rangemap/
inclusive_set.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
use core::borrow::Borrow;
use core::fmt::{self, Debug};
use core::iter::{DoubleEndedIterator, FromIterator};
use core::ops::{BitAnd, BitOr, RangeInclusive};

#[cfg(feature = "serde1")]
use core::marker::PhantomData;
#[cfg(feature = "serde1")]
use serde::{
    de::{Deserialize, Deserializer, SeqAccess, Visitor},
    ser::{Serialize, Serializer},
};

use crate::std_ext::*;
use crate::RangeInclusiveMap;

/// Intersection iterator over two [`RangeInclusiveSet`].
pub type Intersection<'a, T> = crate::operations::Intersection<'a, RangeInclusive<T>, Iter<'a, T>>;

/// Union iterator over two [`RangeInclusiveSet`].
pub type Union<'a, T> = crate::operations::Union<'a, RangeInclusive<T>, Iter<'a, T>>;

#[derive(Clone, Hash, Eq, PartialEq, PartialOrd, Ord)]
/// A set whose items are stored as ranges bounded
/// inclusively below and above `(start..=end)`.
///
/// See [`RangeInclusiveMap`]'s documentation for more details.
///
/// [`RangeInclusiveMap`]: struct.RangeInclusiveMap.html
pub struct RangeInclusiveSet<T, StepFnsT = T> {
    rm: RangeInclusiveMap<T, (), StepFnsT>,
}

impl<T, StepFnsT> Default for RangeInclusiveSet<T, StepFnsT> {
    fn default() -> Self {
        Self {
            rm: RangeInclusiveMap::default(),
        }
    }
}

impl<T> RangeInclusiveSet<T, T>
where
    T: Ord + Clone + StepLite,
{
    /// Makes a new empty `RangeInclusiveSet`.
    #[cfg(feature = "const_fn")]
    pub const fn new() -> Self {
        Self::new_with_step_fns()
    }

    /// Makes a new empty `RangeInclusiveSet`.
    #[cfg(not(feature = "const_fn"))]
    pub fn new() -> Self {
        Self::new_with_step_fns()
    }
}

impl<T, StepFnsT> RangeInclusiveSet<T, StepFnsT>
where
    T: Ord + Clone,
    StepFnsT: StepFns<T>,
{
    /// Makes a new empty `RangeInclusiveSet`, specifying successor and
    /// predecessor functions defined separately from `T` itself.
    ///
    /// This is useful as a workaround for Rust's "orphan rules",
    /// which prevent you from implementing `StepLite` for `T` if `T`
    /// is a foreign type.
    ///
    /// **NOTE:** This will likely be deprecated and then eventually
    /// removed once the standard library's [Step](core::iter::Step)
    /// trait is stabilised, as most crates will then likely implement [Step](core::iter::Step)
    /// for their types where appropriate.
    ///
    /// See [this issue](https://github.com/rust-lang/rust/issues/42168)
    /// for details about that stabilization process.
    #[cfg(not(feature = "const_fn"))]
    pub fn new_with_step_fns() -> Self {
        Self {
            rm: RangeInclusiveMap::new_with_step_fns(),
        }
    }

    #[cfg(feature = "const_fn")]
    pub const fn new_with_step_fns() -> Self {
        Self {
            rm: RangeInclusiveMap::new_with_step_fns(),
        }
    }

    /// Returns a reference to the range covering the given key, if any.
    pub fn get(&self, value: &T) -> Option<&RangeInclusive<T>> {
        self.rm.get_key_value(value).map(|(range, _)| range)
    }

    /// Returns `true` if any range in the set covers the specified value.
    pub fn contains(&self, value: &T) -> bool {
        self.rm.contains_key(value)
    }

    /// Gets an ordered iterator over all ranges,
    /// ordered by range.
    pub fn iter(&self) -> Iter<'_, T> {
        Iter {
            inner: self.rm.iter(),
        }
    }

    /// Clears the set, removing all elements.
    pub fn clear(&mut self) {
        self.rm.clear();
    }

    /// Returns the number of elements in the set.
    pub fn len(&self) -> usize {
        self.rm.len()
    }

    /// Returns true if the set contains no elements.
    pub fn is_empty(&self) -> bool {
        self.rm.is_empty()
    }

