1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
// THIS FILE IS AUTOGENERATED.
// Any changes to this file will be overwritten.
// For more information about how codegen works, see font-codegen/README.md
#[allow(unused_imports)]
use crate::codegen_prelude::*;
/// The [glyf (Glyph Data)](https://docs.microsoft.com/en-us/typography/opentype/spec/glyf) table
#[derive(Debug, Clone, Copy)]
#[doc(hidden)]
pub struct GlyfMarker {}
impl GlyfMarker {}
impl TopLevelTable for Glyf<'_> {
/// `glyf`
const TAG: Tag = Tag::new(b"glyf");
}
impl<'a> FontRead<'a> for Glyf<'a> {
fn read(data: FontData<'a>) -> Result<Self, ReadError> {
let cursor = data.cursor();
cursor.finish(GlyfMarker {})
}
}
/// The [glyf (Glyph Data)](https://docs.microsoft.com/en-us/typography/opentype/spec/glyf) table
pub type Glyf<'a> = TableRef<'a, GlyfMarker>;
impl<'a> Glyf<'a> {}
#[cfg(feature = "experimental_traverse")]
impl<'a> SomeTable<'a> for Glyf<'a> {
fn type_name(&self) -> &str {
"Glyf"
}
#[allow(unused_variables)]
#[allow(clippy::match_single_binding)]
fn get_field(&self, idx: usize) -> Option<Field<'a>> {
match idx {
_ => None,
}
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> std::fmt::Debug for Glyf<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
(self as &dyn SomeTable<'a>).fmt(f)
}
}
/// The [Glyph Header](https://docs.microsoft.com/en-us/typography/opentype/spec/glyf#glyph-headers)
#[derive(Debug, Clone, Copy)]
#[doc(hidden)]
pub struct SimpleGlyphMarker {
end_pts_of_contours_byte_len: usize,
instructions_byte_len: usize,
glyph_data_byte_len: usize,
}
impl SimpleGlyphMarker {
fn number_of_contours_byte_range(&self) -> Range<usize> {
let start = 0;
start..start + i16::RAW_BYTE_LEN
}
fn x_min_byte_range(&self) -> Range<usize> {
let start = self.number_of_contours_byte_range().end;
start..start + i16::RAW_BYTE_LEN
}
fn y_min_byte_range(&self) -> Range<usize> {
let start = self.x_min_byte_range().end;
start..start + i16::RAW_BYTE_LEN
}
fn x_max_byte_range(&self) -> Range<usize> {
let start = self.y_min_byte_range().end;
start..start + i16::RAW_BYTE_LEN
}
fn y_max_byte_range(&self) -> Range<usize> {
let start = self.x_max_byte_range().end;
start..start + i16::RAW_BYTE_LEN
}
fn end_pts_of_contours_byte_range(&self) -> Range<usize> {
let start = self.y_max_byte_range().end;
start..start + self.end_pts_of_contours_byte_len
}
fn instruction_length_byte_range(&self) -> Range<usize> {
let start = self.end_pts_of_contours_byte_range().end;
start..start + u16::RAW_BYTE_LEN
}
fn instructions_byte_range(&self) -> Range<usize> {
let start = self.instruction_length_byte_range().end;
start..start + self.instructions_byte_len
}
fn glyph_data_byte_range(&self) -> Range<usize> {
let start = self.instructions_byte_range().end;
start..start + self.glyph_data_byte_len
}
}
impl<'a> FontRead<'a> for SimpleGlyph<'a> {
fn read(data: FontData<'a>) -> Result<Self, ReadError> {
let mut cursor = data.cursor();
let number_of_contours: i16 = cursor.read()?;
cursor.advance::<i16>();
cursor.advance::<i16>();
cursor.advance::<i16>();
cursor.advance::<i16>();
let end_pts_of_contours_byte_len = (number_of_contours as usize)
.checked_mul(u16::RAW_BYTE_LEN)
.ok_or(ReadError::OutOfBounds)?;
cursor.advance_by(end_pts_of_contours_byte_len);
let instruction_length: u16 = cursor.read()?;
let instructions_byte_len = (instruction_length as usize)
.checked_mul(u8::RAW_BYTE_LEN)
.ok_or(ReadError::OutOfBounds)?;
cursor.advance_by(instructions_byte_len);
let glyph_data_byte_len = cursor.remaining_bytes() / u8::RAW_BYTE_LEN * u8::RAW_BYTE_LEN;
cursor.advance_by(glyph_data_byte_len);
cursor.finish(SimpleGlyphMarker {
end_pts_of_contours_byte_len,
instructions_byte_len,
glyph_data_byte_len,
})
}
}
/// The [Glyph Header](https://docs.microsoft.com/en-us/typography/opentype/spec/glyf#glyph-headers)
pub type SimpleGlyph<'a> = TableRef<'a, SimpleGlyphMarker>;
impl<'a> SimpleGlyph<'a> {
/// If the number of contours is greater than or equal to zero,
/// this is a simple glyph. If negative, this is a composite glyph
/// — the value -1 should be used for composite glyphs.
