read_fonts/collections/int_set/
bitset.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
//! A fast & efficient ordered set for unsigned integers.

use super::bitpage::BitPage;
use super::bitpage::RangeIter;
use super::bitpage::PAGE_BITS;
use std::cell::Cell;
use std::cmp::Ordering;
use std::hash::Hash;

use std::ops::RangeInclusive;

// log_2(PAGE_BITS)
const PAGE_BITS_LOG_2: u32 = PAGE_BITS.ilog2();

/// An ordered integer (u32) set.
#[derive(Clone, Debug)]
pub(crate) struct BitSet {
    // TODO(garretrieger): consider a "small array" type instead of Vec.
    pages: Vec<BitPage>,
    page_map: Vec<PageInfo>,
    len: Cell<u64>, // TODO(garretrieger): use an option instead of a sentinel.
}

impl BitSet {
    /// Add val as a member of this set.
    pub(crate) fn insert(&mut self, val: u32) -> bool {
        let page = self.ensure_page_for_mut(val);
        let ret = page.insert(val);
        self.mark_dirty();
        ret
    }

    /// Add all values in range as members of this set.
    pub(crate) fn insert_range(&mut self, range: RangeInclusive<u32>) {
        let start = *range.start();
        let end = *range.end();
        if start > end {
            return;
        }

        let major_start = Self::get_major_value(start);
        let major_end = Self::get_major_value(end);

        for major in major_start..=major_end {
            let page_start = start.max(Self::major_start(major));
            let page_end = end.min(Self::major_start(major) + (PAGE_BITS - 1));
            let page = self.ensure_page_for_major_mut(major);
            page.insert_range(page_start, page_end);
        }
        self.mark_dirty();
    }

    /// An alternate version of [`extend()`] which is optimized for inserting an unsorted
    /// iterator of values.
    ///
    /// [`extend()`]: Self::extend
    pub(crate) fn extend_unsorted<U: IntoIterator<Item = u32>>(&mut self, iter: U) {
        for val in iter {
            let major_value = Self::get_major_value(val);
            let page = self.ensure_page_for_major_mut(major_value);
            page.insert_no_return(val);
        }
        self.mark_dirty();
    }

    /// Remove val from this set.
    pub(crate) fn remove(&mut self, val: u32) -> bool {
        let maybe_page = self.page_for_mut(val);
        if let Some(page) = maybe_page {
            let ret = page.remove(val);
            self.mark_dirty();
            ret
        } else {
            false
        }
    }

    // Remove all values in iter from this set.
    pub(crate) fn remove_all<U: IntoIterator<Item = u32>>(&mut self, iter: U) {
        let mut last_page_index: Option<usize> = None;
        let mut last_major_value = u32::MAX;
        for val in iter {
            let major_value = Self::get_major_value(val);
            if major_value != last_major_value {
                last_page_index = self.page_index_for_major(major_value);
                last_major_value = major_value;
            };

            let Some(page_index) = last_page_index else {
                continue;
            };

            if let Some(page) = self.pages.get_mut(page_index) {
                page.remove(val);
            }
        }
        self.mark_dirty();
    }

    /// Removes all values in range as members of this set.
    pub(crate) fn remove_range(&mut self, range: RangeInclusive<u32>) {
        let start = *(range.start());
        let end = *(range.end());
        if start > end {
            return;
        }

        let start_major = Self::get_major_value(start);
        let end_major = Self::get_major_value(end);
        let mut info_index = match self
            .page_map
            .binary_search_by(|probe| probe.major_value.cmp(&start_major))
        {
            Ok(info_index) => info_index,
            Err(info_index) => info_index,
        };

        loop {
            let Some(info) = self.page_map.get(info_index) else {
                break;
            };
            let Some(page) = self.pages.get_mut(info.index as usize) else {
                break;
            };

            if info.major_value > end_major {
                break;
            } else if info.major_value == start_major {
                page.remove_range(start, Self::major_end(start_major).min(end));
            } else if info.major_value == end_major {
                page.remove_range(Self::major_start(end_major), end);
                break;
            } else {
                page.clear();
            }
            info_index += 1;
        }

        self.mark_dirty();
    }

    /// Returns true if val is a member of this set.
    pub(crate) fn contains(&self, val: u32) -> bool {
        self.page_for(val)
            .map(|page| page.contains(val))
            .unwrap_or(false)
    }

    pub(crate) fn empty() -> BitSet {
        BitSet {
            pages: vec![],
            page_map: vec![],
            len: Default::default(),
        }
    }

    /// Remove all members from this set.
    pub(crate) fn clear(&mut self) {
        self.pages.clear();
        self.page_map.clear();
        self.mark_dirty();
    }

    /// Return true if there are no members in this set.
    #[cfg(test)]
    pub(crate) fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the number of members in this set.
    pub(crate) fn len(&self) -> u64 {
        // TODO(garretrieger): keep track of len on the fly, rather than computing it. Leave a computation method
        //                     for complex cases if needed.
        if self.is_dirty() {
            // this means we're stale and should recompute
            let len = self.pages.iter().map(|val| val.len() as u64).sum();
            self.len.set(len);
        }
        self.len.get()
    }

    pub(crate) fn num_pages(&self) -> usize {
        self.pages.len()
    }

    /// Sets the members of this set to the union of self and other.
    pub(crate) fn union(&mut self, other: &BitSet) {
        self.process(BitPage::union, other);
    }

