png/
filter.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
use core::convert::TryInto;

use crate::common::BytesPerPixel;

/// SIMD helpers for `fn unfilter`
///
/// TODO(https://github.com/rust-lang/rust/issues/86656): Stop gating this module behind the
/// "unstable" feature of the `png` crate.  This should be possible once the "portable_simd"
/// feature of Rust gets stabilized.
///
/// This is only known to help on x86, with no change measured on most benchmarks on ARM,
/// and even severely regressing some of them.
/// So despite the code being portable, we only enable this for x86.
/// We can add more platforms once this code is proven to be beneficial for them.
#[cfg(all(feature = "unstable", target_arch = "x86_64"))]
mod simd {
    use std::simd::num::{SimdInt, SimdUint};
    use std::simd::{u8x4, u8x8, LaneCount, Simd, SimdElement, SupportedLaneCount};

    /// Scalar Paeth function wrapped in SIMD scaffolding.
    ///
    /// This is needed because simply running the function on the inputs
    /// makes the compiler think our inputs are too short
    /// to benefit from vectorization.
    /// Putting it in SIMD scaffolding fixes that.
    /// https://github.com/image-rs/image-png/issues/511
    ///
    /// Funnily, the autovectorizer does a better job here
    /// than a handwritten algorithm using std::simd!
    /// We used to have a handwritten one but this is just faster.
    fn paeth_predictor<const N: usize>(
        a: Simd<i16, N>,
        b: Simd<i16, N>,
        c: Simd<i16, N>,
    ) -> Simd<i16, N>
    where
        LaneCount<N>: SupportedLaneCount,
    {
        let mut out = [0; N];
        for i in 0..N {
            out[i] = super::filter_paeth_stbi_i16(a[i].into(), b[i].into(), c[i].into());
        }
        out.into()
    }

    /// Functionally equivalent to `simd::paeth_predictor` but does not temporarily convert
    /// the SIMD elements to `i16`.
    fn paeth_predictor_u8<const N: usize>(
        a: Simd<u8, N>,
        b: Simd<u8, N>,
        c: Simd<u8, N>,
    ) -> Simd<u8, N>
    where
        LaneCount<N>: SupportedLaneCount,
    {
        let mut out = [0; N];
        for i in 0..N {
            out[i] = super::filter_paeth_stbi(a[i].into(), b[i].into(), c[i].into());
        }
        out.into()
    }

    /// Memory of previous pixels (as needed to unfilter `FilterType::Paeth`).
    /// See also https://www.w3.org/TR/png/#filter-byte-positions
    #[derive(Default)]
    struct PaethState<T, const N: usize>
    where
        T: SimdElement,
        LaneCount<N>: SupportedLaneCount,
    {
        /// Previous pixel in the previous row.
        c: Simd<T, N>,

        /// Previous pixel in the current row.
        a: Simd<T, N>,
    }

    /// Mutates `x` as needed to unfilter `FilterType::Paeth`.
    ///
    /// `b` is the current pixel in the previous row.  `x` is the current pixel in the current row.
    /// See also https://www.w3.org/TR/png/#filter-byte-positions
    fn paeth_step<const N: usize>(
        state: &mut PaethState<i16, N>,
        b: Simd<u8, N>,
        x: &mut Simd<u8, N>,
    ) where
        LaneCount<N>: SupportedLaneCount,
    {
        // Storing the inputs.
        let b = b.cast::<i16>();

        // Calculating the new value of the current pixel.
        let predictor = paeth_predictor(state.a, b, state.c);
        *x += predictor.cast::<u8>();

        // Preparing for the next step.
        state.c = b;
        state.a = x.cast::<i16>();
    }

    /// Computes the Paeth predictor without converting `u8` to `i16`.
    ///
    /// See `simd::paeth_step`.
    fn paeth_step_u8<const N: usize>(
        state: &mut PaethState<u8, N>,
        b: Simd<u8, N>,
        x: &mut Simd<u8, N>,
    ) where
        LaneCount<N>: SupportedLaneCount,
    {
        // Calculating the new value of the current pixel.
        *x += paeth_predictor_u8(state.a, b, state.c);

        // Preparing for the next step.
        state.c = b;
        state.a = *x;
    }

    fn load3(src: &[u8]) -> u8x4 {
        u8x4::from_array([src[0], src[1], src[2], 0])
    }

    fn store3(src: u8x4, dest: &mut [u8]) {
        dest[0..3].copy_from_slice(&src.to_array()[0..3])
    }

    /// Undoes `FilterType::Paeth` for `BytesPerPixel::Three`.
    pub fn unfilter_paeth3(mut prev_row: &[u8], mut curr_row: &mut [u8]) {
        debug_assert_eq!(prev_row.len(), curr_row.len());
        debug_assert_eq!(prev_row.len() % 3, 0);

        let mut state = PaethState::<i16, 4>::default();
        while prev_row.len() >= 4 {
            // `u8x4` requires working with `[u8;4]`, but we can just load and ignore the first
            // byte from the next triple.  This optimization technique mimics the algorithm found
            // in
            // https://github.com/glennrp/libpng/blob/f8e5fa92b0e37ab597616f554bee254157998227/intel/filter_sse2_intrinsics.c#L130-L131
            let b = u8x4::from_slice(prev_row);
            let mut x = u8x4::from_slice(curr_row);

            paeth_step(&mut state, b, &mut x);

            // We can speculate that writing 4 bytes might be more efficient (just as with using
            // `u8x4::from_slice` above), but we can't use that here, because we can't clobber the
            // first byte of the next pixel in the `curr_row`.
            store3(x, curr_row);

            prev_row = &prev_row[3..];
            curr_row = &mut curr_row[3..];
        }
        // Can't use `u8x4::from_slice` for the last `[u8;3]`.
        let b = load3(prev_row);
        let mut x = load3(curr_row);
        paeth_step(&mut state, b, &mut x);
        store3(x, curr_row);
    }