    /// Insert a range into the set.
    ///
    /// If the inserted range either overlaps or is immediately adjacent
    /// any existing range, then the ranges will be coalesced into
    /// a single contiguous range.
    ///
    /// # Panics
    ///
    /// Panics if range `start > end`.
    pub fn insert(&mut self, range: RangeInclusive<T>) {
        self.rm.insert(range, ());
    }

    /// Removes a range from the set, if all or any of it was present.
    ///
    /// If the range to be removed _partially_ overlaps any ranges
    /// in the set, then those ranges will be contracted to no
    /// longer cover the removed range.
    ///
    /// # Panics
    ///
    /// Panics if range `start > end`.
    pub fn remove(&mut self, range: RangeInclusive<T>) {
        self.rm.remove(range);
    }

    /// Gets an iterator over all the maximally-sized ranges
    /// contained in `outer_range` that are not covered by
    /// any range stored in the set.
    ///
    /// The iterator element type is `RangeInclusive<T>`.
    pub fn gaps<'a>(&'a self, outer_range: &'a RangeInclusive<T>) -> Gaps<'a, T, StepFnsT> {
        Gaps {
            inner: self.rm.gaps(outer_range),
        }
    }

    /// Gets an iterator over all the stored ranges that are
    /// either partially or completely overlapped by the given range.
    ///
    /// The iterator element type is `RangeInclusive<T>`.
    pub fn overlapping<R: Borrow<RangeInclusive<T>>>(&self, range: R) -> Overlapping<T, R> {
        Overlapping {
            inner: self.rm.overlapping(range),
        }
    }

    /// Returns `true` if any range in the set completely or partially
    /// overlaps the given range.
    pub fn overlaps(&self, range: &RangeInclusive<T>) -> bool {
        self.overlapping(range).next().is_some()
    }

    /// Returns the first range in the set, if one exists. The range is the minimum range in this
    /// set.
    pub fn first(&self) -> Option<&RangeInclusive<T>> {
        self.rm.first_range_value().map(|(range, _)| range)
    }

    /// Returns the last range in the set, if one exists. The range is the maximum range in this
    /// set.
    pub fn last(&self) -> Option<&RangeInclusive<T>> {
        self.rm.last_range_value().map(|(range, _)| range)
    }

    /// Return an iterator over the union of two range sets.
    pub fn union<'a>(&'a self, other: &'a Self) -> Union<'a, T> {
        Union::new(self.iter(), other.iter())
    }

    /// Return an iterator over the intersection of two range sets.
    pub fn intersection<'a>(&'a self, other: &'a Self) -> Intersection<'a, T> {
        Intersection::new(self.iter(), other.iter())
    }
}

/// An iterator over the ranges of a `RangeInclusiveSet`.
///
/// This `struct` is created by the [`iter`] method on [`RangeInclusiveSet`]. See its
/// documentation for more.
///
/// [`iter`]: RangeInclusiveSet::iter
pub struct Iter<'a, T> {
    inner: super::inclusive_map::Iter<'a, T, ()>,
}

impl<'a, T> Iterator for Iter<'a, T> {
    type Item = &'a RangeInclusive<T>;

    fn next(&mut self) -> Option<Self::Item> {
        self.inner.next().map(|(range, _)| range)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<'a, K> DoubleEndedIterator for Iter<'a, K>
where
    K: 'a,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        self.inner.next_back().map(|(range, _)| range)
    }
}

/// An owning iterator over the ranges of a `RangeInclusiveSet`.
///
/// This `struct` is created by the [`into_iter`] method on [`RangeInclusiveSet`]
/// (provided by the `IntoIterator` trait). See its documentation for more.
///
/// [`into_iter`]: IntoIterator::into_iter
pub struct IntoIter<T> {
    inner: super::inclusive_map::IntoIter<T, ()>,
}

impl<T> IntoIterator for RangeInclusiveSet<T> {
    type Item = RangeInclusive<T>;
    type IntoIter = IntoIter<T>;
    fn into_iter(self) -> Self::IntoIter {
        IntoIter {
            inner: self.rm.into_iter(),
        }
    }
}

impl<T> Iterator for IntoIter<T> {
    type Item = RangeInclusive<T>;
    fn next(&mut self) -> Option<RangeInclusive<T>> {
        self.inner.next().map(|(range, _)| range)
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<K> DoubleEndedIterator for IntoIter<K> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.inner.next_back().map(|(range, _)| range)
    }
}