    /// Sets the members of this set to the intersection of self and other.
    pub(crate) fn intersect(&mut self, other: &BitSet) {
        self.process(BitPage::intersect, other);
    }

    /// Sets the members of this set to self - other.
    pub(crate) fn subtract(&mut self, other: &BitSet) {
        self.process(BitPage::subtract, other);
    }

    /// Sets the members of this set to other - self.
    pub(crate) fn reversed_subtract(&mut self, other: &BitSet) {
        self.process(|a, b| BitPage::subtract(b, a), other);
    }

    pub(crate) fn iter(&self) -> impl DoubleEndedIterator<Item = u32> + '_ {
        self.iter_non_empty_pages().flat_map(|(major, page)| {
            let base = Self::major_start(major);
            page.iter().map(move |v| base + v)
        })
    }

    /// Iterator over the members of this set that come after `value`.
    pub(crate) fn iter_after(&self, value: u32) -> impl Iterator<Item = u32> + '_ {
        let major_value = Self::get_major_value(value);
        let result = self
            .page_map
            .binary_search_by(|probe| probe.major_value.cmp(&major_value));

        let (page_map_index, partial_first_page) = match result {
            Ok(page_map_index) => (page_map_index, true),
            Err(page_map_index) => (page_map_index, false),
        };

        let page = self
            .page_map
            .get(page_map_index)
            .and_then(move |page_info| {
                self.pages
                    .get(page_info.index as usize)
                    .map(|page| (page, page_info.major_value))
            });

        let init_it =
            page.filter(|_| partial_first_page)
                .into_iter()
                .flat_map(move |(page, major)| {
                    let base = Self::major_start(major);
                    page.iter_after(value).map(move |v| base + v)
                });

        let follow_on_page_map_index = if partial_first_page {
            page_map_index + 1
        } else {
            page_map_index
        };

        let follow_on_it = self.page_map[follow_on_page_map_index..]
            .iter()
            .flat_map(|info| {
                self.pages
                    .get(info.index as usize)
                    .map(|page| (info.major_value, page))
            })
            .filter(|(_, page)| !page.is_empty())
            .flat_map(|(major, page)| {
                let base = Self::major_start(major);
                page.iter().map(move |v| base + v)
            });

        init_it.chain(follow_on_it)
    }

    pub(crate) fn iter_ranges(&self) -> impl Iterator<Item = RangeInclusive<u32>> + '_ {
        BitSetRangeIter::new(self)
    }

    fn iter_pages(&self) -> impl DoubleEndedIterator<Item = (u32, &BitPage)> + '_ {
        self.page_map.iter().flat_map(|info| {
            self.pages
                .get(info.index as usize)
                .map(|page| (info.major_value, page))
        })
    }

    fn iter_non_empty_pages(&self) -> impl DoubleEndedIterator<Item = (u32, &BitPage)> + '_ {
        self.iter_pages().filter(|(_, page)| !page.is_empty())
    }

    /// Determine the passthrough behaviour of the operator.
    ///
    /// The passthrough behaviour is what happens to a page on one side of the operation if the other side is 0.
    /// For example union passes through both left and right sides since it preserves the left or right side when
    /// the other side is 0. Knowing this lets us optimize some cases when only one page is present on one side.
    fn passthrough_behavior<Op>(op: &Op) -> (bool, bool)
    where
        Op: Fn(&BitPage, &BitPage) -> BitPage,
    {
        let mut one: BitPage = BitPage::new_zeroes();
        one.insert(0);
        let zero: BitPage = BitPage::new_zeroes();

        let passthrough_left: bool = op(&one, &zero).contains(0);
        let passthrough_right: bool = op(&zero, &one).contains(0);

        (passthrough_left, passthrough_right)
    }

    fn process<Op>(&mut self, op: Op, other: &BitSet)
    where
        Op: Fn(&BitPage, &BitPage) -> BitPage,
    {
        let (passthrough_left, passthrough_right) = BitSet::passthrough_behavior(&op);

        self.mark_dirty();

        let mut len_a = self.pages.len();
        let len_b = other.pages.len();
        let mut idx_a = 0;
        let mut idx_b = 0;
        let mut count = 0;
        let mut write_idx = 0;

        // Step 1: Estimate the new size of this set (in number of pages) after processing, and remove left side
        //         pages that won't be needed.
        while idx_a < len_a && idx_b < len_b {
            let a_major = self.page_map[idx_a].major_value;
            let b_major = other.page_map[idx_b].major_value;

            match a_major.cmp(&b_major) {
                Ordering::Equal => {
                    if !passthrough_left {
                        // If we don't passthrough the left side, then the only case where we
                        // keep a page from the left is when there is also a page at the same major
                        // on the right side. In this case move page_map entries that we're keeping
                        // on the left side set to the front of the page_map vector. Otherwise if
                        // we do passthrough left, then we we keep all left hand side pages and this
                        // isn't necessary.
                        if write_idx < idx_a {
                            self.page_map[write_idx] = self.page_map[idx_a];
                        }
                        write_idx += 1;
                    }

                    count += 1;
                    idx_a += 1;
                    idx_b += 1;
                }
                Ordering::Less => {
                    if passthrough_left {
                        count += 1;
                    }
                    idx_a += 1;
                }
                Ordering::Greater => {
                    if passthrough_right {
                        count += 1;
                    }
                    idx_b += 1;
                }
            }
        }

        if passthrough_left {
            count += len_a - idx_a;
        }

        if passthrough_right {
            count += len_b - idx_b;
        }

        // Step 2: compact and resize for the new estimated left side size.
        let mut next_page = len_a;
        if !passthrough_left {
            len_a = write_idx;
            next_page = write_idx;
            self.compact(write_idx);
        }

        self.resize(count);
        let new_count = count;