    /// Undoes `FilterType::Paeth` for `BytesPerPixel::Four` and `BytesPerPixel::Eight`.
    ///
    /// This function calculates the Paeth predictor entirely in `Simd<u8, N>`
    /// without converting to an intermediate `Simd<i16, N>`. Doing so avoids
    /// paying a small performance penalty converting between types.
    pub fn unfilter_paeth_u8<const N: usize>(prev_row: &[u8], curr_row: &mut [u8])
    where
        LaneCount<N>: SupportedLaneCount,
    {
        debug_assert_eq!(prev_row.len(), curr_row.len());
        debug_assert_eq!(prev_row.len() % N, 0);
        assert!(matches!(N, 4 | 8));

        let mut state = PaethState::<u8, N>::default();
        for (prev_row, curr_row) in prev_row.chunks_exact(N).zip(curr_row.chunks_exact_mut(N)) {
            let b = Simd::from_slice(prev_row);
            let mut x = Simd::from_slice(curr_row);

            paeth_step_u8(&mut state, b, &mut x);

            curr_row[..N].copy_from_slice(&x.to_array()[..N]);
        }
    }

    fn load6(src: &[u8]) -> u8x8 {
        u8x8::from_array([src[0], src[1], src[2], src[3], src[4], src[5], 0, 0])
    }

    fn store6(src: u8x8, dest: &mut [u8]) {
        dest[0..6].copy_from_slice(&src.to_array()[0..6])
    }

    /// Undoes `FilterType::Paeth` for `BytesPerPixel::Six`.
    pub fn unfilter_paeth6(mut prev_row: &[u8], mut curr_row: &mut [u8]) {
        debug_assert_eq!(prev_row.len(), curr_row.len());
        debug_assert_eq!(prev_row.len() % 6, 0);

        let mut state = PaethState::<i16, 8>::default();
        while prev_row.len() >= 8 {
            // `u8x8` requires working with `[u8;8]`, but we can just load and ignore the first two
            // bytes from the next pixel.  This optimization technique mimics the algorithm found
            // in
            // https://github.com/glennrp/libpng/blob/f8e5fa92b0e37ab597616f554bee254157998227/intel/filter_sse2_intrinsics.c#L130-L131
            let b = u8x8::from_slice(prev_row);
            let mut x = u8x8::from_slice(curr_row);

            paeth_step(&mut state, b, &mut x);

            // We can speculate that writing 8 bytes might be more efficient (just as with using
            // `u8x8::from_slice` above), but we can't use that here, because we can't clobber the
            // first bytes of the next pixel in the `curr_row`.
            store6(x, curr_row);

            prev_row = &prev_row[6..];
            curr_row = &mut curr_row[6..];
        }
        // Can't use `u8x8::from_slice` for the last `[u8;6]`.
        let b = load6(prev_row);
        let mut x = load6(curr_row);
        paeth_step(&mut state, b, &mut x);
        store6(x, curr_row);
    }
}

/// The byte level filter applied to scanlines to prepare them for compression.
///
/// Compression in general benefits from repetitive data. The filter is a content-aware method of
/// compressing the range of occurring byte values to help the compression algorithm. Note that
/// this does not operate on pixels but on raw bytes of a scanline.
///
/// Details on how each filter works can be found in the [PNG Book](http://www.libpng.org/pub/png/book/chapter09.html).
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum FilterType {
    NoFilter = 0,
    Sub = 1,
    Up = 2,
    Avg = 3,
    Paeth = 4,
}

impl Default for FilterType {
    fn default() -> Self {
        FilterType::Sub
    }
}

impl FilterType {
    /// u8 -> Self. Temporary solution until Rust provides a canonical one.
    pub fn from_u8(n: u8) -> Option<FilterType> {
        match n {
            0 => Some(FilterType::NoFilter),
            1 => Some(FilterType::Sub),
            2 => Some(FilterType::Up),
            3 => Some(FilterType::Avg),
            4 => Some(FilterType::Paeth),
            _ => None,
        }
    }
}

/// Adaptive filtering tries every possible filter for each row and uses a heuristic to select the best one.
/// This improves compression ratio, but makes encoding slightly slower.
///
/// It is recommended to use `Adaptive` whenever you care about compression ratio.
/// Filtering is quite cheap compared to other parts of encoding, but can contribute
/// to the compression ratio significantly.
///
/// `NonAdaptive` filtering is the default.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum AdaptiveFilterType {
    Adaptive,
    NonAdaptive,
}

impl Default for AdaptiveFilterType {
    fn default() -> Self {
        AdaptiveFilterType::NonAdaptive
    }
}

fn filter_paeth(a: u8, b: u8, c: u8) -> u8 {
    // On ARM this algorithm performs much better than the one above adapted from stb,
    // and this is the better-studied algorithm we've always used here,
    // so we default to it on all non-x86 platforms.
    let pa = (i16::from(b) - i16::from(c)).abs();
    let pb = (i16::from(a) - i16::from(c)).abs();
    let pc = ((i16::from(a) - i16::from(c)) + (i16::from(b) - i16::from(c))).abs();

    let mut out = a;
    let mut min = pa;

    if pb < min {
        min = pb;
        out = b;
    }
    if pc < min {
        out = c;
    }

    out
}

fn filter_paeth_stbi(a: u8, b: u8, c: u8) -> u8 {
    // Decoding optimizes better with this algorithm than with `filter_paeth`
    //
    // This formulation looks very different from the reference in the PNG spec, but is
    // actually equivalent and has favorable data dependencies and admits straightforward
    // generation of branch-free code, which helps performance significantly.
    //
    // Adapted from public domain PNG implementation:
    // https://github.com/nothings/stb/blob/5c205738c191bcb0abc65c4febfa9bd25ff35234/stb_image.h#L4657-L4668
    let thresh = i16::from(c) * 3 - (i16::from(a) + i16::from(b));
    let lo = a.min(b);
    let hi = a.max(b);
    let t0 = if hi as i16 <= thresh { lo } else { c };
    let t1 = if thresh <= lo as i16 { hi } else { t0 };
    return t1;
}