// We can't just derive this automatically, because that would
// expose irrelevant (and private) implementation details.
// Instead implement it in the same way that the underlying BTreeSet does.
impl<T: Debug> Debug for RangeInclusiveSet<T>
where
    T: Ord + Clone + StepLite,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_set().entries(self.iter()).finish()
    }
}

impl<T> FromIterator<RangeInclusive<T>> for RangeInclusiveSet<T>
where
    T: Ord + Clone + StepLite,
{
    fn from_iter<I: IntoIterator<Item = RangeInclusive<T>>>(iter: I) -> Self {
        let mut range_set = RangeInclusiveSet::new();
        range_set.extend(iter);
        range_set
    }
}

impl<T> Extend<RangeInclusive<T>> for RangeInclusiveSet<T>
where
    T: Ord + Clone + StepLite,
{
    fn extend<I: IntoIterator<Item = RangeInclusive<T>>>(&mut self, iter: I) {
        iter.into_iter().for_each(move |range| {
            self.insert(range);
        })
    }
}

#[cfg(feature = "serde1")]
impl<T> Serialize for RangeInclusiveSet<T>
where
    T: Ord + Clone + StepLite + Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        use serde::ser::SerializeSeq;
        let mut seq = serializer.serialize_seq(Some(self.rm.btm.len()))?;
        for range in self.iter() {
            seq.serialize_element(&(&range.start(), &range.end()))?;
        }
        seq.end()
    }
}

#[cfg(feature = "serde1")]
impl<'de, T> Deserialize<'de> for RangeInclusiveSet<T>
where
    T: Ord + Clone + StepLite + Deserialize<'de>,
{
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        deserializer.deserialize_seq(RangeInclusiveSetVisitor::new())
    }
}

#[cfg(feature = "serde1")]
struct RangeInclusiveSetVisitor<T> {
    marker: PhantomData<fn() -> RangeInclusiveSet<T>>,
}

#[cfg(feature = "serde1")]
impl<T> RangeInclusiveSetVisitor<T> {
    fn new() -> Self {
        RangeInclusiveSetVisitor {
            marker: PhantomData,
        }
    }
}

#[cfg(feature = "serde1")]
impl<'de, T> Visitor<'de> for RangeInclusiveSetVisitor<T>
where
    T: Ord + Clone + StepLite + Deserialize<'de>,
{
    type Value = RangeInclusiveSet<T>;

    fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        formatter.write_str("RangeInclusiveSet")
    }

    fn visit_seq<A>(self, mut access: A) -> Result<Self::Value, A::Error>
    where
        A: SeqAccess<'de>,
    {
        let mut range_inclusive_set = RangeInclusiveSet::new();
        while let Some((start, end)) = access.next_element()? {
            range_inclusive_set.insert(start..=end);
        }
        Ok(range_inclusive_set)
    }
}

/// An iterator over all ranges not covered by a `RangeInclusiveSet`.
///
/// This `struct` is created by the [`gaps`] method on [`RangeInclusiveSet`]. See its
/// documentation for more.
///
/// [`gaps`]: RangeInclusiveSet::gaps
pub struct Gaps<'a, T, StepFnsT> {
    inner: crate::inclusive_map::Gaps<'a, T, (), StepFnsT>,
}

// `Gaps` is always fused. (See definition of `next` below.)
impl<'a, T, StepFnsT> core::iter::FusedIterator for Gaps<'a, T, StepFnsT>
where
    T: Ord + Clone,
    StepFnsT: StepFns<T>,
{
}

impl<'a, T, StepFnsT> Iterator for Gaps<'a, T, StepFnsT>
where
    T: Ord + Clone,
    StepFnsT: StepFns<T>,
{
    type Item = RangeInclusive<T>;

    fn next(&mut self) -> Option<Self::Item> {
        self.inner.next()
    }
}

/// An iterator over all stored ranges partially or completely
/// overlapped by a given range.
///
/// This `struct` is created by the [`overlapping`] method on [`RangeInclusiveSet`]. See its
/// documentation for more.
///
/// [`overlapping`]: RangeInclusiveSet::overlapping
pub struct Overlapping<'a, T, R: Borrow<RangeInclusive<T>> = &'a RangeInclusive<T>> {
    inner: crate::inclusive_map::Overlapping<'a, T, (), R>,
}

