Encode decoded image
                let mut out = Vec::new();
                {
                    let mut wrapper = RandomChunkWriter {
                        rng: thread_rng(),
                        w: &mut out,
                    };

                    let mut encoder = Encoder::new(&mut wrapper, info.width, info.height);
                    encoder.set_color(info.color_type);
                    encoder.set_depth(info.bit_depth);
                    if let Some(palette) = &reader.info().palette {
                        encoder.set_palette(palette.clone());
                    }
                    let mut encoder = encoder.write_header().unwrap();
                    let mut stream_writer = encoder.stream_writer().unwrap();

                    let mut outer_wrapper = RandomChunkWriter {
                        rng: thread_rng(),
                        w: &mut stream_writer,
                    };

                    outer_wrapper.write_all(&buf).unwrap();
                }
                // Decode encoded decoded image
                let decoder = Decoder::new(&*out);
                let mut reader = decoder.read_info().unwrap();
                let mut buf2 = vec![0; reader.output_buffer_size()];
                reader.next_frame(&mut buf2).unwrap();
                // check if the encoded image is ok:
                assert_eq!(buf, buf2);
            }
        }
    }

    #[test]
    fn image_palette() -> Result<()> {
        for &bit_depth in &[1u8, 2, 4, 8] {
            // Do a reference decoding, choose a fitting palette image from pngsuite
            let path = format!("tests/pngsuite/basn3p0{}.png", bit_depth);
            let decoder = Decoder::new(File::open(&path).unwrap());
            let mut reader = decoder.read_info().unwrap();

            let mut decoded_pixels = vec![0; reader.output_buffer_size()];
            let info = reader.info();
            assert_eq!(
                info.width as usize * info.height as usize * usize::from(bit_depth),
                decoded_pixels.len() * 8
            );
            let info = reader.next_frame(&mut decoded_pixels).unwrap();
            let indexed_data = decoded_pixels;

            let palette = reader.info().palette.as_ref().unwrap();
            let mut out = Vec::new();
            {
                let mut encoder = Encoder::new(&mut out, info.width, info.height);
                encoder.set_depth(BitDepth::from_u8(bit_depth).unwrap());
                encoder.set_color(ColorType::Indexed);
                encoder.set_palette(palette.as_ref());

                let mut writer = encoder.write_header().unwrap();
                writer.write_image_data(&indexed_data).unwrap();
            }

            // Decode re-encoded image
            let decoder = Decoder::new(&*out);
            let mut reader = decoder.read_info().unwrap();
            let mut redecoded = vec![0; reader.output_buffer_size()];
            reader.next_frame(&mut redecoded).unwrap();
            // check if the encoded image is ok:
            assert_eq!(indexed_data, redecoded);
        }
        Ok(())
    }

    #[test]
    fn expect_error_on_wrong_image_len() -> Result<()> {
        let width = 10;
        let height = 10;

        let output = vec![0u8; 1024];
        let writer = Cursor::new(output);
        let mut encoder = Encoder::new(writer, width as u32, height as u32);
        encoder.set_depth(BitDepth::Eight);
        encoder.set_color(ColorType::Rgb);
        let mut png_writer = encoder.write_header()?;

        let correct_image_size = width * height * 3;
        let image = vec![0u8; correct_image_size + 1];
        let result = png_writer.write_image_data(image.as_ref());
        assert!(result.is_err());

        Ok(())
    }

    #[test]
    fn expect_error_on_empty_image() -> Result<()> {
        let output = vec![0u8; 1024];
        let mut writer = Cursor::new(output);

        let encoder = Encoder::new(&mut writer, 0, 0);
        assert!(encoder.write_header().is_err());

        let encoder = Encoder::new(&mut writer, 100, 0);
        assert!(encoder.write_header().is_err());

        let encoder = Encoder::new(&mut writer, 0, 100);
        assert!(encoder.write_header().is_err());