#[cfg(any(test, all(feature = "unstable", target_arch = "x86_64")))]
fn filter_paeth_stbi_i16(a: i16, b: i16, c: i16) -> i16 {
    // Like `filter_paeth_stbi` but vectorizes better when wrapped in SIMD types.
    // Used for bpp=3 and bpp=6
    let thresh = c * 3 - (a + b);
    let lo = a.min(b);
    let hi = a.max(b);
    let t0 = if hi <= thresh { lo } else { c };
    let t1 = if thresh <= lo { hi } else { t0 };
    return t1;
}

fn filter_paeth_fpnge(a: u8, b: u8, c: u8) -> u8 {
    // This is an optimized version of the paeth filter from the PNG specification, proposed by
    // Luca Versari for [FPNGE](https://www.lucaversari.it/FJXL_and_FPNGE.pdf). It operates
    // entirely on unsigned 8-bit quantities, making it more conducive to vectorization.
    //
    //     p = a + b - c
    //     pa = |p - a| = |a + b - c - a| = |b - c| = max(b, c) - min(b, c)
    //     pb = |p - b| = |a + b - c - b| = |a - c| = max(a, c) - min(a, c)
    //     pc = |p - c| = |a + b - c - c| = |(b - c) + (a - c)| = ...
    //
    // Further optimizing the calculation of `pc` a bit tricker. However, notice that:
    //
    //        a > c && b > c
    //    ==> (a - c) > 0 && (b - c) > 0
    //    ==> pc > (a - c) && pc > (b - c)
    //    ==> pc > |a - c| && pc > |b - c|
    //    ==> pc > pb && pc > pa
    //
    // Meaning that if `c` is smaller than `a` and `b`, the value of `pc` is irrelevant. Similar
    // reasoning applies if `c` is larger than the other two inputs. Assuming that `c >= b` and
    // `c <= b` or vice versa:
    //
    //     pc = ||b - c| - |a - c|| =  |pa - pb| = max(pa, pb) - min(pa, pb)
    //
    let pa = b.max(c) - c.min(b);
    let pb = a.max(c) - c.min(a);
    let pc = if (a < c) == (c < b) {
        pa.max(pb) - pa.min(pb)
    } else {
        255
    };

    if pa <= pb && pa <= pc {
        a
    } else if pb <= pc {
        b
    } else {
        c
    }
}

pub(crate) fn unfilter(
    mut filter: FilterType,
    tbpp: BytesPerPixel,
    previous: &[u8],
    current: &mut [u8],
) {
    use self::FilterType::*;

    // If the previous row is empty, then treat it as if it were filled with zeros.
    if previous.is_empty() {
        if filter == Paeth {
            filter = Sub;
        } else if filter == Up {
            filter = NoFilter;
        }
    }