// `Overlapping` is always fused. (See definition of `next` below.)
impl<'a, T, R: Borrow<RangeInclusive<T>>> core::iter::FusedIterator for Overlapping<'a, T, R> where
    T: Ord + Clone
{
}

impl<'a, T, R: Borrow<RangeInclusive<T>>> Iterator for Overlapping<'a, T, R>
where
    T: Ord + Clone,
{
    type Item = &'a RangeInclusive<T>;

    fn next(&mut self) -> Option<Self::Item> {
        self.inner.next().map(|(k, _v)| k)
    }
}

impl<'a, T, R: Borrow<RangeInclusive<T>>> DoubleEndedIterator for Overlapping<'a, T, R>
where
    T: Ord + Clone,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        self.inner.next_back().map(|(k, _v)| k)
    }
}

impl<T: Ord + Clone + StepLite, const N: usize> From<[RangeInclusive<T>; N]>
    for RangeInclusiveSet<T>
{
    fn from(value: [RangeInclusive<T>; N]) -> Self {
        let mut set = Self::new();
        for value in IntoIterator::into_iter(value) {
            set.insert(value);
        }
        set
    }
}

/// Create a [`RangeInclusiveSet`] from a list of ranges.
///
/// # Example
///
/// ```rust
/// # use rangemap::range_inclusive_set;
/// let set = range_inclusive_set![0..=100, 200..=300, 400..=500];
/// ```
#[macro_export]
macro_rules! range_inclusive_set {
    ($($range:expr),* $(,)?) => {{
        $crate::RangeInclusiveSet::from([$($range),*])
    }};
}

impl<T: Ord + Clone + StepLite> BitAnd for &RangeInclusiveSet<T> {
    type Output = RangeInclusiveSet<T>;

    fn bitand(self, other: Self) -> Self::Output {
        self.intersection(other).collect()
    }
}

impl<T: Ord + Clone + StepLite> BitOr for &RangeInclusiveSet<T> {
    type Output = RangeInclusiveSet<T>;

    fn bitor(self, other: Self) -> Self::Output {
        self.union(other).collect()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use alloc as std;
    use alloc::{format, vec, vec::Vec};
    use proptest::prelude::*;
    use test_strategy::proptest;

    impl<T> Arbitrary for RangeInclusiveSet<T>
    where
        T: Ord + Clone + StepLite + Debug + Arbitrary + 'static,
    {
        type Parameters = ();
        type Strategy = BoxedStrategy<Self>;

        fn arbitrary_with(_parameters: Self::Parameters) -> Self::Strategy {
            any::<Vec<RangeInclusive<T>>>()
                .prop_map(|ranges| ranges.into_iter().collect::<RangeInclusiveSet<T>>())
                .boxed()
        }
    }

    #[proptest]
    fn test_first(set: RangeInclusiveSet<u64>) {
        assert_eq!(set.first(), set.iter().min_by_key(|range| range.start()));
    }

    #[proptest]
    #[allow(clippy::len_zero)]
    fn test_len(mut map: RangeInclusiveSet<u64>) {
        assert_eq!(map.len(), map.iter().count());
        assert_eq!(map.is_empty(), map.len() == 0);
        map.clear();
        assert_eq!(map.len(), 0);
        assert!(map.is_empty());
        assert_eq!(map.iter().count(), 0);
    }

    #[proptest]
    fn test_last(set: RangeInclusiveSet<u64>) {
        assert_eq!(set.last(), set.iter().max_by_key(|range| range.end()));
    }

    #[proptest]
    fn test_iter_reversible(set: RangeInclusiveSet<u64>) {
        let forward: Vec<_> = set.iter().collect();
        let mut backward: Vec<_> = set.iter().rev().collect();
        backward.reverse();
        assert_eq!(forward, backward);
    }

    #[proptest]
    fn test_into_iter_reversible(set: RangeInclusiveSet<u64>) {
        let forward: Vec<_> = set.clone().into_iter().collect();
        let mut backward: Vec<_> = set.into_iter().rev().collect();
        backward.reverse();
        assert_eq!(forward, backward);
    }

    #[proptest]
    fn test_overlapping_reversible(set: RangeInclusiveSet<u64>, range: RangeInclusive<u64>) {
        let forward: Vec<_> = set.overlapping(&range).collect();
        let mut backward: Vec<_> = set.overlapping(&range).rev().collect();
        backward.reverse();
        assert_eq!(forward, backward);
    }

    // neccessary due to assertion on empty ranges
    fn filter_ranges<T: Ord>(ranges: Vec<RangeInclusive<T>>) -> Vec<RangeInclusive<T>> {
        ranges
            .into_iter()
            .filter(|range| range.start() != range.end())
            .collect()
    }