pub fn number_of_contours(&self) -> i16 {
let range = self.shape.number_of_contours_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Minimum x for coordinate data.
pub fn x_min(&self) -> i16 {
let range = self.shape.x_min_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Minimum y for coordinate data.
pub fn y_min(&self) -> i16 {
let range = self.shape.y_min_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Maximum x for coordinate data.
pub fn x_max(&self) -> i16 {
let range = self.shape.x_max_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Maximum y for coordinate data.
pub fn y_max(&self) -> i16 {
let range = self.shape.y_max_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Array of point indices for the last point of each contour,
/// in increasing numeric order
pub fn end_pts_of_contours(&self) -> &'a [BigEndian<u16>] {
let range = self.shape.end_pts_of_contours_byte_range();
self.data.read_array(range).unwrap()
}
/// Total number of bytes for instructions. If instructionLength is
/// zero, no instructions are present for this glyph, and this
/// field is followed directly by the flags field.
pub fn instruction_length(&self) -> u16 {
let range = self.shape.instruction_length_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Array of instruction byte code for the glyph.
pub fn instructions(&self) -> &'a [u8] {
let range = self.shape.instructions_byte_range();
self.data.read_array(range).unwrap()
}
/// the raw data for flags & x/y coordinates
pub fn glyph_data(&self) -> &'a [u8] {
let range = self.shape.glyph_data_byte_range();
self.data.read_array(range).unwrap()
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> SomeTable<'a> for SimpleGlyph<'a> {
fn type_name(&self) -> &str {
"SimpleGlyph"
}
fn get_field(&self, idx: usize) -> Option<Field<'a>> {
match idx {
0usize => Some(Field::new("number_of_contours", self.number_of_contours())),
1usize => Some(Field::new("x_min", self.x_min())),
2usize => Some(Field::new("y_min", self.y_min())),
3usize => Some(Field::new("x_max", self.x_max())),
4usize => Some(Field::new("y_max", self.y_max())),
5usize => Some(Field::new(
"end_pts_of_contours",
self.end_pts_of_contours(),
)),
6usize => Some(Field::new("instruction_length", self.instruction_length())),
7usize => Some(Field::new("instructions", self.instructions())),
8usize => Some(Field::new("glyph_data", self.glyph_data())),
_ => None,
}
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> std::fmt::Debug for SimpleGlyph<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
(self as &dyn SomeTable<'a>).fmt(f)
}
}
/// Flags used in [SimpleGlyph]
#[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash, bytemuck :: AnyBitPattern)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(transparent)]
pub struct SimpleGlyphFlags {
bits: u8,
}
impl SimpleGlyphFlags {
/// Bit 0: If set, the point is on the curve; otherwise, it is off
/// the curve.
pub const ON_CURVE_POINT: Self = Self { bits: 0x01 };
/// Bit 1: If set, the corresponding x-coordinate is 1 byte long,
/// and the sign is determined by the
/// X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR flag. If not set, its
/// interpretation depends on the
/// X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR flag: If that other flag
/// is set, the x-coordinate is the same as the previous
/// x-coordinate, and no element is added to the xCoordinates
/// array. If both flags are not set, the corresponding element in
/// the xCoordinates array is two bytes and interpreted as a signed
/// integer. See the description of the
/// X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR flag for additional
/// information.
pub const X_SHORT_VECTOR: Self = Self { bits: 0x02 };
/// Bit 2: If set, the corresponding y-coordinate is 1 byte long,
/// and the sign is determined by the
/// Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR flag. If not set, its
/// interpretation depends on the
/// Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR flag: If that other flag
/// is set, the y-coordinate is the same as the previous
/// y-coordinate, and no element is added to the yCoordinates
/// array. If both flags are not set, the corresponding element in
/// the yCoordinates array is two bytes and interpreted as a signed
/// integer. See the description of the
/// Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR flag for additional
/// information.
pub const Y_SHORT_VECTOR: Self = Self { bits: 0x04 };
/// Bit 3: If set, the next byte (read as unsigned) specifies the
/// number of additional times this flag byte is to be repeated in
/// the logical flags array — that is, the number of additional
/// logical flag entries inserted after this entry. (In the
/// expanded logical array, this bit is ignored.) In this way, the
/// number of flags listed can be smaller than the number of points
/// in the glyph description.