    // [2023/01 @okaneco] - Notes on optimizing decoding filters
    //
    // Links:
    // [PR]: https://github.com/image-rs/image-png/pull/382
    // [SWAR]: http://aggregate.org/SWAR/over.html
    // [AVG]: http://aggregate.org/MAGIC/#Average%20of%20Integers
    //
    // #382 heavily refactored and optimized the following filters making the
    // implementation nonobvious. These comments function as a summary of that
    // PR with an explanation of the choices made below.
    //
    // #382 originally started with trying to optimize using a technique called
    // SWAR, SIMD Within a Register. SWAR uses regular integer types like `u32`
    // and `u64` as SIMD registers to perform vertical operations in parallel,
    // usually involving bit-twiddling. This allowed each `BytesPerPixel` (bpp)
    // pixel to be decoded in parallel: 3bpp and 4bpp in a `u32`, 6bpp and 8pp
    // in a `u64`. The `Sub` filter looked like the following code block, `Avg`
    // was similar but used a bitwise average method from [AVG]:
    // ```
    // // See "Unpartitioned Operations With Correction Code" from [SWAR]
    // fn swar_add_u32(x: u32, y: u32) -> u32 {
    //     // 7-bit addition so there's no carry over the most significant bit
    //     let n = (x & 0x7f7f7f7f) + (y & 0x7f7f7f7f); // 0x7F = 0b_0111_1111
    //     // 1-bit parity/XOR addition to fill in the missing MSB
    //     n ^ (x ^ y) & 0x80808080                     // 0x80 = 0b_1000_0000
    // }
    //
    // let mut prev =
    //     u32::from_ne_bytes([current[0], current[1], current[2], current[3]]);
    // for chunk in current[4..].chunks_exact_mut(4) {
    //     let cur = u32::from_ne_bytes([chunk[0], chunk[1], chunk[2], chunk[3]]);
    //     let new_chunk = swar_add_u32(cur, prev);
    //     chunk.copy_from_slice(&new_chunk.to_ne_bytes());
    //     prev = new_chunk;
    // }
    // ```
    // While this provided a measurable increase, @fintelia found that this idea
    // could be taken even further by unrolling the chunks component-wise and
    // avoiding unnecessary byte-shuffling by using byte arrays instead of
    // `u32::from|to_ne_bytes`. The bitwise operations were no longer necessary
    // so they were reverted to their obvious arithmetic equivalent. Lastly,
    // `TryInto` was used instead of `copy_from_slice`. The `Sub` code now
    // looked like this (with asserts to remove `0..bpp` bounds checks):
    // ```
    // assert!(len > 3);
    // let mut prev = [current[0], current[1], current[2], current[3]];
    // for chunk in current[4..].chunks_exact_mut(4) {
    //     let new_chunk = [
    //         chunk[0].wrapping_add(prev[0]),
    //         chunk[1].wrapping_add(prev[1]),
    //         chunk[2].wrapping_add(prev[2]),
    //         chunk[3].wrapping_add(prev[3]),
    //     ];
    //     *TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
    //     prev = new_chunk;
    // }
    // ```
    // The compiler was able to optimize the code to be even faster and this
    // method even sped up Paeth filtering! Assertions were experimentally
    // added within loop bodies which produced better instructions but no
    // difference in speed. Finally, the code was refactored to remove manual
    // slicing and start the previous pixel chunks with arrays of `[0; N]`.
    // ```
    // let mut prev = [0; 4];
    // for chunk in current.chunks_exact_mut(4) {
    //     let new_chunk = [
    //         chunk[0].wrapping_add(prev[0]),
    //         chunk[1].wrapping_add(prev[1]),
    //         chunk[2].wrapping_add(prev[2]),
    //         chunk[3].wrapping_add(prev[3]),
    //     ];
    //     *TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
    //     prev = new_chunk;
    // }
    // ```
    // While we're not manually bit-twiddling anymore, a possible takeaway from
    // this is to "think in SWAR" when dealing with small byte arrays. Unrolling
    // array operations and performing them component-wise may unlock previously
    // unavailable optimizations from the compiler, even when using the
    // `chunks_exact` methods for their potential auto-vectorization benefits.
    match filter {
        NoFilter => {}
        Sub => match tbpp {
            BytesPerPixel::One => {
                current.iter_mut().reduce(|&mut prev, curr| {
                    *curr = curr.wrapping_add(prev);
                    curr
                });
            }
            BytesPerPixel::Two => {
                let mut prev = [0; 2];
                for chunk in current.chunks_exact_mut(2) {
                    let new_chunk = [
                        chunk[0].wrapping_add(prev[0]),
                        chunk[1].wrapping_add(prev[1]),
                    ];
                    *TryInto::<&mut [u8; 2]>::try_into(chunk).unwrap() = new_chunk;
                    prev = new_chunk;
                }
            }
            BytesPerPixel::Three => {
                let mut prev = [0; 3];
                for chunk in current.chunks_exact_mut(3) {
                    let new_chunk = [
                        chunk[0].wrapping_add(prev[0]),
                        chunk[1].wrapping_add(prev[1]),
                        chunk[2].wrapping_add(prev[2]),
                    ];
                    *TryInto::<&mut [u8; 3]>::try_into(chunk).unwrap() = new_chunk;
                    prev = new_chunk;
                }
            }
            BytesPerPixel::Four => {
                let mut prev = [0; 4];
                for chunk in current.chunks_exact_mut(4) {
                    let new_chunk = [
                        chunk[0].wrapping_add(prev[0]),
                        chunk[1].wrapping_add(prev[1]),
                        chunk[2].wrapping_add(prev[2]),
                        chunk[3].wrapping_add(prev[3]),
                    ];
                    *TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
                    prev = new_chunk;
                }
            }
            BytesPerPixel::Six => {
                let mut prev = [0; 6];
                for chunk in current.chunks_exact_mut(6) {
                    let new_chunk = [
                        chunk[0].wrapping_add(prev[0]),
                        chunk[1].wrapping_add(prev[1]),
                        chunk[2].wrapping_add(prev[2]),
                        chunk[3].wrapping_add(prev[3]),
                        chunk[4].wrapping_add(prev[4]),
                        chunk[5].wrapping_add(prev[5]),
                    ];
                    *TryInto::<&mut [u8; 6]>::try_into(chunk).unwrap() = new_chunk;
                    prev = new_chunk;
                }
            }
            BytesPerPixel::Eight => {
                let mut prev = [0; 8];
                for chunk in current.chunks_exact_mut(8) {
                    let new_chunk = [
                        chunk[0].wrapping_add(prev[0]),
                        chunk[1].wrapping_add(prev[1]),
                        chunk[2].wrapping_add(prev[2]),
                        chunk[3].wrapping_add(prev[3]),
                        chunk[4].wrapping_add(prev[4]),
                        chunk[5].wrapping_add(prev[5]),
                        chunk[6].wrapping_add(prev[6]),
                        chunk[7].wrapping_add(prev[7]),
                    ];
                    *TryInto::<&mut [u8; 8]>::try_into(chunk).unwrap() = new_chunk;
                    prev = new_chunk;
                }
            }
        },
        Up => {
            for (curr, &above) in current.iter_mut().zip(previous) {
                *curr = curr.wrapping_add(above);
            }
        }
        Avg if previous.is_empty() => match tbpp {
            BytesPerPixel::One => {
                current.iter_mut().reduce(|&mut prev, curr| {
                    *curr = curr.wrapping_add(prev / 2);
                    curr
                });
            }
            BytesPerPixel::Two => {
                let mut prev = [0; 2];
                for chunk in current.chunks_exact_mut(2) {
                    let new_chunk = [
                        chunk[0].wrapping_add(prev[0] / 2),
                        chunk[1].wrapping_add(prev[1] / 2),
                    ];
                    *TryInto::<&mut [u8; 2]>::try_into(chunk).unwrap() = new_chunk;
                    prev = new_chunk;
                }
            }
            BytesPerPixel::Three => {
                let mut prev = [0; 3];
                for chunk in current.chunks_exact_mut(3) {
                    let new_chunk = [
                        chunk[0].wrapping_add(prev[0] / 2),
                        chunk[1].wrapping_add(prev[1] / 2),
                        chunk[2].wrapping_add(prev[2] / 2),
                    ];
                    *TryInto::<&mut [u8; 3]>::try_into(chunk).unwrap() = new_chunk;
                    prev = new_chunk;
                }
            }
            BytesPerPixel::Four => {
                let mut prev = [0; 4];
                for chunk in current.chunks_exact_mut(4) {
                    let new_chunk = [
                        chunk[0].wrapping_add(prev[0] / 2),
                        chunk[1].wrapping_add(prev[1] / 2),
                        chunk[2].wrapping_add(prev[2] / 2),
                        chunk[3].wrapping_add(prev[3] / 2),
                    ];
                    *TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
                    prev = new_chunk;
                }
            }
            BytesPerPixel::Six => {
                let mut prev = [0; 6];
                for chunk in current.chunks_exact_mut(6) {
                    let new_chunk = [
                        chunk[0].wrapping_add(prev[0] / 2),
                        chunk[1].wrapping_add(prev[1] / 2),
                        chunk[2].wrapping_add(prev[2] / 2),
                        chunk[3].wrapping_add(prev[3] / 2),
                        chunk[4].wrapping_add(prev[4] / 2),
                        chunk[5].wrapping_add(prev[5] / 2),
                    ];
                    *TryInto::<&mut [u8; 6]>::try_into(chunk).unwrap() = new_chunk;
                    prev = new_chunk;
                }
            }
            BytesPerPixel::Eight => {
                let mut prev = [0; 8];
                for chunk in current.chunks_exact_mut(8) {
                    let new_chunk = [
                        chunk[0].wrapping_add(prev[0] / 2),
                        chunk[1].wrapping_add(prev[1] / 2),
                        chunk[2].wrapping_add(prev[2] / 2),
                        chunk[3].wrapping_add(prev[3] / 2),
                        chunk[4].wrapping_add(prev[4] / 2),
                        chunk[5].wrapping_add(prev[5] / 2),
                        chunk[6].wrapping_add(prev[6] / 2),
                        chunk[7].wrapping_add(prev[7] / 2),
                    ];
                    *TryInto::<&mut [u8; 8]>::try_into(chunk).unwrap() = new_chunk;
                    prev = new_chunk;
                }
            }
        },
        Avg => match tbpp {
            BytesPerPixel::One => {
                let mut lprev = [0; 1];
                for (chunk, above) in current.chunks_exact_mut(1).zip(previous.chunks_exact(1)) {
                    let new_chunk =
                        [chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8)];
                    *TryInto::<&mut [u8; 1]>::try_into(chunk).unwrap() = new_chunk;
                    lprev = new_chunk;
                }
            }
            BytesPerPixel::Two => {
                let mut lprev = [0; 2];
                for (chunk, above) in current.chunks_exact_mut(2).zip(previous.chunks_exact(2)) {
                    let new_chunk = [
                        chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8),
                        chunk[1].wrapping_add(((above[1] as u16 + lprev[1] as u16) / 2) as u8),
                    ];
                    *TryInto::<&mut [u8; 2]>::try_into(chunk).unwrap() = new_chunk;
                    lprev = new_chunk;
                }
            }
            BytesPerPixel::Three => {
                let mut lprev = [0; 3];
                for (chunk, above) in current.chunks_exact_mut(3).zip(previous.chunks_exact(3)) {
                    let new_chunk = [
                        chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8),
                        chunk[1].wrapping_add(((above[1] as u16 + lprev[1] as u16) / 2) as u8),
                        chunk[2].wrapping_add(((above[2] as u16 + lprev[2] as u16) / 2) as u8),
                    ];
                    *TryInto::<&mut [u8; 3]>::try_into(chunk).unwrap() = new_chunk;
                    lprev = new_chunk;
                }
            }
            BytesPerPixel::Four => {
                let mut lprev = [0; 4];
                for (chunk, above) in current.chunks_exact_mut(4).zip(previous.chunks_exact(4)) {
                    let new_chunk = [
                        chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8),
                        chunk[1].wrapping_add(((above[1] as u16 + lprev[1] as u16) / 2) as u8),
                        chunk[2].wrapping_add(((above[2] as u16 + lprev[2] as u16) / 2) as u8),
                        chunk[3].wrapping_add(((above[3] as u16 + lprev[3] as u16) / 2) as u8),
                    ];
                    *TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
                    lprev = new_chunk;
                }
            }
            BytesPerPixel::Six => {
                let mut lprev = [0; 6];
                for (chunk, above) in current.chunks_exact_mut(6).zip(previous.chunks_exact(6)) {
                    let new_chunk = [
                        chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8),
                        chunk[1].wrapping_add(((above[1] as u16 + lprev[1] as u16) / 2) as u8),
                        chunk[2].wrapping_add(((above[2] as u16 + lprev[2] as u16) / 2) as u8),
                        chunk[3].wrapping_add(((above[3] as u16 + lprev[3] as u16) / 2) as u8),
                        chunk[4].wrapping_add(((above[4] as u16 + lprev[4] as u16) / 2) as u8),
                        chunk[5].wrapping_add(((above[5] as u16 + lprev[5] as u16) / 2) as u8),
                    ];
                    *TryInto::<&mut [u8; 6]>::try_into(chunk).unwrap() = new_chunk;
                    lprev = new_chunk;
                }
            }
            BytesPerPixel::Eight => {
                let mut lprev = [0; 8];
                for (chunk, above) in current.chunks_exact_mut(8).zip(previous.chunks_exact(8)) {
                    let new_chunk = [
                        chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8),
                        chunk[1].wrapping_add(((above[1] as u16 + lprev[1] as u16) / 2) as u8),
                        chunk[2].wrapping_add(((above[2] as u16 + lprev[2] as u16) / 2) as u8),
                        chunk[3].wrapping_add(((above[3] as u16 + lprev[3] as u16) / 2) as u8),
                        chunk[4].wrapping_add(((above[4] as u16 + lprev[4] as u16) / 2) as u8),
                        chunk[5].wrapping_add(((above[5] as u16 + lprev[5] as u16) / 2) as u8),
                        chunk[6].wrapping_add(((above[6] as u16 + lprev[6] as u16) / 2) as u8),
                        chunk[7].wrapping_add(((above[7] as u16 + lprev[7] as u16) / 2) as u8),
                    ];
                    *TryInto::<&mut [u8; 8]>::try_into(chunk).unwrap() = new_chunk;
                    lprev = new_chunk;
                }
            }
        },
        #[allow(unreachable_code)]
        Paeth => {
            // Select the fastest Paeth filter implementation based on the target architecture.
            let filter_paeth_decode = if cfg!(target_arch = "x86_64") {
                filter_paeth_stbi
            } else {
                filter_paeth
            };