    #[proptest]
    fn test_arbitrary_set_u8(ranges: Vec<RangeInclusive<u8>>) {
        let ranges: Vec<_> = filter_ranges(ranges);
        let set = ranges
            .iter()
            .fold(RangeInclusiveSet::new(), |mut set, range| {
                set.insert(range.clone());
                set
            });

        for value in 0..u8::MAX {
            assert_eq!(
                set.contains(&value),
                ranges.iter().any(|range| range.contains(&value))
            );
        }
    }

    #[proptest]
    #[allow(deprecated)]
    fn test_hash(left: RangeInclusiveSet<u64>, right: RangeInclusiveSet<u64>) {
        use core::hash::{Hash, Hasher, SipHasher};

        let hash = |set: &RangeInclusiveSet<_>| {
            let mut hasher = SipHasher::new();
            set.hash(&mut hasher);
            hasher.finish()
        };

        if left == right {
            assert!(
                hash(&left) == hash(&right),
                "if two values are equal, their hash must be equal"
            );
        }

        // if the hashes are equal the values might not be the same (collision)
        if hash(&left) != hash(&right) {
            assert!(
                left != right,
                "if two value's hashes are not equal, they must not be equal"
            );
        }
    }

    #[proptest]
    fn test_ord(left: RangeInclusiveSet<u64>, right: RangeInclusiveSet<u64>) {
        assert_eq!(
            left == right,
            left.cmp(&right).is_eq(),
            "ordering and equality must match"
        );
        assert_eq!(
            left.cmp(&right),
            left.partial_cmp(&right).unwrap(),
            "ordering is total for ordered parameters"
        );
    }

    #[test]
    fn test_from_array() {
        let mut set = RangeInclusiveSet::new();
        set.insert(0..=100);
        set.insert(200..=300);
        assert_eq!(set, RangeInclusiveSet::from([0..=100, 200..=300]));
    }

    #[test]
    fn test_macro() {
        assert_eq!(range_inclusive_set![], RangeInclusiveSet::<i64>::default());
        assert_eq!(
            range_inclusive_set![0..=100, 200..=300, 400..=500],
            [0..=100, 200..=300, 400..=500].iter().cloned().collect(),
        );
    }

    #[proptest]
    fn test_union_overlaps_u8(left: RangeInclusiveSet<u8>, right: RangeInclusiveSet<u8>) {
        let mut union = RangeInclusiveSet::new();
        for range in left.union(&right) {
            // there should not be any overlaps in the ranges returned by the union
            assert!(union.overlapping(&range).next().is_none());
            union.insert(range);
        }
    }

    #[proptest]
    fn test_union_contains_u8(left: RangeInclusiveSet<u8>, right: RangeInclusiveSet<u8>) {
        let union = (&left) | (&right);

        // value should be in the union if and only if it is in either set
        for value in 0..u8::MAX {
            assert_eq!(
                union.contains(&value),
                left.contains(&value) || right.contains(&value)
            );
        }
    }

    #[proptest]
    fn test_intersection_contains_u8(left: RangeInclusiveSet<u8>, right: RangeInclusiveSet<u8>) {
        let intersection = (&left) & (&right);

        // value should be in the intersection if and only if it is in both sets
        for value in 0..u8::MAX {
            assert_eq!(
                intersection.contains(&value),
                left.contains(&value) && right.contains(&value)
            );
        }
    }

    #[proptest]
    fn test_intersection_overlaps_u8(left: RangeInclusiveSet<u8>, right: RangeInclusiveSet<u8>) {
        let mut union = RangeInclusiveSet::new();
        for range in left.intersection(&right) {
            // there should not be any overlaps in the ranges returned by the
            // intersection
            assert!(union.overlapping(&range).next().is_none());
            union.insert(range);
        }
    }

    trait RangeInclusiveSetExt<T> {
        fn to_vec(&self) -> Vec<RangeInclusive<T>>;
    }

    impl<T> RangeInclusiveSetExt<T> for RangeInclusiveSet<T>
    where
        T: Ord + Clone + StepLite,
    {
        fn to_vec(&self) -> Vec<RangeInclusive<T>> {
            self.iter().cloned().collect()
        }
    }

    #[test]
    fn empty_set_is_empty() {
        let range_set: RangeInclusiveSet<u32> = RangeInclusiveSet::new();
        assert_eq!(range_set.to_vec(), vec![]);
    }