        // Step 3: process and apply op in-place from the last to first page.
        idx_a = len_a;
        idx_b = len_b;
        while idx_a > 0 && idx_b > 0 {
            match self.page_map[idx_a - 1]
                .major_value
                .cmp(&other.page_map[idx_b - 1].major_value)
            {
                Ordering::Equal => {
                    idx_a -= 1;
                    idx_b -= 1;
                    count -= 1;
                    self.page_map[count] = self.page_map[idx_a];
                    *self.page_for_index_mut(count).unwrap() = op(
                        self.page_for_index(idx_a).unwrap(),
                        other.page_for_index(idx_b).unwrap(),
                    );
                }
                Ordering::Greater => {
                    idx_a -= 1;
                    if passthrough_left {
                        count -= 1;
                        self.page_map[count] = self.page_map[idx_a];
                    }
                }
                Ordering::Less => {
                    idx_b -= 1;
                    if passthrough_right {
                        count -= 1;
                        self.page_map[count].major_value = other.page_map[idx_b].major_value;
                        self.page_map[count].index = next_page as u32;
                        next_page += 1;
                        *self.page_for_index_mut(count).unwrap() =
                            other.page_for_index(idx_b).unwrap().clone();
                    }
                }
            }
        }

        // Step 4: there are only pages left on one side now, finish processing them if the appropriate passthrough is
        //         enabled.
        if passthrough_left {
            while idx_a > 0 {
                idx_a -= 1;
                count -= 1;
                self.page_map[count] = self.page_map[idx_a];
            }
        }

        if passthrough_right {
            while idx_b > 0 {
                idx_b -= 1;
                count -= 1;
                self.page_map[count].major_value = other.page_map[idx_b].major_value;
                self.page_map[count].index = next_page as u32;
                next_page += 1;
                *self.page_for_index_mut(count).unwrap() =
                    other.page_for_index(idx_b).unwrap().clone();
            }
        }

        self.resize(new_count);
    }

    fn compact(&mut self, new_len: usize) {
        let mut old_index_to_page_map_index = Vec::<usize>::with_capacity(self.pages.len());
        old_index_to_page_map_index.resize(self.pages.len(), usize::MAX);

        for i in 0usize..new_len {
            old_index_to_page_map_index[self.page_map[i].index as usize] = i;
        }

        self.compact_pages(old_index_to_page_map_index);
    }

    fn compact_pages(&mut self, old_index_to_page_map_index: Vec<usize>) {
        let mut write_index = 0;
        for (i, page_map_index) in old_index_to_page_map_index
            .iter()
            .enumerate()
            .take(self.pages.len())
        {
            if *page_map_index == usize::MAX {
                continue;
            }

            if write_index < i {
                self.pages[write_index] = self.pages[i].clone();
            }

            self.page_map[*page_map_index].index = write_index as u32;
            write_index += 1;
        }
    }

    fn resize(&mut self, new_len: usize) {
        self.page_map.resize(
            new_len,
            PageInfo {
                major_value: 0,
                index: 0,
            },
        );
        self.pages.resize(new_len, BitPage::new_zeroes());
    }

    fn mark_dirty(&mut self) {
        self.len.set(u64::MAX);
    }

    fn is_dirty(&self) -> bool {
        self.len.get() == u64::MAX
    }

    /// Return the major value (top 23 bits) of the page associated with value.
    const fn get_major_value(value: u32) -> u32 {
        value >> PAGE_BITS_LOG_2
    }

    const fn major_start(major: u32) -> u32 {
        major << PAGE_BITS_LOG_2
    }

    const fn major_end(major: u32) -> u32 {
        // Note: (PAGE_BITS - 1) must be grouped to prevent overflow on addition for the largest page.
        Self::major_start(major) + (PAGE_BITS - 1)
    }

    /// Returns the index in `self.pages` (if it exists) for the page with the same major as `major_value`.
    fn page_index_for_major(&self, major_value: u32) -> Option<usize> {
        self.page_map
            .binary_search_by(|probe| probe.major_value.cmp(&major_value))
            .ok()
            .map(|info_idx| self.page_map[info_idx].index as usize)
    }

    /// Returns the index in `self.pages` for the page with the same major as `major_value`. Will create
    /// the page if it does not yet exist.
    fn ensure_page_index_for_major(&mut self, major_value: u32) -> usize {
        match self
            .page_map
            .binary_search_by(|probe| probe.major_value.cmp(&major_value))
        {
            Ok(map_index) => self.page_map[map_index].index as usize,
            Err(map_index_to_insert) => {
                let page_index = self.pages.len();
                self.pages.push(BitPage::new_zeroes());
                let new_info = PageInfo {
                    index: page_index as u32,
                    major_value,
                };
                self.page_map.insert(map_index_to_insert, new_info);
                page_index
            }
        }
    }