            // Paeth filter pixels:
            // C B D
            // A X
            match tbpp {
                BytesPerPixel::One => {
                    let mut a_bpp = [0; 1];
                    let mut c_bpp = [0; 1];
                    for (chunk, b_bpp) in current.chunks_exact_mut(1).zip(previous.chunks_exact(1))
                    {
                        let new_chunk = [chunk[0]
                            .wrapping_add(filter_paeth_decode(a_bpp[0], b_bpp[0], c_bpp[0]))];
                        *TryInto::<&mut [u8; 1]>::try_into(chunk).unwrap() = new_chunk;
                        a_bpp = new_chunk;
                        c_bpp = b_bpp.try_into().unwrap();
                    }
                }
                BytesPerPixel::Two => {
                    let mut a_bpp = [0; 2];
                    let mut c_bpp = [0; 2];
                    for (chunk, b_bpp) in current.chunks_exact_mut(2).zip(previous.chunks_exact(2))
                    {
                        let new_chunk = [
                            chunk[0]
                                .wrapping_add(filter_paeth_decode(a_bpp[0], b_bpp[0], c_bpp[0])),
                            chunk[1]
                                .wrapping_add(filter_paeth_decode(a_bpp[1], b_bpp[1], c_bpp[1])),
                        ];
                        *TryInto::<&mut [u8; 2]>::try_into(chunk).unwrap() = new_chunk;
                        a_bpp = new_chunk;
                        c_bpp = b_bpp.try_into().unwrap();
                    }
                }
                BytesPerPixel::Three => {
                    // Do not enable this algorithm on ARM, that would be a big performance hit
                    #[cfg(all(feature = "unstable", target_arch = "x86_64"))]
                    {
                        simd::unfilter_paeth3(previous, current);
                        return;
                    }