pub const REPEAT_FLAG: Self = Self { bits: 0x08 };
/// Bit 4: This flag has two meanings, depending on how the
/// X_SHORT_VECTOR flag is set. If X_SHORT_VECTOR is set, this bit
/// describes the sign of the value, with 1 equalling positive and
/// 0 negative. If X_SHORT_VECTOR is not set and this bit is set,
/// then the current x-coordinate is the same as the previous
/// x-coordinate. If X_SHORT_VECTOR is not set and this bit is also
/// not set, the current x-coordinate is a signed 16-bit delta
/// vector.
pub const X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR: Self = Self { bits: 0x10 };
/// Bit 5: This flag has two meanings, depending on how the
/// Y_SHORT_VECTOR flag is set. If Y_SHORT_VECTOR is set, this bit
/// describes the sign of the value, with 1 equalling positive and
/// 0 negative. If Y_SHORT_VECTOR is not set and this bit is set,
/// then the current y-coordinate is the same as the previous
/// y-coordinate. If Y_SHORT_VECTOR is not set and this bit is also
/// not set, the current y-coordinate is a signed 16-bit delta
/// vector.
pub const Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR: Self = Self { bits: 0x20 };
/// Bit 6: If set, contours in the glyph description may overlap.
/// Use of this flag is not required in OpenType — that is, it is
/// valid to have contours overlap without having this flag set. It
/// may affect behaviors in some platforms, however. (See the
/// discussion of “Overlapping contours” in Apple’s
/// specification for details regarding behavior in Apple
/// platforms.) When used, it must be set on the first flag byte
/// for the glyph. See additional details below.
pub const OVERLAP_SIMPLE: Self = Self { bits: 0x40 };
/// Bit 7: Off-curve point belongs to a cubic-Bezier segment
///
/// * [Spec](https://github.com/harfbuzz/boring-expansion-spec/blob/main/glyf1-cubicOutlines.md)
/// * [harfbuzz](https://github.com/harfbuzz/harfbuzz/blob/c1ca46e4ebb6457dfe00a5441d52a4a66134ac58/src/OT/glyf/SimpleGlyph.hh#L23)
pub const CUBIC: Self = Self { bits: 0x80 };
}
impl SimpleGlyphFlags {
/// Returns an empty set of flags.
#[inline]
pub const fn empty() -> Self {
Self { bits: 0 }
}
/// Returns the set containing all flags.
#[inline]
pub const fn all() -> Self {
Self {
bits: Self::ON_CURVE_POINT.bits
| Self::X_SHORT_VECTOR.bits
| Self::Y_SHORT_VECTOR.bits
| Self::REPEAT_FLAG.bits
| Self::X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR.bits
| Self::Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR.bits
| Self::OVERLAP_SIMPLE.bits
| Self::CUBIC.bits,
}
}
/// Returns the raw value of the flags currently stored.
#[inline]
pub const fn bits(&self) -> u8 {
self.bits
}
/// Convert from underlying bit representation, unless that
/// representation contains bits that do not correspond to a flag.
#[inline]
pub const fn from_bits(bits: u8) -> Option<Self> {
if (bits & !Self::all().bits()) == 0 {
Some(Self { bits })
} else {
None
}
}
/// Convert from underlying bit representation, dropping any bits
/// that do not correspond to flags.
#[inline]
pub const fn from_bits_truncate(bits: u8) -> Self {
Self {
bits: bits & Self::all().bits,
}
}
/// Returns `true` if no flags are currently stored.
#[inline]
pub const fn is_empty(&self) -> bool {
self.bits() == Self::empty().bits()
}
/// Returns `true` if there are flags common to both `self` and `other`.
#[inline]
pub const fn intersects(&self, other: Self) -> bool {
!(Self {
bits: self.bits & other.bits,
})
.is_empty()
}
/// Returns `true` if all of the flags in `other` are contained within `self`.
#[inline]
pub const fn contains(&self, other: Self) -> bool {
(self.bits & other.bits) == other.bits
}
/// Inserts the specified flags in-place.
#[inline]
pub fn insert(&mut self, other: Self) {
self.bits |= other.bits;
}
/// Removes the specified flags in-place.
#[inline]
pub fn remove(&mut self, other: Self) {
self.bits &= !other.bits;
}
/// Toggles the specified flags in-place.
#[inline]
pub fn toggle(&mut self, other: Self) {
self.bits ^= other.bits;
}
/// Returns the intersection between the flags in `self` and
/// `other`.
///
/// Specifically, the returned set contains only the flags which are
/// present in *both* `self` *and* `other`.
///
/// This is equivalent to using the `&` operator (e.g.
/// [`ops::BitAnd`]), as in `flags & other`.
///
/// [`ops::BitAnd`]: https://doc.rust-lang.org/std/ops/trait.BitAnd.html
#[inline]
#[must_use]
pub const fn intersection(self, other: Self) -> Self {
Self {
bits: self.bits & other.bits,
}
}
/// Returns the union of between the flags in `self` and `other`.