        Ok(())
    }

    #[test]
    fn expect_error_on_invalid_bit_depth_color_type_combination() -> Result<()> {
        let output = vec![0u8; 1024];
        let mut writer = Cursor::new(output);

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::One);
        encoder.set_color(ColorType::Rgb);
        assert!(encoder.write_header().is_err());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::One);
        encoder.set_color(ColorType::GrayscaleAlpha);
        assert!(encoder.write_header().is_err());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::One);
        encoder.set_color(ColorType::Rgba);
        assert!(encoder.write_header().is_err());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Two);
        encoder.set_color(ColorType::Rgb);
        assert!(encoder.write_header().is_err());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Two);
        encoder.set_color(ColorType::GrayscaleAlpha);
        assert!(encoder.write_header().is_err());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Two);
        encoder.set_color(ColorType::Rgba);
        assert!(encoder.write_header().is_err());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Four);
        encoder.set_color(ColorType::Rgb);
        assert!(encoder.write_header().is_err());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Four);
        encoder.set_color(ColorType::GrayscaleAlpha);
        assert!(encoder.write_header().is_err());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Four);
        encoder.set_color(ColorType::Rgba);
        assert!(encoder.write_header().is_err());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Sixteen);
        encoder.set_color(ColorType::Indexed);
        assert!(encoder.write_header().is_err());

        Ok(())
    }

    #[test]
    fn can_write_header_with_valid_bit_depth_color_type_combination() -> Result<()> {
        let output = vec![0u8; 1024];
        let mut writer = Cursor::new(output);

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::One);
        encoder.set_color(ColorType::Grayscale);
        assert!(encoder.write_header().is_ok());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::One);
        encoder.set_color(ColorType::Indexed);
        assert!(encoder.write_header().is_ok());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Two);
        encoder.set_color(ColorType::Grayscale);
        assert!(encoder.write_header().is_ok());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Two);
        encoder.set_color(ColorType::Indexed);
        assert!(encoder.write_header().is_ok());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Four);
        encoder.set_color(ColorType::Grayscale);
        assert!(encoder.write_header().is_ok());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Four);
        encoder.set_color(ColorType::Indexed);
        assert!(encoder.write_header().is_ok());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Eight);
        encoder.set_color(ColorType::Grayscale);
        assert!(encoder.write_header().is_ok());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Eight);
        encoder.set_color(ColorType::Rgb);
        assert!(encoder.write_header().is_ok());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Eight);
        encoder.set_color(ColorType::Indexed);
        assert!(encoder.write_header().is_ok());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Eight);
        encoder.set_color(ColorType::GrayscaleAlpha);
        assert!(encoder.write_header().is_ok());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Eight);
        encoder.set_color(ColorType::Rgba);
        assert!(encoder.write_header().is_ok());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Sixteen);
        encoder.set_color(ColorType::Grayscale);
        assert!(encoder.write_header().is_ok());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Sixteen);
        encoder.set_color(ColorType::Rgb);
        assert!(encoder.write_header().is_ok());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Sixteen);
        encoder.set_color(ColorType::GrayscaleAlpha);
        assert!(encoder.write_header().is_ok());

        let mut encoder = Encoder::new(&mut writer, 1, 1);
        encoder.set_depth(BitDepth::Sixteen);
        encoder.set_color(ColorType::Rgba);
        assert!(encoder.write_header().is_ok());

        Ok(())
    }

    #[test]
    fn all_filters_roundtrip() -> io::Result<()> {
        let pixel: Vec<_> = (0..48).collect();

        let roundtrip = |filter: FilterType| -> io::Result<()> {
            let mut buffer = vec![];
            let mut encoder = Encoder::new(&mut buffer, 4, 4);
            encoder.set_depth(BitDepth::Eight);
            encoder.set_color(ColorType::Rgb);
            encoder.set_filter(filter);
            encoder.write_header()?.write_image_data(&pixel)?;

            let decoder = crate::Decoder::new(Cursor::new(buffer));
            let mut reader = decoder.read_info()?;
            let info = reader.info();
            assert_eq!(info.width, 4);
            assert_eq!(info.height, 4);
            let mut dest = vec![0; pixel.len()];
            reader.next_frame(&mut dest)?;
            assert_eq!(dest, pixel, "Deviation with filter type {:?}", filter);