    /// Return a reference to the page that `value` resides in.
    fn page_for(&self, value: u32) -> Option<&BitPage> {
        let major_value = Self::get_major_value(value);
        let pages_index = self.page_index_for_major(major_value)?;
        self.pages.get(pages_index)
    }

    /// Return a mutable reference to the page that `value` resides in.
    ///
    /// Insert a new page if it doesn't exist.
    fn page_for_mut(&mut self, value: u32) -> Option<&mut BitPage> {
        let major_value = Self::get_major_value(value);
        return self.page_for_major_mut(major_value);
    }

    /// Return a mutable reference to the page with major value equal to `major_value`.
    fn page_for_major_mut(&mut self, major_value: u32) -> Option<&mut BitPage> {
        let page_index = self.page_index_for_major(major_value)?;
        self.pages.get_mut(page_index)
    }

    /// Return a mutable reference to the page that `value` resides in.
    ///
    /// Insert a new page if it doesn't exist.
    fn ensure_page_for_mut(&mut self, value: u32) -> &mut BitPage {
        self.ensure_page_for_major_mut(Self::get_major_value(value))
    }

    /// Return a mutable reference to the page with major value equal to `major_value`.
    /// Inserts a new page if it doesn't exist.
    fn ensure_page_for_major_mut(&mut self, major_value: u32) -> &mut BitPage {
        let page_index = self.ensure_page_index_for_major(major_value);
        self.pages.get_mut(page_index).unwrap()
    }

    /// Return the mutable page at a given index
    fn page_for_index_mut(&mut self, index: usize) -> Option<&mut BitPage> {
        self.page_map
            .get(index)
            .and_then(|info| self.pages.get_mut(info.index as usize))
    }

    fn page_for_index(&self, index: usize) -> Option<&BitPage> {
        self.page_map
            .get(index)
            .and_then(|info| self.pages.get(info.index as usize))
    }
}

impl Extend<u32> for BitSet {
    fn extend<U: IntoIterator<Item = u32>>(&mut self, iter: U) {
        let mut builder = BitSetBuilder::start(self);
        for val in iter {
            builder.insert(val);
        }
        builder.finish();
    }
}

/// This helper is used to construct [`BitSet`]'s from a stream of possibly sorted values.
/// It remembers the last page index to reduce the amount of page lookups needed when inserting
/// sorted data. If given unsorted values it will still work correctly, but may be slower then just
/// repeatedly calling `insert()` on the bitset.
pub(crate) struct BitSetBuilder<'a> {
    pub(crate) set: &'a mut BitSet,
    last_page_index: usize,
    last_major_value: u32,
}

impl<'a> BitSetBuilder<'a> {
    pub(crate) fn start(set: &'a mut BitSet) -> Self {
        Self {
            set,
            last_page_index: usize::MAX,
            last_major_value: u32::MAX,
        }
    }

    pub(crate) fn insert(&mut self, val: u32) {
        // TODO(garretrieger): additional optimization ideas:
        // - Assuming data is sorted accumulate a single element mask and only commit it to the element
        //   once the next value passes the end of the element.
        let major_value = BitSet::get_major_value(val);
        if major_value != self.last_major_value {
            self.last_page_index = self.set.ensure_page_index_for_major(major_value);
            self.last_major_value = major_value;
        };
        if let Some(page) = self.set.pages.get_mut(self.last_page_index) {
            page.insert_no_return(val);
        }
    }

    pub(crate) fn finish(&mut self) {
        self.set.mark_dirty();
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct PageInfo {
    // index into pages vector of this page
    index: u32,
    /// the top 23 bits of values covered by this page
    major_value: u32,
}

impl Hash for BitSet {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.iter_non_empty_pages().for_each(|t| t.hash(state));
    }
}

impl std::cmp::PartialEq for BitSet {
    fn eq(&self, other: &Self) -> bool {
        let mut this = self.iter_non_empty_pages();
        let mut other = other.iter_non_empty_pages();

        // Note: normally we would prefer to use zip, but we also
        //       need to check that both iters have the same length.
        loop {
            match (this.next(), other.next()) {
                (Some(a), Some(b)) if a == b => continue,
                (None, None) => return true,
                _ => return false,
            }
        }
    }
}

impl std::cmp::Eq for BitSet {}

impl std::cmp::PartialOrd for BitSet {
    fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl std::cmp::Ord for BitSet {
    fn cmp(&self, other: &Self) -> core::cmp::Ordering {
        let this_it = self.iter();
        let other_it = other.iter();

        for (us, them) in this_it.zip(other_it) {
            match us.cmp(&them) {
                core::cmp::Ordering::Equal => continue,
                other => return other,
            }
        }