///
/// Specifically, the returned set contains all flags which are
/// present in *either* `self` *or* `other`, including any which are
/// present in both.
///
/// This is equivalent to using the `|` operator (e.g.
/// [`ops::BitOr`]), as in `flags | other`.
///
/// [`ops::BitOr`]: https://doc.rust-lang.org/std/ops/trait.BitOr.html
#[inline]
#[must_use]
pub const fn union(self, other: Self) -> Self {
Self {
bits: self.bits | other.bits,
}
}
/// Returns the difference between the flags in `self` and `other`.
///
/// Specifically, the returned set contains all flags present in
/// `self`, except for the ones present in `other`.
///
/// It is also conceptually equivalent to the "bit-clear" operation:
/// `flags & !other` (and this syntax is also supported).
///
/// This is equivalent to using the `-` operator (e.g.
/// [`ops::Sub`]), as in `flags - other`.
///
/// [`ops::Sub`]: https://doc.rust-lang.org/std/ops/trait.Sub.html
#[inline]
#[must_use]
pub const fn difference(self, other: Self) -> Self {
Self {
bits: self.bits & !other.bits,
}
}
}
impl std::ops::BitOr for SimpleGlyphFlags {
type Output = Self;
/// Returns the union of the two sets of flags.
#[inline]
fn bitor(self, other: SimpleGlyphFlags) -> Self {
Self {
bits: self.bits | other.bits,
}
}
}
impl std::ops::BitOrAssign for SimpleGlyphFlags {
/// Adds the set of flags.
#[inline]
fn bitor_assign(&mut self, other: Self) {
self.bits |= other.bits;
}
}
impl std::ops::BitXor for SimpleGlyphFlags {
type Output = Self;
/// Returns the left flags, but with all the right flags toggled.
#[inline]
fn bitxor(self, other: Self) -> Self {
Self {
bits: self.bits ^ other.bits,
}
}
}
impl std::ops::BitXorAssign for SimpleGlyphFlags {
/// Toggles the set of flags.
#[inline]
fn bitxor_assign(&mut self, other: Self) {
self.bits ^= other.bits;
}
}
impl std::ops::BitAnd for SimpleGlyphFlags {
type Output = Self;
/// Returns the intersection between the two sets of flags.
#[inline]
fn bitand(self, other: Self) -> Self {
Self {
bits: self.bits & other.bits,
}
}
}
impl std::ops::BitAndAssign for SimpleGlyphFlags {
/// Disables all flags disabled in the set.
#[inline]
fn bitand_assign(&mut self, other: Self) {
self.bits &= other.bits;
}
}
impl std::ops::Sub for SimpleGlyphFlags {
type Output = Self;
/// Returns the set difference of the two sets of flags.
#[inline]
fn sub(self, other: Self) -> Self {
Self {
bits: self.bits & !other.bits,
}
}
}
impl std::ops::SubAssign for SimpleGlyphFlags {
/// Disables all flags enabled in the set.
#[inline]
fn sub_assign(&mut self, other: Self) {
self.bits &= !other.bits;
}
}
impl std::ops::Not for SimpleGlyphFlags {
type Output = Self;
/// Returns the complement of this set of flags.