                    let mut a_bpp = [0; 3];
                    let mut c_bpp = [0; 3];
                    for (chunk, b_bpp) in current.chunks_exact_mut(3).zip(previous.chunks_exact(3))
                    {
                        let new_chunk = [
                            chunk[0]
                                .wrapping_add(filter_paeth_decode(a_bpp[0], b_bpp[0], c_bpp[0])),
                            chunk[1]
                                .wrapping_add(filter_paeth_decode(a_bpp[1], b_bpp[1], c_bpp[1])),
                            chunk[2]
                                .wrapping_add(filter_paeth_decode(a_bpp[2], b_bpp[2], c_bpp[2])),
                        ];
                        *TryInto::<&mut [u8; 3]>::try_into(chunk).unwrap() = new_chunk;
                        a_bpp = new_chunk;
                        c_bpp = b_bpp.try_into().unwrap();
                    }
                }
                BytesPerPixel::Four => {
                    #[cfg(all(feature = "unstable", target_arch = "x86_64"))]
                    {
                        simd::unfilter_paeth_u8::<4>(previous, current);
                        return;
                    }

                    let mut a_bpp = [0; 4];
                    let mut c_bpp = [0; 4];
                    for (chunk, b_bpp) in current.chunks_exact_mut(4).zip(previous.chunks_exact(4))
                    {
                        let new_chunk = [
                            chunk[0]
                                .wrapping_add(filter_paeth_decode(a_bpp[0], b_bpp[0], c_bpp[0])),
                            chunk[1]
                                .wrapping_add(filter_paeth_decode(a_bpp[1], b_bpp[1], c_bpp[1])),
                            chunk[2]
                                .wrapping_add(filter_paeth_decode(a_bpp[2], b_bpp[2], c_bpp[2])),
                            chunk[3]
                                .wrapping_add(filter_paeth_decode(a_bpp[3], b_bpp[3], c_bpp[3])),
                        ];
                        *TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
                        a_bpp = new_chunk;
                        c_bpp = b_bpp.try_into().unwrap();
                    }
                }
                BytesPerPixel::Six => {
                    #[cfg(all(feature = "unstable", target_arch = "x86_64"))]
                    {
                        simd::unfilter_paeth6(previous, current);
                        return;
                    }

                    let mut a_bpp = [0; 6];
                    let mut c_bpp = [0; 6];
                    for (chunk, b_bpp) in current.chunks_exact_mut(6).zip(previous.chunks_exact(6))
                    {
                        let new_chunk = [
                            chunk[0]
                                .wrapping_add(filter_paeth_decode(a_bpp[0], b_bpp[0], c_bpp[0])),
                            chunk[1]
                                .wrapping_add(filter_paeth_decode(a_bpp[1], b_bpp[1], c_bpp[1])),
                            chunk[2]
                                .wrapping_add(filter_paeth_decode(a_bpp[2], b_bpp[2], c_bpp[2])),
                            chunk[3]
                                .wrapping_add(filter_paeth_decode(a_bpp[3], b_bpp[3], c_bpp[3])),
                            chunk[4]
                                .wrapping_add(filter_paeth_decode(a_bpp[4], b_bpp[4], c_bpp[4])),
                            chunk[5]
                                .wrapping_add(filter_paeth_decode(a_bpp[5], b_bpp[5], c_bpp[5])),
                        ];
                        *TryInto::<&mut [u8; 6]>::try_into(chunk).unwrap() = new_chunk;
                        a_bpp = new_chunk;
                        c_bpp = b_bpp.try_into().unwrap();
                    }
                }
                BytesPerPixel::Eight => {
                    #[cfg(all(feature = "unstable", target_arch = "x86_64"))]
                    {
                        simd::unfilter_paeth_u8::<8>(previous, current);
                        return;
                    }