            Ok(())
        };

        roundtrip(FilterType::NoFilter)?;
        roundtrip(FilterType::Sub)?;
        roundtrip(FilterType::Up)?;
        roundtrip(FilterType::Avg)?;
        roundtrip(FilterType::Paeth)?;

        Ok(())
    }

    #[test]
    fn some_gamma_roundtrip() -> io::Result<()> {
        let pixel: Vec<_> = (0..48).collect();

        let roundtrip = |gamma: Option<ScaledFloat>| -> io::Result<()> {
            let mut buffer = vec![];
            let mut encoder = Encoder::new(&mut buffer, 4, 4);
            encoder.set_depth(BitDepth::Eight);
            encoder.set_color(ColorType::Rgb);
            encoder.set_filter(FilterType::Avg);
            if let Some(gamma) = gamma {
                encoder.set_source_gamma(gamma);
            }
            encoder.write_header()?.write_image_data(&pixel)?;

            let decoder = crate::Decoder::new(Cursor::new(buffer));
            let mut reader = decoder.read_info()?;
            assert_eq!(
                reader.info().source_gamma,
                gamma,
                "Deviation with gamma {:?}",
                gamma
            );
            let mut dest = vec![0; pixel.len()];
            let info = reader.next_frame(&mut dest)?;
            assert_eq!(info.width, 4);
            assert_eq!(info.height, 4);

            Ok(())
        };

        roundtrip(None)?;
        roundtrip(Some(ScaledFloat::new(0.35)))?;
        roundtrip(Some(ScaledFloat::new(0.45)))?;
        roundtrip(Some(ScaledFloat::new(0.55)))?;
        roundtrip(Some(ScaledFloat::new(0.7)))?;
        roundtrip(Some(ScaledFloat::new(1.0)))?;
        roundtrip(Some(ScaledFloat::new(2.5)))?;

        Ok(())
    }

    #[test]
    fn write_image_chunks_beyond_first() -> Result<()> {
        let width = 10;
        let height = 10;

        let output = vec![0u8; 1024];
        let writer = Cursor::new(output);

        // Not an animation but we should still be able to write multiple images
        // See issue: <https://github.com/image-rs/image-png/issues/301>
        // This is technically all valid png so there is no issue with correctness.
        let mut encoder = Encoder::new(writer, width, height);
        encoder.set_depth(BitDepth::Eight);
        encoder.set_color(ColorType::Grayscale);
        let mut png_writer = encoder.write_header()?;

        for _ in 0..3 {
            let correct_image_size = (width * height) as usize;
            let image = vec![0u8; correct_image_size];
            png_writer.write_image_data(image.as_ref())?;
        }

        Ok(())
    }

    #[test]
    fn image_validate_sequence_without_animation() -> Result<()> {
        let width = 10;
        let height = 10;

        let output = vec![0u8; 1024];
        let writer = Cursor::new(output);

        let mut encoder = Encoder::new(writer, width, height);
        encoder.set_depth(BitDepth::Eight);
        encoder.set_color(ColorType::Grayscale);
        encoder.validate_sequence(true);
        let mut png_writer = encoder.write_header()?;

        let correct_image_size = (width * height) as usize;
        let image = vec![0u8; correct_image_size];
        png_writer.write_image_data(image.as_ref())?;

        assert!(png_writer.write_image_data(image.as_ref()).is_err());
        Ok(())
    }