        // all items in iter are the same: is one collection longer?
        self.len().cmp(&other.len())
    }
}

struct BitSetRangeIter<'a> {
    set: &'a BitSet,
    page_info_index: usize,
    page_iter: Option<RangeIter<'a>>,
}

impl<'a> BitSetRangeIter<'a> {
    fn new(set: &'a BitSet) -> BitSetRangeIter<'a> {
        BitSetRangeIter {
            set,
            page_info_index: 0,
            page_iter: BitSetRangeIter::<'a>::page_iter(set, 0),
        }
    }

    fn move_to_next_page(&mut self) -> bool {
        self.page_info_index += 1;
        self.reset_page_iter();
        self.page_iter.is_some()
    }

    fn reset_page_iter(&mut self) {
        self.page_iter = BitSetRangeIter::<'a>::page_iter(self.set, self.page_info_index);
    }

    fn page_iter(set: &'a BitSet, page_info_index: usize) -> Option<RangeIter<'a>> {
        set.page_map
            .get(page_info_index)
            .map(|pi| pi.index as usize)
            .and_then(|index| set.pages.get(index))
            .map(|p| p.iter_ranges())
    }

    fn next_range(&mut self) -> Option<RangeInclusive<u32>> {
        // TODO(garretrieger): don't recompute page start on each call.
        let page = self.set.page_map.get(self.page_info_index)?;
        let page_start = BitSet::major_start(page.major_value);
        self.page_iter
            .as_mut()?
            .next()
            .map(|r| (r.start() + page_start)..=(r.end() + page_start))
    }
}

impl<'a> Iterator for BitSetRangeIter<'a> {
    type Item = RangeInclusive<u32>;

    fn next(&mut self) -> Option<Self::Item> {
        self.page_iter.as_ref()?;
        let mut current_range = self.next_range();
        loop {
            let page = self.set.page_map.get(self.page_info_index)?;
            let page_end = BitSet::major_end(page.major_value);

            let Some(range) = current_range.clone() else {
                // The current page has no more ranges, but there may be more pages.
                if !self.move_to_next_page() {
                    return None;
                }
                current_range = self.next_range();
                continue;
            };

            if *range.end() != page_end {
                break;
            }

            // The range goes right to the end of the current page and may continue into it.
            self.move_to_next_page();
            let continuation = self.next_range();
            let Some(continuation) = continuation else {
                break;
            };

            if *continuation.start() == *range.end() + 1 {
                current_range = Some(*range.start()..=*continuation.end());
                continue;
            }

            // Continuation range does not touch the current range, ignore it and return what we have.
            // Since we consumed an item from the new page iterator, reset it.
            self.reset_page_iter();
            break;
        }

        current_range
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use std::collections::HashSet;

    impl FromIterator<u32> for BitSet {
        fn from_iter<I: IntoIterator<Item = u32>>(iter: I) -> Self {
            let mut out = BitSet::empty();
            out.extend(iter);
            out
        }
    }

    #[test]
    fn len() {
        let bitset = BitSet::empty();
        assert_eq!(bitset.len(), 0);
        assert!(bitset.is_empty());
    }

    #[test]
    fn iter() {
        let mut bitset = BitSet::empty();
        bitset.insert(3);
        bitset.insert(8);
        bitset.insert(534);
        bitset.insert(700);
        bitset.insert(10000);
        bitset.insert(10001);
        bitset.insert(10002);

        let v: Vec<u32> = bitset.iter().collect();
        assert_eq!(v, vec![3, 8, 534, 700, 10000, 10001, 10002]);
    }

    fn check_iter_ranges(ranges: Vec<RangeInclusive<u32>>) {
        let mut set = BitSet::empty();
        for range in ranges.iter() {
            set.insert_range(*range.start()..=*range.end());
        }
        let items: Vec<_> = set.iter_ranges().collect();
        assert_eq!(items, ranges);
    }

    #[test]
    fn iter_ranges() {
        check_iter_ranges(vec![0..=0]);
        check_iter_ranges(vec![4578..=4578]);
        check_iter_ranges(vec![0..=10, 4578..=4583]);
        check_iter_ranges(vec![0..=700]);
        check_iter_ranges(vec![353..=737]);

        check_iter_ranges(vec![u32::MAX..=u32::MAX]);
        check_iter_ranges(vec![(u32::MAX - 10)..=u32::MAX]);
        check_iter_ranges(vec![0..=5, (u32::MAX - 5)..=u32::MAX]);

        check_iter_ranges(vec![0..=511, 513..=517]);
        check_iter_ranges(vec![512..=1023, 1025..=1027]);

        check_iter_ranges(vec![1792..=2650]);
    }

    #[test]
    fn iter_ranges_zero_pages() {
        let mut set = BitSet::empty();

        set.insert(1000);
        set.insert_range(300..=511);
        set.remove(1000);

        let items: Vec<_> = set.iter_ranges().collect();
        assert_eq!(items, vec![300..=511]);
    }

    #[test]
    fn iter_backwards() {
        let mut bitset = BitSet::empty();

        bitset.insert_range(1..=6);
        {
            let mut it = bitset.iter();
            assert_eq!(Some(1), it.next());
            assert_eq!(Some(6), it.next_back());
            assert_eq!(Some(5), it.next_back());
            assert_eq!(Some(2), it.next());
            assert_eq!(Some(3), it.next());
            assert_eq!(Some(4), it.next());
            assert_eq!(None, it.next());
            assert_eq!(None, it.next_back());
        }

        bitset.insert_range(700..=701);
        {
            let mut it = bitset.iter();
            assert_eq!(Some(1), it.next());
            assert_eq!(Some(701), it.next_back());
            assert_eq!(Some(700), it.next_back());
            assert_eq!(Some(6), it.next_back());
            assert_eq!(Some(5), it.next_back());
            assert_eq!(Some(2), it.next());
            assert_eq!(Some(3), it.next());
            assert_eq!(Some(4), it.next());
            assert_eq!(None, it.next());
            assert_eq!(None, it.next_back());
        }

        let v: Vec<u32> = bitset.iter().rev().collect();
        assert_eq!(vec![701, 700, 6, 5, 4, 3, 2, 1], v);
    }