#[inline]
fn not(self) -> Self {
Self { bits: !self.bits } & Self::all()
}
}
impl std::fmt::Debug for SimpleGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let members: &[(&str, Self)] = &[
("ON_CURVE_POINT", Self::ON_CURVE_POINT),
("X_SHORT_VECTOR", Self::X_SHORT_VECTOR),
("Y_SHORT_VECTOR", Self::Y_SHORT_VECTOR),
("REPEAT_FLAG", Self::REPEAT_FLAG),
(
"X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR",
Self::X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR,
),
(
"Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR",
Self::Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR,
),
("OVERLAP_SIMPLE", Self::OVERLAP_SIMPLE),
("CUBIC", Self::CUBIC),
];
let mut first = true;
for (name, value) in members {
if self.contains(*value) {
if !first {
f.write_str(" | ")?;
}
first = false;
f.write_str(name)?;
}
}
if first {
f.write_str("(empty)")?;
}
Ok(())
}
}
impl std::fmt::Binary for SimpleGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::Binary::fmt(&self.bits, f)
}
}
impl std::fmt::Octal for SimpleGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::Octal::fmt(&self.bits, f)
}
}
impl std::fmt::LowerHex for SimpleGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::LowerHex::fmt(&self.bits, f)
}
}
impl std::fmt::UpperHex for SimpleGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::UpperHex::fmt(&self.bits, f)
}
}
impl font_types::Scalar for SimpleGlyphFlags {
type Raw = <u8 as font_types::Scalar>::Raw;
fn to_raw(self) -> Self::Raw {
self.bits().to_raw()
}
fn from_raw(raw: Self::Raw) -> Self {
let t = <u8>::from_raw(raw);
Self::from_bits_truncate(t)
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> From<SimpleGlyphFlags> for FieldType<'a> {
fn from(src: SimpleGlyphFlags) -> FieldType<'a> {
src.bits().into()
}
}
/// [CompositeGlyph](https://docs.microsoft.com/en-us/typography/opentype/spec/glyf#glyph-headers)
#[derive(Debug, Clone, Copy)]
#[doc(hidden)]
pub struct CompositeGlyphMarker {
component_data_byte_len: usize,
}
impl CompositeGlyphMarker {
fn number_of_contours_byte_range(&self) -> Range<usize> {
let start = 0;
start..start + i16::RAW_BYTE_LEN
}
fn x_min_byte_range(&self) -> Range<usize> {
let start = self.number_of_contours_byte_range().end;
start..start + i16::RAW_BYTE_LEN
}
fn y_min_byte_range(&self) -> Range<usize> {
let start = self.x_min_byte_range().end;
start..start + i16::RAW_BYTE_LEN
}
fn x_max_byte_range(&self) -> Range<usize> {
let start = self.y_min_byte_range().end;
start..start + i16::RAW_BYTE_LEN
}
fn y_max_byte_range(&self) -> Range<usize> {
let start = self.x_max_byte_range().end;
start..start + i16::RAW_BYTE_LEN
}
fn component_data_byte_range(&self) -> Range<usize> {
let start = self.y_max_byte_range().end;
start..start + self.component_data_byte_len
}
}
impl<'a> FontRead<'a> for CompositeGlyph<'a> {
fn read(data: FontData<'a>) -> Result<Self, ReadError> {
let mut cursor = data.cursor();
cursor.advance::<i16>();
cursor.advance::<i16>();
cursor.advance::<i16>();
cursor.advance::<i16>();
cursor.advance::<i16>();
let component_data_byte_len =
cursor.remaining_bytes() / u8::RAW_BYTE_LEN * u8::RAW_BYTE_LEN;
cursor.advance_by(component_data_byte_len);
cursor.finish(CompositeGlyphMarker {
component_data_byte_len,
})
}
}
/// [CompositeGlyph](https://docs.microsoft.com/en-us/typography/opentype/spec/glyf#glyph-headers)
pub type CompositeGlyph<'a> = TableRef<'a, CompositeGlyphMarker>;
impl<'a> CompositeGlyph<'a> {
/// If the number of contours is greater than or equal to zero,
/// this is a simple glyph. If negative, this is a composite glyph
/// — the value -1 should be used for composite glyphs.
pub fn number_of_contours(&self) -> i16 {
let range = self.shape.number_of_contours_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Minimum x for coordinate data.
pub fn x_min(&self) -> i16 {
let range = self.shape.x_min_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Minimum y for coordinate data.
pub fn y_min(&self) -> i16 {
let range = self.shape.y_min_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Maximum x for coordinate data.
pub fn x_max(&self) -> i16 {
let range = self.shape.x_max_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Maximum y for coordinate data.
pub fn y_max(&self) -> i16 {
let range = self.shape.y_max_byte_range();
self.data.read_at(range.start).unwrap()
}
/// component flag
/// glyph index of component
pub fn component_data(&self) -> &'a [u8] {
let range = self.shape.component_data_byte_range();
self.data.read_array(range).unwrap()
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> SomeTable<'a> for CompositeGlyph<'a> {
fn type_name(&self) -> &str {
"CompositeGlyph"
}
fn get_field(&self, idx: usize) -> Option<Field<'a>> {
match idx {
0usize => Some(Field::new("number_of_contours", self.number_of_contours())),
1usize => Some(Field::new("x_min", self.x_min())),
2usize => Some(Field::new("y_min", self.y_min())),
3usize => Some(Field::new("x_max", self.x_max())),
4usize => Some(Field::new("y_max", self.y_max())),
5usize => Some(Field::new("component_data", self.component_data())),
_ => None,
}
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> std::fmt::Debug for CompositeGlyph<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
(self as &dyn SomeTable<'a>).fmt(f)
}
}
/// Flags used in [CompositeGlyph]
#[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash, bytemuck :: AnyBitPattern)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(transparent)]
pub struct CompositeGlyphFlags {
bits: u16,
}
impl CompositeGlyphFlags {
/// Bit 0: If this is set, the arguments are 16-bit (uint16 or
/// int16); otherwise, they are bytes (uint8 or int8).