    #[test]
    fn image_validate_animation() -> Result<()> {
        let width = 10;
        let height = 10;

        let output = vec![0u8; 1024];
        let writer = Cursor::new(output);
        let correct_image_size = (width * height) as usize;
        let image = vec![0u8; correct_image_size];

        let mut encoder = Encoder::new(writer, width, height);
        encoder.set_depth(BitDepth::Eight);
        encoder.set_color(ColorType::Grayscale);
        encoder.set_animated(1, 0)?;
        encoder.validate_sequence(true);
        let mut png_writer = encoder.write_header()?;

        png_writer.write_image_data(image.as_ref())?;

        Ok(())
    }

    #[test]
    fn image_validate_animation2() -> Result<()> {
        let width = 10;
        let height = 10;

        let output = vec![0u8; 1024];
        let writer = Cursor::new(output);
        let correct_image_size = (width * height) as usize;
        let image = vec![0u8; correct_image_size];

        let mut encoder = Encoder::new(writer, width, height);
        encoder.set_depth(BitDepth::Eight);
        encoder.set_color(ColorType::Grayscale);
        encoder.set_animated(2, 0)?;
        encoder.validate_sequence(true);
        let mut png_writer = encoder.write_header()?;

        png_writer.write_image_data(image.as_ref())?;
        png_writer.write_image_data(image.as_ref())?;
        png_writer.finish()?;

        Ok(())
    }

    #[test]
    fn image_validate_animation_sep_def_image() -> Result<()> {
        let width = 10;
        let height = 10;

        let output = vec![0u8; 1024];
        let writer = Cursor::new(output);
        let correct_image_size = (width * height) as usize;
        let image = vec![0u8; correct_image_size];

        let mut encoder = Encoder::new(writer, width, height);
        encoder.set_depth(BitDepth::Eight);
        encoder.set_color(ColorType::Grayscale);
        encoder.set_animated(1, 0)?;
        encoder.set_sep_def_img(true)?;
        encoder.validate_sequence(true);
        let mut png_writer = encoder.write_header()?;

        png_writer.write_image_data(image.as_ref())?;
        png_writer.write_image_data(image.as_ref())?;
        png_writer.finish()?;

        Ok(())
    }

    #[test]
    fn image_validate_missing_image() -> Result<()> {
        let width = 10;
        let height = 10;

        let output = vec![0u8; 1024];
        let writer = Cursor::new(output);

        let mut encoder = Encoder::new(writer, width, height);
        encoder.set_depth(BitDepth::Eight);
        encoder.set_color(ColorType::Grayscale);
        encoder.validate_sequence(true);
        let png_writer = encoder.write_header()?;

        assert!(png_writer.finish().is_err());
        Ok(())
    }

    #[test]
    fn image_validate_missing_animated_frame() -> Result<()> {
        let width = 10;
        let height = 10;

        let output = vec![0u8; 1024];
        let writer = Cursor::new(output);
        let correct_image_size = (width * height) as usize;
        let image = vec![0u8; correct_image_size];

        let mut encoder = Encoder::new(writer, width, height);
        encoder.set_depth(BitDepth::Eight);
        encoder.set_color(ColorType::Grayscale);
        encoder.set_animated(2, 0)?;
        encoder.validate_sequence(true);
        let mut png_writer = encoder.write_header()?;

        png_writer.write_image_data(image.as_ref())?;
        assert!(png_writer.finish().is_err());

        Ok(())
    }

    #[test]
    fn issue_307_stream_validation() -> Result<()> {
        let output = vec![0u8; 1024];
        let mut cursor = Cursor::new(output);

        let encoder = Encoder::new(&mut cursor, 1, 1); // Create a 1-pixel image
        let mut writer = encoder.write_header()?;
        let mut stream = writer.stream_writer()?;

        let written = stream.write(&[1, 2, 3, 4])?;
        assert_eq!(written, 1);
        stream.finish()?;
        drop(writer);

        {
            cursor.set_position(0);
            let mut decoder = Decoder::new(cursor).read_info().expect("A valid image");
            let mut buffer = [0u8; 1];
            decoder.next_frame(&mut buffer[..]).expect("Valid read");
            assert_eq!(buffer, [1]);
        }