    #[test]
    fn iter_after() {
        let mut bitset = BitSet::empty();
        bitset.extend([5, 7, 10, 1250, 1300, 3001]);

        assert_eq!(
            bitset.iter_after(0).collect::<Vec<u32>>(),
            vec![5, 7, 10, 1250, 1300, 3001]
        );

        assert_eq!(
            bitset.iter_after(5).collect::<Vec<u32>>(),
            vec![7, 10, 1250, 1300, 3001]
        );
        assert_eq!(
            bitset.iter_after(6).collect::<Vec<u32>>(),
            vec![7, 10, 1250, 1300, 3001]
        );

        assert_eq!(
            bitset.iter_after(10).collect::<Vec<u32>>(),
            vec![1250, 1300, 3001]
        );

        assert_eq!(
            bitset.iter_after(700).collect::<Vec<u32>>(),
            vec![1250, 1300, 3001]
        );

        assert_eq!(
            bitset.iter_after(1250).collect::<Vec<u32>>(),
            vec![1300, 3001]
        );

        assert_eq!(bitset.iter_after(3000).collect::<Vec<u32>>(), vec![3001]);
        assert_eq!(bitset.iter_after(3001).collect::<Vec<u32>>(), vec![]);
        assert_eq!(bitset.iter_after(3002).collect::<Vec<u32>>(), vec![]);
        assert_eq!(bitset.iter_after(5000).collect::<Vec<u32>>(), vec![]);
        assert_eq!(bitset.iter_after(u32::MAX).collect::<Vec<u32>>(), vec![]);

        bitset.insert(u32::MAX);
        assert_eq!(bitset.iter_after(u32::MAX).collect::<Vec<u32>>(), vec![]);
        assert_eq!(
            bitset.iter_after(u32::MAX - 1).collect::<Vec<u32>>(),
            vec![u32::MAX]
        );

        let mut bitset = BitSet::empty();
        bitset.extend([510, 511, 512]);

        assert_eq!(bitset.iter_after(510).collect::<Vec<u32>>(), vec![511, 512]);
        assert_eq!(bitset.iter_after(511).collect::<Vec<u32>>(), vec![512]);
        assert_eq!(bitset.iter_after(512).collect::<Vec<u32>>(), vec![]);
    }

    #[test]
    fn extend() {
        let values = [3, 8, 534, 700, 10000, 10001, 10002];
        let values_unsorted = [10000, 3, 534, 700, 8, 10001, 10002];

        let mut s1 = BitSet::empty();
        let mut s2 = BitSet::empty();
        let mut s3 = BitSet::empty();
        let mut s4 = BitSet::empty();
        assert_eq!(s1.len(), 0);

        s1.extend(values.iter().copied());
        s2.extend_unsorted(values.iter().copied());
        s3.extend(values_unsorted.iter().copied());
        s4.extend_unsorted(values_unsorted.iter().copied());

        assert_eq!(s1.iter().collect::<Vec<u32>>(), values);
        assert_eq!(s2.iter().collect::<Vec<u32>>(), values);
        assert_eq!(s3.iter().collect::<Vec<u32>>(), values);
        assert_eq!(s4.iter().collect::<Vec<u32>>(), values);

        assert_eq!(s1.len(), 7);
        assert_eq!(s2.len(), 7);
        assert_eq!(s3.len(), 7);
        assert_eq!(s4.len(), 7);
    }

    #[test]
    fn insert_unordered() {
        let mut bitset = BitSet::empty();

        assert!(!bitset.contains(0));
        assert!(!bitset.contains(768));
        assert!(!bitset.contains(1678));

        assert!(bitset.insert(0));
        assert!(bitset.insert(1678));
        assert!(bitset.insert(768));

        assert!(bitset.contains(0));
        assert!(bitset.contains(768));
        assert!(bitset.contains(1678));

        assert!(!bitset.contains(1));
        assert!(!bitset.contains(769));
        assert!(!bitset.contains(1679));

        assert_eq!(bitset.len(), 3);
    }

    #[test]
    fn remove() {
        let mut bitset = BitSet::empty();

        assert!(bitset.insert(0));
        assert!(bitset.insert(511));
        assert!(bitset.insert(512));
        assert!(bitset.insert(1678));
        assert!(bitset.insert(768));

        assert_eq!(bitset.len(), 5);

        assert!(!bitset.remove(12));
        assert!(bitset.remove(511));
        assert!(bitset.remove(512));
        assert!(!bitset.remove(512));

        assert_eq!(bitset.len(), 3);
        assert!(bitset.contains(0));
        assert!(!bitset.contains(511));
        assert!(!bitset.contains(512));
    }