pub const ARG_1_AND_2_ARE_WORDS: Self = Self { bits: 0x0001 };
/// Bit 1: If this is set, the arguments are signed xy values;
/// otherwise, they are unsigned point numbers.
pub const ARGS_ARE_XY_VALUES: Self = Self { bits: 0x0002 };
/// Bit 2: If set and ARGS_ARE_XY_VALUES is also set, the xy values
/// are rounded to the nearest grid line. Ignored if
/// ARGS_ARE_XY_VALUES is not set.
pub const ROUND_XY_TO_GRID: Self = Self { bits: 0x0004 };
/// Bit 3: This indicates that there is a simple scale for the
/// component. Otherwise, scale = 1.0.
pub const WE_HAVE_A_SCALE: Self = Self { bits: 0x0008 };
/// Bit 5: Indicates at least one more glyph after this one.
pub const MORE_COMPONENTS: Self = Self { bits: 0x0020 };
/// Bit 6: The x direction will use a different scale from the y
/// direction.
pub const WE_HAVE_AN_X_AND_Y_SCALE: Self = Self { bits: 0x0040 };
/// Bit 7: There is a 2 by 2 transformation that will be used to
/// scale the component.
pub const WE_HAVE_A_TWO_BY_TWO: Self = Self { bits: 0x0080 };
/// Bit 8: Following the last component are instructions for the
/// composite character.
pub const WE_HAVE_INSTRUCTIONS: Self = Self { bits: 0x0100 };
/// Bit 9: If set, this forces the aw and lsb (and rsb) for the
/// composite to be equal to those from this component glyph. This
/// works for hinted and unhinted glyphs.
pub const USE_MY_METRICS: Self = Self { bits: 0x0200 };
/// Bit 10: If set, the components of the compound glyph overlap.
/// Use of this flag is not required in OpenType — that is, it is
/// valid to have components overlap without having this flag set.
/// It may affect behaviors in some platforms, however. (See
/// Apple’s specification for details regarding behavior in Apple
/// platforms.) When used, it must be set on the flag word for the
/// first component. See additional remarks, above, for the similar
/// OVERLAP_SIMPLE flag used in simple-glyph descriptions.
pub const OVERLAP_COMPOUND: Self = Self { bits: 0x0400 };
/// Bit 11: The composite is designed to have the component offset
/// scaled. Ignored if ARGS_ARE_XY_VALUES is not set.
pub const SCALED_COMPONENT_OFFSET: Self = Self { bits: 0x0800 };
/// Bit 12: The composite is designed not to have the component
/// offset scaled. Ignored if ARGS_ARE_XY_VALUES is not set.
pub const UNSCALED_COMPONENT_OFFSET: Self = Self { bits: 0x1000 };
}
impl CompositeGlyphFlags {
/// Returns an empty set of flags.
#[inline]
pub const fn empty() -> Self {
Self { bits: 0 }
}
/// Returns the set containing all flags.
#[inline]
pub const fn all() -> Self {
Self {
bits: Self::ARG_1_AND_2_ARE_WORDS.bits
| Self::ARGS_ARE_XY_VALUES.bits
| Self::ROUND_XY_TO_GRID.bits
| Self::WE_HAVE_A_SCALE.bits
| Self::MORE_COMPONENTS.bits
| Self::WE_HAVE_AN_X_AND_Y_SCALE.bits
| Self::WE_HAVE_A_TWO_BY_TWO.bits
| Self::WE_HAVE_INSTRUCTIONS.bits
| Self::USE_MY_METRICS.bits
| Self::OVERLAP_COMPOUND.bits
| Self::SCALED_COMPONENT_OFFSET.bits
| Self::UNSCALED_COMPONENT_OFFSET.bits,
}
}
/// Returns the raw value of the flags currently stored.
#[inline]
pub const fn bits(&self) -> u16 {
self.bits
}
/// Convert from underlying bit representation, unless that
/// representation contains bits that do not correspond to a flag.
#[inline]
pub const fn from_bits(bits: u16) -> Option<Self> {
if (bits & !Self::all().bits()) == 0 {
Some(Self { bits })
} else {
None
}
}
/// Convert from underlying bit representation, dropping any bits
/// that do not correspond to flags.
#[inline]
pub const fn from_bits_truncate(bits: u16) -> Self {
Self {
bits: bits & Self::all().bits,
}
}
/// Returns `true` if no flags are currently stored.
#[inline]
pub const fn is_empty(&self) -> bool {
self.bits() == Self::empty().bits()
}
/// Returns `true` if there are flags common to both `self` and `other`.
#[inline]
pub const fn intersects(&self, other: Self) -> bool {
!(Self {
bits: self.bits & other.bits,
})
.is_empty()
}
/// Returns `true` if all of the flags in `other` are contained within `self`.