                    let mut a_bpp = [0; 8];
                    let mut c_bpp = [0; 8];
                    for (chunk, b_bpp) in current.chunks_exact_mut(8).zip(previous.chunks_exact(8))
                    {
                        let new_chunk = [
                            chunk[0]
                                .wrapping_add(filter_paeth_decode(a_bpp[0], b_bpp[0], c_bpp[0])),
                            chunk[1]
                                .wrapping_add(filter_paeth_decode(a_bpp[1], b_bpp[1], c_bpp[1])),
                            chunk[2]
                                .wrapping_add(filter_paeth_decode(a_bpp[2], b_bpp[2], c_bpp[2])),
                            chunk[3]
                                .wrapping_add(filter_paeth_decode(a_bpp[3], b_bpp[3], c_bpp[3])),
                            chunk[4]
                                .wrapping_add(filter_paeth_decode(a_bpp[4], b_bpp[4], c_bpp[4])),
                            chunk[5]
                                .wrapping_add(filter_paeth_decode(a_bpp[5], b_bpp[5], c_bpp[5])),
                            chunk[6]
                                .wrapping_add(filter_paeth_decode(a_bpp[6], b_bpp[6], c_bpp[6])),
                            chunk[7]
                                .wrapping_add(filter_paeth_decode(a_bpp[7], b_bpp[7], c_bpp[7])),
                        ];
                        *TryInto::<&mut [u8; 8]>::try_into(chunk).unwrap() = new_chunk;
                        a_bpp = new_chunk;
                        c_bpp = b_bpp.try_into().unwrap();
                    }
                }
            }
        }
    }
}

fn filter_internal(
    method: FilterType,
    bpp: usize,
    len: usize,
    previous: &[u8],
    current: &[u8],
    output: &mut [u8],
) -> FilterType {
    use self::FilterType::*;

    // This value was chosen experimentally based on what achieved the best performance. The
    // Rust compiler does auto-vectorization, and 32-bytes per loop iteration seems to enable
    // the fastest code when doing so.
    const CHUNK_SIZE: usize = 32;

    match method {
        NoFilter => {
            output.copy_from_slice(current);
            NoFilter
        }
        Sub => {
            let mut out_chunks = output[bpp..].chunks_exact_mut(CHUNK_SIZE);
            let mut cur_chunks = current[bpp..].chunks_exact(CHUNK_SIZE);
            let mut prev_chunks = current[..len - bpp].chunks_exact(CHUNK_SIZE);

            for ((out, cur), prev) in (&mut out_chunks).zip(&mut cur_chunks).zip(&mut prev_chunks) {
                for i in 0..CHUNK_SIZE {
                    out[i] = cur[i].wrapping_sub(prev[i]);
                }
            }

            for ((out, cur), &prev) in out_chunks
                .into_remainder()
                .iter_mut()
                .zip(cur_chunks.remainder())
                .zip(prev_chunks.remainder())
            {
                *out = cur.wrapping_sub(prev);
            }

            output[..bpp].copy_from_slice(&current[..bpp]);
            Sub
        }
        Up => {
            let mut out_chunks = output.chunks_exact_mut(CHUNK_SIZE);
            let mut cur_chunks = current.chunks_exact(CHUNK_SIZE);
            let mut prev_chunks = previous.chunks_exact(CHUNK_SIZE);

            for ((out, cur), prev) in (&mut out_chunks).zip(&mut cur_chunks).zip(&mut prev_chunks) {
                for i in 0..CHUNK_SIZE {
                    out[i] = cur[i].wrapping_sub(prev[i]);
                }
            }

            for ((out, cur), &prev) in out_chunks
                .into_remainder()
                .iter_mut()
                .zip(cur_chunks.remainder())
                .zip(prev_chunks.remainder())
            {
                *out = cur.wrapping_sub(prev);
            }
            Up
        }
        Avg => {
            let mut out_chunks = output[bpp..].chunks_exact_mut(CHUNK_SIZE);
            let mut cur_chunks = current[bpp..].chunks_exact(CHUNK_SIZE);
            let mut cur_minus_bpp_chunks = current[..len - bpp].chunks_exact(CHUNK_SIZE);
            let mut prev_chunks = previous[bpp..].chunks_exact(CHUNK_SIZE);

            for (((out, cur), cur_minus_bpp), prev) in (&mut out_chunks)
                .zip(&mut cur_chunks)
                .zip(&mut cur_minus_bpp_chunks)
                .zip(&mut prev_chunks)
            {
                for i in 0..CHUNK_SIZE {
                    // Bitwise average of two integers without overflow and
                    // without converting to a wider bit-width. See:
                    // http://aggregate.org/MAGIC/#Average%20of%20Integers
                    // If this is unrolled by component, consider reverting to
                    // `((cur_minus_bpp[i] as u16 + prev[i] as u16) / 2) as u8`
                    out[i] = cur[i].wrapping_sub(
                        (cur_minus_bpp[i] & prev[i]) + ((cur_minus_bpp[i] ^ prev[i]) >> 1),
                    );
                }
            }

            for (((out, cur), &cur_minus_bpp), &prev) in out_chunks
                .into_remainder()
                .iter_mut()
                .zip(cur_chunks.remainder())
                .zip(cur_minus_bpp_chunks.remainder())
                .zip(prev_chunks.remainder())
            {
                *out = cur.wrapping_sub((cur_minus_bpp & prev) + ((cur_minus_bpp ^ prev) >> 1));
            }

            for i in 0..bpp {
                output[i] = current[i].wrapping_sub(previous[i] / 2);
            }
            Avg
        }
        Paeth => {
            let mut out_chunks = output[bpp..].chunks_exact_mut(CHUNK_SIZE);
            let mut cur_chunks = current[bpp..].chunks_exact(CHUNK_SIZE);
            let mut a_chunks = current[..len - bpp].chunks_exact(CHUNK_SIZE);
            let mut b_chunks = previous[bpp..].chunks_exact(CHUNK_SIZE);
            let mut c_chunks = previous[..len - bpp].chunks_exact(CHUNK_SIZE);

            for ((((out, cur), a), b), c) in (&mut out_chunks)
                .zip(&mut cur_chunks)
                .zip(&mut a_chunks)
                .zip(&mut b_chunks)
                .zip(&mut c_chunks)
            {
                for i in 0..CHUNK_SIZE {
                    out[i] = cur[i].wrapping_sub(filter_paeth_fpnge(a[i], b[i], c[i]));
                }
            }

            for ((((out, cur), &a), &b), &c) in out_chunks
                .into_remainder()
                .iter_mut()
                .zip(cur_chunks.remainder())
                .zip(a_chunks.remainder())
                .zip(b_chunks.remainder())
                .zip(c_chunks.remainder())
            {
                *out = cur.wrapping_sub(filter_paeth_fpnge(a, b, c));
            }