    #[test]
    fn remove_all() {
        let mut bitset = BitSet::empty();
        bitset.extend([5, 7, 11, 18, 620, 2000]);

        assert_eq!(bitset.len(), 6);

        bitset.remove_all([7, 11, 13, 18, 620]);
        assert_eq!(bitset.len(), 2);
        assert_eq!(bitset.iter().collect::<Vec<u32>>(), vec![5, 2000]);
    }

    #[test]
    fn remove_range() {
        let mut bitset = BitSet::empty();
        bitset.extend([5, 7, 11, 18, 511, 620, 1023, 1024, 1200]);
        assert_eq!(bitset.len(), 9);
        bitset.remove_range(7..=620);
        assert_eq!(bitset.len(), 4);
        assert_eq!(
            bitset.iter().collect::<Vec<u32>>(),
            vec![5, 1023, 1024, 1200]
        );

        let mut bitset = BitSet::empty();
        bitset.extend([5, 7, 11, 18, 511, 620, 1023, 1024, 1200]);
        bitset.remove_range(7..=1024);
        assert_eq!(bitset.len(), 2);
        assert_eq!(bitset.iter().collect::<Vec<u32>>(), vec![5, 1200]);

        let mut bitset = BitSet::empty();
        bitset.extend([5, 7, 11, 18, 511, 620, 1023, 1024, 1200]);
        bitset.remove_range(2000..=2100);
        assert_eq!(bitset.len(), 9);
        assert_eq!(
            bitset.iter().collect::<Vec<u32>>(),
            vec![5, 7, 11, 18, 511, 620, 1023, 1024, 1200]
        );

        // Remove all from one page
        let mut bitset = BitSet::empty();
        bitset.extend([1001, 1002, 1003, 1004]);
        bitset.remove_range(1002..=1003);
        assert!(bitset.contains(1001));
        assert!(!bitset.contains(1002));
        assert!(!bitset.contains(1003));
        assert!(bitset.contains(1004));

        bitset.remove_range(100..=200);
        assert!(bitset.contains(1001));
        assert!(!bitset.contains(1002));
        assert!(!bitset.contains(1003));
        assert!(bitset.contains(1004));

        bitset.remove_range(100..=1001);
        assert!(!bitset.contains(1001));
        assert!(!bitset.contains(1002));
        assert!(!bitset.contains(1003));
        assert!(bitset.contains(1004));
    }

    #[test]
    fn remove_range_boundary() {
        let mut set = BitSet::empty();

        set.remove_range(u32::MAX - 10..=u32::MAX);
        assert!(!set.contains(u32::MAX));
        set.insert_range(u32::MAX - 10..=u32::MAX);
        assert!(set.contains(u32::MAX));
        set.remove_range(u32::MAX - 10..=u32::MAX);
        assert!(!set.contains(u32::MAX));

        set.remove_range(0..=10);
        assert!(!set.contains(0));
        set.insert_range(0..=10);
        assert!(set.contains(0));
        set.remove_range(0..=10);
        assert!(!set.contains(0));
    }

    #[test]
    fn remove_to_empty_page() {
        let mut bitset = BitSet::empty();

        bitset.insert(793);
        bitset.insert(43);
        bitset.remove(793);

        assert!(bitset.contains(43));
        assert!(!bitset.contains(793));
        assert_eq!(bitset.len(), 1);
    }

    #[test]
    fn insert_max_value() {
        let mut bitset = BitSet::empty();
        assert!(!bitset.contains(u32::MAX));
        assert!(bitset.insert(u32::MAX));
        assert!(bitset.contains(u32::MAX));
        assert!(!bitset.contains(u32::MAX - 1));
        assert_eq!(bitset.len(), 1);
    }

    fn check_process<A, B, C, Op>(a: A, b: B, expected: C, op: Op)
    where
        A: IntoIterator<Item = u32>,
        B: IntoIterator<Item = u32>,
        C: IntoIterator<Item = u32>,
        Op: Fn(&mut BitSet, &BitSet),
    {
        let mut result = BitSet::from_iter(a);
        let b_set = BitSet::from_iter(b);
        let expected_set = BitSet::from_iter(expected);
        result.len();

        op(&mut result, &b_set);
        assert_eq!(result, expected_set);
        assert_eq!(result.len(), expected_set.len());
    }

    #[test]
    fn union() {
        check_process([], [5], [5], |a, b| a.union(b));
        check_process([128], [5], [128, 5], |a, b| a.union(b));
        check_process([128], [], [128], |a, b| a.union(b));
        check_process([1280], [5], [5, 1280], |a, b| a.union(b));
        check_process([5], [1280], [5, 1280], |a, b| a.union(b));
    }

    #[test]
    fn intersect() {
        check_process([], [5], [], |a, b| a.intersect(b));
        check_process([5], [], [], |a, b| a.intersect(b));
        check_process([1, 5, 9], [5, 7], [5], |a, b| a.intersect(b));
        check_process([1, 1000, 2000], [1000], [1000], |a, b| a.intersect(b));
        check_process([1000], [1, 1000, 2000], [1000], |a, b| a.intersect(b));
        check_process([1, 1000, 2000], [1000, 5000], [1000], |a, b| a.intersect(b));
    }

    #[test]
    fn subtract() {
        check_process([], [5], [], |a, b| a.subtract(b));
        check_process([5], [], [5], |a, b| a.subtract(b));
        check_process([5, 1000], [1000], [5], |a, b| a.subtract(b));
        check_process([5, 1000], [5], [1000], |a, b| a.subtract(b));
    }