#[inline]
pub const fn contains(&self, other: Self) -> bool {
(self.bits & other.bits) == other.bits
}
/// Inserts the specified flags in-place.
#[inline]
pub fn insert(&mut self, other: Self) {
self.bits |= other.bits;
}
/// Removes the specified flags in-place.
#[inline]
pub fn remove(&mut self, other: Self) {
self.bits &= !other.bits;
}
/// Toggles the specified flags in-place.
#[inline]
pub fn toggle(&mut self, other: Self) {
self.bits ^= other.bits;
}
/// Returns the intersection between the flags in `self` and
/// `other`.
///
/// Specifically, the returned set contains only the flags which are
/// present in *both* `self` *and* `other`.
///
/// This is equivalent to using the `&` operator (e.g.
/// [`ops::BitAnd`]), as in `flags & other`.
///
/// [`ops::BitAnd`]: https://doc.rust-lang.org/std/ops/trait.BitAnd.html
#[inline]
#[must_use]
pub const fn intersection(self, other: Self) -> Self {
Self {
bits: self.bits & other.bits,
}
}
/// Returns the union of between the flags in `self` and `other`.
///
/// Specifically, the returned set contains all flags which are
/// present in *either* `self` *or* `other`, including any which are
/// present in both.
///
/// This is equivalent to using the `|` operator (e.g.
/// [`ops::BitOr`]), as in `flags | other`.
///
/// [`ops::BitOr`]: https://doc.rust-lang.org/std/ops/trait.BitOr.html
#[inline]
#[must_use]
pub const fn union(self, other: Self) -> Self {
Self {
bits: self.bits | other.bits,
}
}
/// Returns the difference between the flags in `self` and `other`.
///
/// Specifically, the returned set contains all flags present in
/// `self`, except for the ones present in `other`.
///
/// It is also conceptually equivalent to the "bit-clear" operation:
/// `flags & !other` (and this syntax is also supported).
///
/// This is equivalent to using the `-` operator (e.g.
/// [`ops::Sub`]), as in `flags - other`.
///
/// [`ops::Sub`]: https://doc.rust-lang.org/std/ops/trait.Sub.html
#[inline]
#[must_use]
pub const fn difference(self, other: Self) -> Self {
Self {
bits: self.bits & !other.bits,
}
}
}
impl std::ops::BitOr for CompositeGlyphFlags {
type Output = Self;
/// Returns the union of the two sets of flags.
#[inline]
fn bitor(self, other: CompositeGlyphFlags) -> Self {
Self {
bits: self.bits | other.bits,
}
}
}
impl std::ops::BitOrAssign for CompositeGlyphFlags {
/// Adds the set of flags.
#[inline]
fn bitor_assign(&mut self, other: Self) {
self.bits |= other.bits;
}
}
impl std::ops::BitXor for CompositeGlyphFlags {
type Output = Self;
/// Returns the left flags, but with all the right flags toggled.
#[inline]
fn bitxor(self, other: Self) -> Self {
Self {
bits: self.bits ^ other.bits,
}
}
}
impl std::ops::BitXorAssign for CompositeGlyphFlags {
/// Toggles the set of flags.
#[inline]
fn bitxor_assign(&mut self, other: Self) {
self.bits ^= other.bits;
}
}
impl std::ops::BitAnd for CompositeGlyphFlags {
type Output = Self;
/// Returns the intersection between the two sets of flags.
#[inline]
fn bitand(self, other: Self) -> Self {
Self {
bits: self.bits & other.bits,
}
}
}
impl std::ops::BitAndAssign for CompositeGlyphFlags {
/// Disables all flags disabled in the set.
#[inline]
fn bitand_assign(&mut self, other: Self) {
self.bits &= other.bits;
}
}
impl std::ops::Sub for CompositeGlyphFlags {
type Output = Self;
/// Returns the set difference of the two sets of flags.
#[inline]
fn sub(self, other: Self) -> Self {
Self {
bits: self.bits & !other.bits,
}
}
}
impl std::ops::SubAssign for CompositeGlyphFlags {
/// Disables all flags enabled in the set.
#[inline]
fn sub_assign(&mut self, other: Self) {
self.bits &= !other.bits;
}
}
impl std::ops::Not for CompositeGlyphFlags {
type Output = Self;
/// Returns the complement of this set of flags.