    #[test]
    fn insert_into_empty_map() {
        let mut range_set: RangeInclusiveSet<u32> = RangeInclusiveSet::new();
        range_set.insert(0..=50);
        assert_eq!(range_set.to_vec(), vec![0..=50]);
    }

    #[test]
    fn remove_partially_overlapping() {
        let mut range_set: RangeInclusiveSet<u32> = RangeInclusiveSet::new();
        range_set.insert(0..=50);
        range_set.remove(25..=75);
        assert_eq!(range_set.to_vec(), vec![0..=24]);
    }

    #[test]
    fn gaps_between_items_floating_inside_outer_range() {
        let mut range_set: RangeInclusiveSet<u32> = RangeInclusiveSet::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ●-● ◌ ◌ ◌
        range_set.insert(5..=6);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ●-● ◌ ◌ ◌ ◌ ◌ ◌
        range_set.insert(2..=3);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆-------------◆ ◌
        let outer_range = 1..=8;
        let mut gaps = range_set.gaps(&outer_range);
        // Should yield gaps at start, between items,
        // and at end.
        assert_eq!(gaps.next(), Some(1..=1));
        assert_eq!(gaps.next(), Some(4..=4));
        assert_eq!(gaps.next(), Some(7..=8));
        assert_eq!(gaps.next(), None);
        // Gaps iterator should be fused.
        assert_eq!(gaps.next(), None);
        assert_eq!(gaps.next(), None);
    }

    #[test]
    fn overlapping_partial_edges_complete_middle() {
        let mut range_set: RangeInclusiveSet<u32> = RangeInclusiveSet::new();

        // 0 1 2 3 4 5 6 7 8 9
        // ●-● ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_set.insert(0..=1);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ●-● ◌ ◌ ◌ ◌ ◌
        range_set.insert(3..=4);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◌ ●-● ◌ ◌
        range_set.insert(6..=7);

        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆---------◆ ◌ ◌ ◌
        let query_range = 1..=6;

        let mut overlapping = range_set.overlapping(&query_range);

        // Should yield partially overlapped range at start.
        assert_eq!(overlapping.next(), Some(&(0..=1)));
        // Should yield completely overlapped range in middle.
        assert_eq!(overlapping.next(), Some(&(3..=4)));
        // Should yield partially overlapped range at end.
        assert_eq!(overlapping.next(), Some(&(6..=7)));
        // Gaps iterator should be fused.
        assert_eq!(overlapping.next(), None);
        assert_eq!(overlapping.next(), None);
    }

    ///
    /// impl Debug
    ///

    #[test]
    fn set_debug_repr_looks_right() {
        let mut set: RangeInclusiveSet<u32> = RangeInclusiveSet::new();

        // Empty
        assert_eq!(format!("{:?}", set), "{}");

        // One entry
        set.insert(2..=5);
        assert_eq!(format!("{:?}", set), "{2..=5}");

        // Many entries
        set.insert(7..=8);
        set.insert(10..=11);
        assert_eq!(format!("{:?}", set), "{2..=5, 7..=8, 10..=11}");
    }

    // impl Default where T: ?Default

    #[test]
    fn always_default() {
        struct NoDefault;
        RangeInclusiveSet::<NoDefault>::default();
    }

    // impl Serialize

    #[cfg(feature = "serde1")]
    #[test]
    fn serialization() {
        let mut range_set: RangeInclusiveSet<u32> = RangeInclusiveSet::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆---◆ ◌ ◌ ◌ ◌ ◌ ◌
        range_set.insert(1..=3);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◌ ◌ ◆---◆ ◌ ◌
        range_set.insert(5..=7);
        let output = serde_json::to_string(&range_set).expect("Failed to serialize");
        assert_eq!(output, "[[1,3],[5,7]]");
    }

    // impl Deserialize

    #[cfg(feature = "serde1")]
    #[test]
    fn deserialization() {
        let input = "[[1,3],[5,7]]";
        let range_set: RangeInclusiveSet<u32> =
            serde_json::from_str(input).expect("Failed to deserialize");
        let reserialized = serde_json::to_string(&range_set).expect("Failed to re-serialize");
        assert_eq!(reserialized, input);
    }

    // const fn

    #[cfg(feature = "const_fn")]
    const _SET: RangeInclusiveSet<u32> = RangeInclusiveSet::new();
    #[cfg(feature = "const_fn")]
    const _SET2: RangeInclusiveSet<u32> = RangeInclusiveSet::new_with_step_fns();
}