            for i in 0..bpp {
                output[i] = current[i].wrapping_sub(filter_paeth_fpnge(0, previous[i], 0));
            }
            Paeth
        }
    }
}

pub(crate) fn filter(
    method: FilterType,
    adaptive: AdaptiveFilterType,
    bpp: BytesPerPixel,
    previous: &[u8],
    current: &[u8],
    output: &mut [u8],
) -> FilterType {
    use FilterType::*;
    let bpp = bpp.into_usize();
    let len = current.len();

    match adaptive {
        AdaptiveFilterType::NonAdaptive => {
            filter_internal(method, bpp, len, previous, current, output)
        }
        AdaptiveFilterType::Adaptive => {
            let mut min_sum: u64 = u64::MAX;
            let mut filter_choice = FilterType::NoFilter;
            for &filter in [Sub, Up, Avg, Paeth].iter() {
                filter_internal(filter, bpp, len, previous, current, output);
                let sum = sum_buffer(output);
                if sum <= min_sum {
                    min_sum = sum;
                    filter_choice = filter;
                }
            }

            if filter_choice != Paeth {
                filter_internal(filter_choice, bpp, len, previous, current, output);
            }
            filter_choice
        }
    }
}

// Helper function for Adaptive filter buffer summation
fn sum_buffer(buf: &[u8]) -> u64 {
    const CHUNK_SIZE: usize = 32;

    let mut buf_chunks = buf.chunks_exact(CHUNK_SIZE);
    let mut sum = 0_u64;

    for chunk in &mut buf_chunks {
        // At most, `acc` can be `32 * (i8::MIN as u8) = 32 * 128 = 4096`.
        let mut acc = 0;
        for &b in chunk {
            acc += u64::from((b as i8).unsigned_abs());
        }
        sum = sum.saturating_add(acc);
    }

    let mut acc = 0;
    for &b in buf_chunks.remainder() {
        acc += u64::from((b as i8).unsigned_abs());
    }

    sum.saturating_add(acc)
}

#[cfg(test)]
mod test {
    use super::*;
    use core::iter;

    #[test]
    fn roundtrip() {
        // A multiple of 8, 6, 4, 3, 2, 1
        const LEN: u8 = 240;
        let previous: Vec<_> = iter::repeat(1).take(LEN.into()).collect();
        let current: Vec<_> = (0..LEN).collect();
        let expected = current.clone();
        let adaptive = AdaptiveFilterType::NonAdaptive;

        let roundtrip = |kind, bpp: BytesPerPixel| {
            let mut output = vec![0; LEN.into()];
            filter(kind, adaptive, bpp, &previous, &current, &mut output);
            unfilter(kind, bpp, &previous, &mut output);
            assert_eq!(
                output, expected,
                "Filtering {:?} with {:?} does not roundtrip",
                bpp, kind
            );
        };

        let filters = [
            FilterType::NoFilter,
            FilterType::Sub,
            FilterType::Up,
            FilterType::Avg,
            FilterType::Paeth,
        ];

        let bpps = [
            BytesPerPixel::One,
            BytesPerPixel::Two,
            BytesPerPixel::Three,
            BytesPerPixel::Four,
            BytesPerPixel::Six,
            BytesPerPixel::Eight,
        ];

        for &filter in filters.iter() {
            for &bpp in bpps.iter() {
                roundtrip(filter, bpp);
            }
        }
    }

    #[test]
    #[ignore] // takes ~20s without optimizations
    fn paeth_impls_are_equivalent() {
        for a in 0..=255 {
            for b in 0..=255 {
                for c in 0..=255 {
                    let baseline = filter_paeth(a, b, c);
                    let fpnge = filter_paeth_fpnge(a, b, c);
                    let stbi = filter_paeth_stbi(a, b, c);
                    let stbi_i16 = filter_paeth_stbi_i16(a as i16, b as i16, c as i16);

                    assert_eq!(baseline, fpnge);
                    assert_eq!(baseline, stbi);
                    assert_eq!(baseline as i16, stbi_i16);
                }
            }
        }
    }

    #[test]
    fn roundtrip_ascending_previous_line() {
        // A multiple of 8, 6, 4, 3, 2, 1
        const LEN: u8 = 240;
        let previous: Vec<_> = (0..LEN).collect();
        let current: Vec<_> = (0..LEN).collect();
        let expected = current.clone();
        let adaptive = AdaptiveFilterType::NonAdaptive;

        let roundtrip = |kind, bpp: BytesPerPixel| {
            let mut output = vec![0; LEN.into()];
            filter(kind, adaptive, bpp, &previous, &current, &mut output);
            unfilter(kind, bpp, &previous, &mut output);
            assert_eq!(
                output, expected,
                "Filtering {:?} with {:?} does not roundtrip",
                bpp, kind
            );
        };

        let filters = [
            FilterType::NoFilter,
            FilterType::Sub,
            FilterType::Up,
            FilterType::Avg,
            FilterType::Paeth,
        ];

        let bpps = [
            BytesPerPixel::One,
            BytesPerPixel::Two,
            BytesPerPixel::Three,
            BytesPerPixel::Four,
            BytesPerPixel::Six,
            BytesPerPixel::Eight,
        ];

        for &filter in filters.iter() {
            for &bpp in bpps.iter() {
                roundtrip(filter, bpp);
            }
        }
    }

    #[test]
    // This tests that converting u8 to i8 doesn't overflow when taking the
    // absolute value for adaptive filtering: -128_i8.abs() will panic in debug
    // or produce garbage in release mode. The sum of 0..=255u8 should equal the
    // sum of the absolute values of -128_i8..=127, or abs(-128..=0) + 1..=127.
    fn sum_buffer_test() {
        let sum = (0..=128).sum::<u64>() + (1..=127).sum::<u64>();
        let buf: Vec<u8> = (0_u8..=255).collect();

        assert_eq!(sum, crate::filter::sum_buffer(&buf));
    }
}