#[inline]
fn not(self) -> Self {
Self { bits: !self.bits } & Self::all()
}
}
impl std::fmt::Debug for CompositeGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let members: &[(&str, Self)] = &[
("ARG_1_AND_2_ARE_WORDS", Self::ARG_1_AND_2_ARE_WORDS),
("ARGS_ARE_XY_VALUES", Self::ARGS_ARE_XY_VALUES),
("ROUND_XY_TO_GRID", Self::ROUND_XY_TO_GRID),
("WE_HAVE_A_SCALE", Self::WE_HAVE_A_SCALE),
("MORE_COMPONENTS", Self::MORE_COMPONENTS),
("WE_HAVE_AN_X_AND_Y_SCALE", Self::WE_HAVE_AN_X_AND_Y_SCALE),
("WE_HAVE_A_TWO_BY_TWO", Self::WE_HAVE_A_TWO_BY_TWO),
("WE_HAVE_INSTRUCTIONS", Self::WE_HAVE_INSTRUCTIONS),
("USE_MY_METRICS", Self::USE_MY_METRICS),
("OVERLAP_COMPOUND", Self::OVERLAP_COMPOUND),
("SCALED_COMPONENT_OFFSET", Self::SCALED_COMPONENT_OFFSET),
("UNSCALED_COMPONENT_OFFSET", Self::UNSCALED_COMPONENT_OFFSET),
];
let mut first = true;
for (name, value) in members {
if self.contains(*value) {
if !first {
f.write_str(" | ")?;
}
first = false;
f.write_str(name)?;
}
}
if first {
f.write_str("(empty)")?;
}
Ok(())
}
}
impl std::fmt::Binary for CompositeGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::Binary::fmt(&self.bits, f)
}
}
impl std::fmt::Octal for CompositeGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::Octal::fmt(&self.bits, f)
}
}
impl std::fmt::LowerHex for CompositeGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::LowerHex::fmt(&self.bits, f)
}
}
impl std::fmt::UpperHex for CompositeGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::UpperHex::fmt(&self.bits, f)
}
}
impl font_types::Scalar for CompositeGlyphFlags {
type Raw = <u16 as font_types::Scalar>::Raw;
fn to_raw(self) -> Self::Raw {
self.bits().to_raw()
}
fn from_raw(raw: Self::Raw) -> Self {
let t = <u16>::from_raw(raw);
Self::from_bits_truncate(t)
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> From<CompositeGlyphFlags> for FieldType<'a> {
fn from(src: CompositeGlyphFlags) -> FieldType<'a> {
src.bits().into()
}
}
/// Simple or composite glyph.
#[derive(Clone)]
pub enum Glyph<'a> {
Simple(SimpleGlyph<'a>),
Composite(CompositeGlyph<'a>),
}
impl<'a> Glyph<'a> {
///Return the `FontData` used to resolve offsets for this table.
pub fn offset_data(&self) -> FontData<'a> {
match self {
Self::Simple(item) => item.offset_data(),
Self::Composite(item) => item.offset_data(),
}
}
/// If the number of contours is greater than or equal to zero,
/// this is a simple glyph. If negative, this is a composite glyph
/// — the value -1 should be used for composite glyphs.
pub fn number_of_contours(&self) -> i16 {
match self {
Self::Simple(item) => item.number_of_contours(),
Self::Composite(item) => item.number_of_contours(),
}
}
/// Minimum x for coordinate data.
pub fn x_min(&self) -> i16 {
match self {
Self::Simple(item) => item.x_min(),
Self::Composite(item) => item.x_min(),
}
}
/// Minimum y for coordinate data.
pub fn y_min(&self) -> i16 {
match self {
Self::Simple(item) => item.y_min(),
Self::Composite(item) => item.y_min(),
}
}
/// Maximum x for coordinate data.
pub fn x_max(&self) -> i16 {
match self {
Self::Simple(item) => item.x_max(),
Self::Composite(item) => item.x_max(),
}
}
/// Maximum y for coordinate data.
pub fn y_max(&self) -> i16 {
match self {
Self::Simple(item) => item.y_max(),
Self::Composite(item) => item.y_max(),
}
}
}
impl<'a> FontRead<'a> for Glyph<'a> {
fn read(data: FontData<'a>) -> Result<Self, ReadError> {
let format: i16 = data.read_at(0usize)?;
#[allow(clippy::redundant_guards)]
match format {
format if format >= 0 => Ok(Self::Simple(FontRead::read(data)?)),
format if format < 0 => Ok(Self::Composite(FontRead::read(data)?)),
other => Err(ReadError::InvalidFormat(other.into())),
}
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> Glyph<'a> {
fn dyn_inner<'b>(&'b self) -> &'b dyn SomeTable<'a> {
match self {
Self::Simple(table) => table,
Self::Composite(table) => table,
}
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> std::fmt::Debug for Glyph<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.dyn_inner().fmt(f)
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> SomeTable<'a> for Glyph<'a> {
fn type_name(&self) -> &str {
self.dyn_inner().type_name()
}
fn get_field(&self, idx: usize) -> Option<Field<'a>> {
self.dyn_inner().get_field(idx)
}
}