        Ok(())
    }

    #[test]
    fn stream_filtering() -> Result<()> {
        let output = vec![0u8; 1024];
        let mut cursor = Cursor::new(output);

        let mut encoder = Encoder::new(&mut cursor, 8, 8);
        encoder.set_color(ColorType::Rgba);
        encoder.set_filter(FilterType::Paeth);
        let mut writer = encoder.write_header()?;
        let mut stream = writer.stream_writer()?;

        for _ in 0..8 {
            let written = stream.write(&[1; 32])?;
            assert_eq!(written, 32);
        }
        stream.finish()?;
        drop(writer);

        {
            cursor.set_position(0);
            let mut decoder = Decoder::new(cursor).read_info().expect("A valid image");
            let mut buffer = [0u8; 256];
            decoder.next_frame(&mut buffer[..]).expect("Valid read");
            assert_eq!(buffer, [1; 256]);
        }

        Ok(())
    }

    #[test]
    #[cfg(all(unix, not(target_pointer_width = "32")))]
    fn exper_error_on_huge_chunk() -> Result<()> {
        // Okay, so we want a proper 4 GB chunk but not actually spend the memory for reserving it.
        // Let's rely on overcommit? Otherwise we got the rather dumb option of mmap-ing /dev/zero.
        let empty = vec![0; 1usize << 31];
        let writer = Cursor::new(vec![0u8; 1024]);

        let mut encoder = Encoder::new(writer, 10, 10);
        encoder.set_depth(BitDepth::Eight);
        encoder.set_color(ColorType::Grayscale);
        let mut png_writer = encoder.write_header()?;

        assert!(png_writer.write_chunk(chunk::fdAT, &empty).is_err());
        Ok(())
    }

    #[test]
    #[cfg(all(unix, not(target_pointer_width = "32")))]
    fn exper_error_on_non_u32_chunk() -> Result<()> {
        // Okay, so we want a proper 4 GB chunk but not actually spend the memory for reserving it.
        // Let's rely on overcommit? Otherwise we got the rather dumb option of mmap-ing /dev/zero.
        let empty = vec![0; 1usize << 32];
        let writer = Cursor::new(vec![0u8; 1024]);

        let mut encoder = Encoder::new(writer, 10, 10);
        encoder.set_depth(BitDepth::Eight);
        encoder.set_color(ColorType::Grayscale);
        let mut png_writer = encoder.write_header()?;

        assert!(png_writer.write_chunk(chunk::fdAT, &empty).is_err());
        Ok(())
    }

    #[test]
    fn finish_drops_inner_writer() -> Result<()> {
        struct NoWriter<'flag>(&'flag mut bool);

        impl Write for NoWriter<'_> {
            fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
                Ok(buf.len())
            }
            fn flush(&mut self) -> io::Result<()> {
                Ok(())
            }
        }
        impl Drop for NoWriter<'_> {
            fn drop(&mut self) {
                *self.0 = true;
            }
        }

        let mut flag = false;

        {
            let mut encoder = Encoder::new(NoWriter(&mut flag), 10, 10);
            encoder.set_depth(BitDepth::Eight);
            encoder.set_color(ColorType::Grayscale);

            let mut writer = encoder.write_header()?;
            writer.write_image_data(&[0; 100])?;
            writer.finish()?;
        }

        assert!(flag, "PNG finished but writer was not dropped");
        Ok(())
    }

    /// A Writer that only writes a few bytes at a time
    struct RandomChunkWriter<R: Rng, W: Write> {
        rng: R,
        w: W,
    }

    impl<R: Rng, W: Write> Write for RandomChunkWriter<R, W> {
        fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
            // choose a random length to write
            let len = cmp::min(self.rng.gen_range(1..50), buf.len());

            self.w.write(&buf[0..len])
        }

        fn flush(&mut self) -> io::Result<()> {
            self.w.flush()
        }
    }
}