    #[test]
    fn reversed_subtract() {
        check_process([], [5], [5], |a, b| a.reversed_subtract(b));
        check_process([5], [], [], |a, b| a.reversed_subtract(b));
        check_process([1000], [5, 1000], [5], |a, b| a.reversed_subtract(b));
        check_process([5], [5, 1000], [1000], |a, b| a.reversed_subtract(b));
    }

    fn set_for_range(first: u32, last: u32) -> BitSet {
        let mut set = BitSet::empty();
        for i in first..=last {
            set.insert(i);
        }
        set
    }

    #[test]
    fn insert_range() {
        for range in [
            (0, 0),
            (0, 364),
            (0, 511),
            (512, 1023),
            (0, 1023),
            (364, 700),
            (364, 6000),
        ] {
            let mut set = BitSet::empty();
            set.len();
            set.insert_range(range.0..=range.1);
            assert_eq!(set, set_for_range(range.0, range.1), "{range:?}");
            assert_eq!(set.len(), (range.1 - range.0 + 1) as u64, "{range:?}");
        }
    }

    #[test]
    fn insert_range_on_existing() {
        let mut set = BitSet::empty();
        set.insert(700);
        set.insert(2000);
        set.insert_range(32..=4000);
        assert_eq!(set, set_for_range(32, 4000));
        assert_eq!(set.len(), 4000 - 32 + 1);
    }

    #[test]
    fn insert_range_max() {
        let mut set = BitSet::empty();
        set.insert_range(u32::MAX..=u32::MAX);
        assert!(set.contains(u32::MAX));
        assert_eq!(set.len(), 1);
    }

    #[test]
    fn clear() {
        let mut bitset = BitSet::empty();

        bitset.insert(13);
        bitset.insert(670);
        assert!(bitset.contains(13));
        assert!(bitset.contains(670));

        bitset.clear();
        assert!(!bitset.contains(13));
        assert!(!bitset.contains(670));
        assert_eq!(bitset.len(), 0);
    }

    #[test]
    #[allow(clippy::mutable_key_type)]
    fn hash_and_eq() {
        let mut bitset1 = BitSet::empty();
        let mut bitset2 = BitSet::empty();
        let mut bitset3 = BitSet::empty();
        let mut bitset4 = BitSet::empty();

        bitset1.insert(43);
        bitset1.insert(793);

        bitset2.insert(793);
        bitset2.insert(43);
        bitset2.len();

        bitset3.insert(43);
        bitset3.insert(793);
        bitset3.insert(794);

        bitset4.insert(0);

        assert_eq!(BitSet::empty(), BitSet::empty());
        assert_eq!(bitset1, bitset2);
        assert_ne!(bitset1, bitset3);
        assert_ne!(bitset2, bitset3);
        assert_eq!(bitset4, bitset4);

        let set = HashSet::from([bitset1]);
        assert!(set.contains(&bitset2));
        assert!(!set.contains(&bitset3));
    }

    #[test]
    #[allow(clippy::mutable_key_type)]
    fn hash_and_eq_with_empty_pages() {
        let mut bitset1 = BitSet::empty();
        let mut bitset2 = BitSet::empty();
        let mut bitset3 = BitSet::empty();

        bitset1.insert(43);

        bitset2.insert(793);
        bitset2.insert(43);
        bitset2.remove(793);

        bitset3.insert(43);
        bitset3.insert(793);

        assert_eq!(bitset1, bitset2);
        assert_ne!(bitset1, bitset3);

        let set = HashSet::from([bitset1]);
        assert!(set.contains(&bitset2));
    }

    #[test]
    fn ordering() {
        macro_rules! assert_ord {
            ($lhs:expr, $rhs:expr, $ord:path) => {
                assert_eq!(
                    BitSet::from_iter($lhs).cmp(&BitSet::from_iter($rhs)),
                    $ord,
                    "{:?}, {:?}",
                    $lhs,
                    $rhs
                )
            };
        }

        const EMPTY: [u32; 0] = [];
        assert_ord!(EMPTY, EMPTY, Ordering::Equal);
        assert_ord!(EMPTY, [0], Ordering::Less);
        assert_ord!([0], [0], Ordering::Equal);
        assert_ord!([0, 1, 2], [1, 2, 3], Ordering::Less);
        assert_ord!([0, 1, 4], [1, 2, 3], Ordering::Less);
        assert_ord!([1, 2, 3], [0, 2, 4], Ordering::Greater);
        assert_ord!([5, 4, 0], [1, 2, 3], Ordering::Less); // out of order
        assert_ord!([1, 2, 3], [1, 2, 3, 4], Ordering::Less); // out of order
        assert_ord!([2, 3, 4], [1, 2, 3, 4, 5], Ordering::Greater); // out of order

        assert_ord!([1000, 2000, 3000], [1000, 2000, 3000, 4000], Ordering::Less); // out of order
        assert_ord!([1000, 1001,], [1000, 2000], Ordering::Less); // out of order
        assert_ord!(
            [2000, 3000, 4000],
            [1000, 2000, 3000, 4000, 5000],
            Ordering::Greater
        ); // out of order
    }
}